Lecture 11

Chapter 5: General Equilibrium

Part I: Real Economy

6/29, 2023

Goals

- We have studied difference equations, dynamic optimization, and dynamic programming so far.
- This completes our (painful?) journey for acquiring mathematical skills.
- This week and the next, we finally move on to macroeconomics.
 - In the modern literature, macroeconomics is part of applied general equilibrium analysis.
 - Today we focus on how <u>market equilibrium</u> is described.
 - For the first time, we shall introduce prices.

Optimal Allocation

• Consider the following allocation problem:

$$\max_{\substack{\{c_t\},\{L_t\},\{K_{t+1}\}\\ \text{subject to:}}} \beta^t [u(c_t) - v(L_t)]$$
subject to:
$$K_{t+1} = F(K_t, L_t) + (1 - \delta)K_t - C_t$$

- This should look familiar to you.
- Formulate the Lagrangian or the Bellman equation to derive the FOCs.

Optimal Allocation

• The optimal allocation is a sequence of c_t , L_t , and K_t satisfying the following difference equations,

$$\frac{v'(L_t)}{u'(c_t)} = F_2(K_t, L_t),$$

$$\frac{u'(c_t)}{\beta u'(c_{t+1})} = F_1(K_{t+1}, L_{t+1}) + 1 - \delta,$$

$$K_{t+1} = F(K_t, L_t) + (1 - \delta)K_t - C_t$$

and the transversality condition.

Optimal Allocation

- Observe that there is no price in this economy.
 - Because there is only one agent in this economy and he/she owns everything, there is no exchange at all and therefore price mechanism is not needed.
- This allocation is by construction socially optimal.
 - Allocation determined by the hypothetical (superintelligent) social planner. He/she does not need to exist in the real world. What is important is that we can compute and study the property of this allocation.
- The key question is whether the market economy can do as well as the hypothetical planner does.

Static Economy

- Consider the undergrad micro theory.
- We need three components:
 - Demand function:

$$q^D = D(p)$$

• Supply function:

$$q^S = S(p)$$

• Equilibrium condition:

$$D(p) = S(p)$$

- Now, let us introduce markets:
 - Goods market: consumption goods are traded.
 - Labor market: labor service is traded.
 - Capital market: capital is traded.
 - The same market can be understood as asset market.
- These are the same as undergrad macro.
- We shall assume that <u>all markets are perfectly</u> competitive, as in undergrad micro.
- Thus, all agents are price takers in all markets.

- In the real world, there are many products and services in the goods market. However, we shall simplify this dimension by assuming a single final consumption good.
 - The price of the good in period t is P_t yen.
- Likewise, we assume that there is a single type of labor service and a single type of capital.
 - The price of labor service (wage rate) per hour in period t is W_t yen.

- A price is an exchange rate of two objects.
 - An apple of 100 yen means that we give up 100 units of money for an apple.
- Thus, we need to model **money** (= currency) to study the price of the consumption good.
 - Money is the topic for the next week.
 - Today, we shall avoid the complicated issues surrounding the theory of money by focusing on a nonmonetary economy.

- In a **real economy**, we do not model money.
- As a result, the general price level P_t cannot be determined (because the purchasing power of money $1/P_t$ cannot be determined without money), meaning that P_t can be any real number.
- In the real world, the wage rate is measured in terms of money, such as W_t yen per hour. Without money, we can only define the **real wage rate**,

$$w_t = \frac{W_t}{P_t}$$

- Note how the **real wage rate** w_t is measured.
 - Not in terms of yen.
 - This is in terms of units of the consumption good (such as "12.5 apples per hour").
- Similarly, the **real rental price of capital** r_t is measured in terms of units of the consumption good.

- There are two types of agents:
 - Households: unit mass, homogeneous
 - Firms: unit mass, homogeneous
- Unit mass?
 - The number of individuals is a <u>natural number</u>.
 - Not differentiable, and the number is too large.
 - A mass is a quantity, which is a real number.
 - Differentiable, and the size can be normalized to one.
 - How many people? = <u>infinity</u> within an interval of 0 and 1.
- A model with a representative agent = A model with an infinity of homogeneous agents.

Capital Market = Asset Market

- Firms <u>demand</u> capital in the capital market
 - Equivalently, firms <u>supply</u> asset in the asset market.
 These activities are same thing.
- Likewise, households <u>demand</u> and purchase asset in the asset market.
 - Equivalently, households <u>supply</u> capital in the capital market.

