Lecture 9

Chapter 3: Neoclassical Growth
Part Il: Quantitative Analysis

6/15, 2023



The Neoclassical Growth Model

* Last week, we learned that the optimal allocation is
determined by

u'(ce) ,
pu'(cesq) =/ k) +1-0

kKipr = f(ke) + (1= 8)ks — ¢
glm ,Btu’(Ct)kt — O

ko : given

* Today, we shall solve the model more explicitly.



Specification

 Functional forms are

cl-o

u(c) =

F(K,N) —AK“N1 * = f(k) = Ak“
* Then,

—O'

= aAkZ” SN
,BCt t+1

kt-l—l —_ AkC( + (1 6)kt — Ct
lim ,Btc{“kt =0

t— o0

k, : given




Steady State

* Let (k, c) denote the steady state.

* Then, the steady state satisfies

1
E=C¥Aka_1+1—6
c = Ak® — 6k
* For later use, rewrite them as
4 1 1-p
aAk*t==—14+5§=——+6
BB
=—14+6
C I 1-p
—=Ak* 1 - § = — 0 =
k a af

_|_

5(1 — )

a



Log-linearization

* Let us first log-linearize the simpler one,
kt+1 —_ Ak? + (1 — 5)kt — Ct

* Log-linearize it around the steady state to obtain

o=/
d)ftﬂ = °<A'é dé+ + (('*J‘)o/z,,. — ol Cw
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Log-linearization

 Further, divide both sides by k to obtain

2\ [—/5 2 c N
= i A — ) & C+

Fer ( & A *

:-/{’2 —(:/f +9—/:"))Cﬂr
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Log-linearization

* Thus, the log-linearized equation for
kt+1 —_ Ak? + (1 — 5)kt — Ct
Is given by

- 1. 1-8 61 —a)l.

kt+1:lEkt_[ af + a Ct
* Remember:

]’E _dkt_kt_k ~ _dCt_Ct—C

Uk k e = c c

* Thus, variables with hats are measured in percentage
deviations from the steady-state values.



Log-linearization

* Let us now log-linearize the other one,

T ake 41— 5
=«
e t+1
* First, to ease our calculation, rewrlte it as
Cir1 = Bet [aAkt+1 — 6]

* Then,
T = pLAR T =5 T T e

L,/’\)/—\//

/3

+ /Sc/r (1)L A 7%#2 0/76*/



Log-linearization

e Further,

1
dCe + /30"— (4~ A K i ,&’

v Co—gd Cter = g (/a—z @/}
C c F

<=> A oL=-) A
~ Con= o Cy +pE-VXAR  Foe
1
P

a

o~ C+ — (1-ot) /1‘73—!- 073) 75!““

L
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Log-linearization

* Thus, the log-linearized equation for
—0

o GARET +1—6
| | ﬁct—-l_O'l t+1
IS given by

1l—«a -
Ct+1 +T(1 — B+ 6Bk = ¢,




Local Analysis

* Now we have a log-linearized system:

1—a ~
Cey1 T - (1—=B+8B)kes1 =6
- 1. [1-8 §A-a)].
kt+1=lE t__“,g + a Ct

* Let us introduce new parameters:
—
e = o (1—-p+8pB)
1-8 61 —a)
i = +

ap

a



Local Analysis

* Thus, we have a simple-looking system:
Cto1 + ki1 = Gt

~ 1
ki1 = —gCy +

_]}t

b
* |n matrix form,

6 6= (o 1))
1 &

0 1 ) is invertible.

* It is easy to verify that (



Local Analysis

e Thus,

(Zi) (6 %) (cpk 19[3)(2)

* Before going to the next page, calculate

(o qbf)_l (—gbk 19[%)

* Also, try to prove that the steady state of the
system is a saddle.

* We know the result from the phase diagram last week.



Local Analysis

* It is straightforward:

1 ¢c - 1 0 1 _(pc 0
(0 1) ( b 1/[3)_( ¢c¢)lc( qbg) /]B/) )
— Pk 1/p
* Consider the characteristic polynomial:
p(A) =21 -1+ o +1/8)A+1/B
* It is easy to verify that p(0) = 1/ > 0and p(1) =
R ¢c¢k < 0.

* Let us draw a diagram of a quadratic equation with
p(0) > 0and p(1) < 0.



Local Analysis

* The diagram implies that on the downward region,
an eigenvalue is found in between 0 < 4 < 1.

* The other root should be found in the region 4 > 1.

* Thus, as shown in the phase diagram last week, the
steady state is a saddle.

1
f t > N\
0

P(1)o




Numerical Analysis

* In what follows, we shall quantify the model to
numerically study the model.

* The first step is to specify the parameter values.

* There are two ways:

e Estimation: Formal econometric methods to find the
appropriate values of model parameters.

* Calibration: Somewhat informal. Empirical studies
outside of the model to find the appropriate values of
model parameters.

* Estimation is beyond the scope of this lecture.



Parameters

* Today, we shall borrow the standard parameter
values from the literature.

* Let us set one period to be a quarter.
e ¢ = 0.36 : Consistent with the labor share.

0 = 0.025 : Consistent with 10% per year.
*f = 1+é.01 = 0.99 : Consistent with 4% per year.

ceg=1
e A =1




Numerical Analysis

* In what follows, we use Octave (or Matlab).
* First, declare the parameter values.

©.36; % alpha

©.025; % delta

1/(1+0.01); % beta
= 1.0; % sigma

.0; % TFP

(1-alp)*(1-bet+del*bet)/sig;
(1-bet)/(alp*bet) + del*(1l-alp)/alp;
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Numerical Analysis

* |n matrix form,

6 G = Coe ) (E)

—s— ~ B5 ~
* From this, we obtain B = By 'B,.

Bl = [1,phic;0,1];

B2 = [1,0;-phik,1/bet];
= B1\B2; % This is equivalent to inv(B1)*B2
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Numerical Analysis

* In Matlab (or Octave),
the elements of a

matrix are written as [E,D] = eig(B);
(raw, column) ell = E(1,1);
e12 = E(2,1):

* However, E matrix is
a2 1=aF (F192))

defined as = E
E = (PP IEE = SEIE
_ (egll 622)1) pol = ell/el2

€12 €22

e See Lecture 3 on this.
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Numerical Analysis

e Calculate the

eigenvectors to obtain >> Neoclassical
the E-matrix.
. ell = -0.5257¢€
* Finally, the saddle path el2 = -0.85063
IS given by e2l = 0.44850
A 811 A S B2 == =f 26 =
Ct —_ _kt —_ O62kt e . ;.V-ijz
>>
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Policy Function

* Notice that the saddle path é = 0.62k, gives us a
mapping (function) from the current state into the
current action.

* This mapping is called the policy function.

 The Matlab/Octabe code for this lecture,
“Neoclassical.m”, is available at TACT.

* The Python counterpart,
“PythonCode_Neoclassical.txt”, is also available at
TACT.



Equilibrium

* Original linear system:
Cto1 + ki1 = Gt ,

Et+1 = —¢rCe + El;t

 This system has an infinity of paths (most of them
explosive) from an arbitrary initial capital stock.

* TVC allows us to select the saddle path from them:

A 811 ~
Ct — kt
€12



Equilibrium

* The saddle path satisfies:

A 811 A
Ct — _kt
€12
Pas A 1 Pas
kiv1 = —¢rCe + =k

p

* This system has a unique path from any initial
capital stock, leading to the steady state.

* This is the (unique) equilibrium (or the solution) of
the model. (See Lecture 8)
* We can now simulate the model.



