上級所得理論Ⅰ

default_image
講師工藤 教孝 教授
開講部局経済学部/経済学研究科 2023年度春学期
対象者経済学研究科 博士前期・博士後期

授業の目的

This course is designed to build your research ability by providing particularly important methodological skills that are often used in modern macroeconomic research. In particular, we shall focus on (1) difference equations for describing variables that evolve over time, and (2) dynamic optimization methods for describing the optimal allocation over time.

到達目標

After this course, students should be able to (1) solve any system of difference equations; (2) solve any dynamic optimizing problem using either by Lagrange method or by dynamic programming; and (3) read and understand advanced textbooks and professional articles in the field of macroeconomics.

授業の工夫

本講義では、可能な限り「世界標準」の大学院向けマクロ経済学を提供するように心がけています。学部レベルのマクロ経済学と大学院レベルのギャップを埋めるべく、まずは差分方程式の解説に力を入れ、変数が時間を通じて変化する様子を記述できるようにトレーニングします。その後は時間を通じた最適化問題を解けるようになることを目標に分析技術を解説しています。

授業の内容や構成

  1. Introduction
  2. Difference Equations: Linear Scalar Equations
  3. Difference Equations: Nonlinear Equations and Linearization
  4. Difference Equations: Linear Systems
  5. Difference Equations: Nonlinear Systems
  6. Dynamic Optimization: Finite Horizon
  7. Dynamic Optimization: Infinite Horizon
  8. Neoclassical Growth: Global Analysis
  9. Neoclassical Growth: Numerical Analysis
  10. Dynamic Programming: Basic Idea
  11. Dynamic Programming: Applications
  12. General Equilibrium: Real Economy
  13. General Equilibrium: Monetary Economy
  14. General Equilibrium: Monetary Policy
  15. Imperfect Competition

履修条件・関連する科目

No prerequisite.
Prior to the semester, prospective students are strongly encouraged to read textbooks such as Simon and Blume, Mathematics for Economists, Norton, 1994, or alike. To get ready for the course, be familiar with constrained optimization, total differentiation, and matrix algebra.
Lectures of this course will be delivered entirely in English.

教科書・参考書

There is no textbook you must purchase. Reading list and other materials will be distributed at TACT.

課外学習等

There will be 5-7 take-home assignments. Each assignment consists of many (time-consuming) questions. Some questions require computers.

講義資料

  1. Indroduction
  2. NonlinearDE
  3. LinearSystems
  4. Stability
  5. NonlinearSystems
  6. Optimization
  7. InfiniteHorizon
  8. Neoclassical
  9. Numerical
  10. DP
  11. GE
  12. Monetary
  13. Imperfect

クリエイティブ・コモンズ・ライセンス
この 作品 は クリエイティブ・コモンズ 表示 - 非営利 - 継承 4.0 国際 ライセンスの下に提供されています。


投稿日

September 29, 2025