- Production technology: $F(K_t, L_t)$
- F satisfies the neoclassical assumptions:
 - $F_1 > 0, F_2 > 0, F_{11} < 0, F_{22} < 0$
 - Inada conditions:
 - $\lim_{K\to 0} F_1 = \infty$, $\lim_{K\to \infty} F_1 = 0$
 - $\lim_{L\to 0} F_2 = \infty$, $\lim_{L\to \infty} F_2 = 0$
 - Constant Returns to Scale

• The firm's profit in yen is

$$P_t F(K_t, L_t) - P_t r_t K_t - P_t w_t L_t$$

• Because our model cannot determine P_t , divide the profit by P_t to obtain

$$F(K_t, L_t) - r_t K_t - w_t L_t$$

• Thus, the profit maximization problem is given by $\max_{K_t,L_t} F(K_t,L_t) - r_t K_t - w_t L_t$

for all t.

 Note that the problem is <u>static</u> even though the model has an infinite horizon.

• From the FOCs, firm's demands for capital and labor K_t , L_t satisfy:

$$F_1(K_t, L_t) = r_t$$

$$F_2(K_t, L_t) = w_t$$

- Euler's Theorem: If F(K,L) satisfies CRS, then $F(K,L) = F_1(K,L)K + F_2(K,L)L$
- Euler's Theorem and FOCs imply zero profit:

$$F(K_t, L_t) - r_t K_t - w_t L_t = 0$$

- Implications of zero profit:
 - No incentive for anyone outside of the market to enter.
 - No incentive for anyone inside the market to exit.
- In other words, our model cannot determine the number of firms.
- Thus, we usually assume either
 - There is one perfectly competitive firm.
 - There is a unit mass of homogeneous firms.
- These two representations are the same.

Households

• A typical household's problem:

$$\max_{\substack{\{c_t\},\{h_t\},\{a_{t+1}\}\\ \text{subject to:}}} \sum_{t=0}^{d} \beta^t [u(c_t) - v(h_t)]$$
subject to:
$$a_t + w_t h_t = c_t + \frac{a_{t+1}}{R_{t+1}}$$

• The household takes the sequences of the wage rate $\{w_t\}_{t=0}^{\infty}$ and the asset price $\{1/R_{t+1}\}_{t=0}^{\infty}$ as given (price taker).

Individual Rationality

- Formulate the Lagrangian, derive the FOCs, and eliminate the multiplier.
- Demand for c_t , a_{t+1} and labor supply h_t satisfy:

$$\frac{v'(h_t)}{u'(c_t)} = w_t,$$

$$\frac{u'(c_t)}{\beta u'(c_{t+1})} = R_{t+1},$$

$$a_t + w_t h_t = c_t + \frac{a_{t+1}}{R_{t+1}}$$

Market Clearing

Market clearing conditions:

Goods market: $F(K_t, L_t) = c_t + I_t$

Labor market: $h_t = L_t$

Capital market: $\frac{1}{R_{t+1}}a_{t+1} = K_{t+1}$

• Equilibrium rate of interest:

$$R_t = 1 + r_t - \delta = 1 + F_1 - \delta$$

• RHS is the **technological rate of returns on capital**: One unit of income is saved in the form of capital. One unit is the principal, interest r_t is from this period's production, and δ is depreciated.

Capital market clearing implies

$$a_t = R_t K_t = (1 + r_t - \delta) K_t$$

Substitute it into the household's budget:

$$a_{t} + w_{t}h_{t} = c_{t} + \frac{a_{t+1}}{R_{t+1}}$$

$$\Leftrightarrow$$

$$r_{t}K_{t} + (1 - \delta)K_{t} + w_{t}h_{t} = c_{t} + K_{t+1}$$

$$\Leftrightarrow$$

$$K_{t+1} = F(K_{t}, L_{t}) + (1 - \delta)K_{t} - C_{t}$$

Identical to the resource constraint on page 3.

Labor market and capital market clearing imply:

$$\frac{v'(L_t)}{u'(c_t)} = w_t = F_2(K_t, L_t),$$

$$\frac{u'(c_t)}{\beta u'(c_{t+1})} = R_{t+1} = 1 + F_1(K_t, L_t) - \delta.$$

- These are <u>identical</u> to the conditions for the optimal allocation on page 4.
- The two models generate the same allocation.
- The competitive economy is Pareto optimal.

Welfare Theorem

- First Welfare Theorem: Every competitive equilibrium is Pareto optimal.
- Second Welfare Theorem: Every Pareto optimum can be decentralized as a competitive equilibrium.
- For <u>conditions</u> for these theorems, see any microeconomics textbook.
 - If your model includes scale effects, externality, public goods, fixed costs, imperfect competition, and market imperfections (such as asymmetric information), then the welfare theorem fails.

General Equilibrium with Government

Government Consumption

- Government provides public goods G_t . Public goods usually increase our utility or production:
 - $U(c_t, h_t, G_t)$
 - $F(K_t, L_t, G_t)$
- For many research questions, it suffices to treat G_t as **government consumption**.
 - G_t does <u>not</u> enter utility or production function.
 - Government consumption is a <u>complete waste</u>.
 - Sounds strange, but this way we can avoid the tricky discussion of how G_t improves U and F.
 - This could destroy your research.

Tax

- Let T_t be the amount of tax.
- Household budget under lump-sum tax:

$$a_t + w_t h_t - T_t = c_t + \frac{a_{t+1}}{R_{t+1}}$$

Household budget under distortionary taxes:

$$T_t = \boldsymbol{\tau_I} w_t h_t + \boldsymbol{\tau_C} c_t + \boldsymbol{\tau_K} a_t$$

- Distortionary taxes change the relative prices of actions (labor supply, consumption, wealth).
 - For many research questions, it suffices to assume lumpsum tax.

Government's Budget Constraint

- Typically, the government is not an optimizer.
- However, it faces the budget constraint.
- If tax is the only source of revenue, then the government budget constraint is

$$G_t = T_t$$

This is called the <u>balanced budget</u>.

GE under Balanced Budget

Market clearing conditions:

$$F(K_t, L_t) = c_t + I_t + G_t$$

$$h_t = L_t$$

$$\frac{1}{R_{t+1}} a_{t+1} = K_{t+1}$$

Budget constraints:

$$a_t + w_t h_t - T_t = c_t + \frac{a_{t+1}}{R_{t+1}}$$
$$G_t = T_t$$

One new equation and two new variables.

GE under Balanced Budget

One new equation and two new variables:

$$G_t = T_t$$

- We need to specify either $\{G_t\}_{t=0}^{\infty}$ or $\{T_t\}_{t=0}^{\infty}$.
- If $\{G_t\}$ is specified, then $\{T_t\}$ is endogenous.
- If $\{T_t\}$ is specified, then $\{G_t\}$ is endogenous.
- If $\{G_t\}$ and one of the two distortionary tax rates are specified, then the other distortionary tax rate is endogenous.

Budget Deficits and Debt

- Let us relax the assumption of balanced budget.
- Suppose that the government participate in the asset market.
- b_t is the government debt outstanding in period t.
- r_t^b is the interest on bonds.
- $b_{t+1} b_t$ is the newly issued bonds.
- Government's budget constraint is:

$$G_t + r_t^b b_t = T_t + b_{t+1} - b_t$$

Budget Deficits and Debt

- Primary budget deficit: $G_t T_t = D_t$
- Primary budget surplus: $T_t G_t = -D_t$
- An alternative definition of deficit:

$$b_{t+1} - b_t = G_t - T_t + r_t^b b_t$$

- This definition includes interest obligation $r_t^b b_t$.
- Sometimes the definition of deficit matters, but not always.

Arbitrage Condition

- There are two assets, capital and bonds.
- For the two assets to **coexist**, the rates of returns (= asset prices) must be the same:

$$R_t = 1 + r_t - \delta = 1 + r_t^b$$

- In any equilibrium, <u>individuals are indifferent</u> between the two assets.
 - Only the sum $K_t + b_t$ is determined by the demand side.
 - Equilibrium level of b_t is determined by the supply of bonds. \Rightarrow Equilibrium level of K_t is determined.

Market clearing conditions:

$$F(K_t, L_t) = c_t + I_t + G_t$$

$$h_t = L_t$$

$$\frac{1}{R_{t+1}} a_{t+1} = K_{t+1} + b_{t+1}$$

Budget constraints:

$$a_t + w_t h_t - T_t = c_t + \frac{a_{t+1}}{R_{t+1}}$$
 $G_t + r_t^b b_t = T_t + b_{t+1} - b_t$

• Substitute $\frac{1}{R_{t+1}} a_{t+1} = K_{t+1} + b_{t+1}$ into budget: $R_t(K_t + b_t) + w_t h_t - T_t = c_t + K_{t+1} + b_{t+1}$ \Leftrightarrow $Y_t + (1 - \delta)K_t + (1 + r_t^b)b_t - T_t$ $= c_t + K_{t+1} + b_{t+1}$ \Leftrightarrow $Y_t - T_t - c_t \equiv S_t = I_t + D_t$

• This result is the same as in undergrad macro.

• Now we have one new equation and 3 new variables (G_t, T_t, b_t) :

$$G_t + r_t b_t = T_t + b_{t+1} - b_t$$

• Equivalently, we have one new equation and 2 new variables (D_t, b_t) :

$$b_{t+1} = D_t + (1 + r_t)b_t$$

- We typically specify the sequence of <u>primary</u> deficits, $\{D_t\}_{t=0}^{\infty}$, as exogeneous and let the sequence of debt as endogenous.
 - Specifications depend on your research questions.

Economy without capital:

$$\max_{\substack{\{c_t\},\{h_t\},\{b_{t+1}\}\\ \text{subject to:}}} \sum_{t=0}^{t} \beta^t [u(c_t) - v(h_t)]$$

$$b_t + w_t h_t - T_t = c_t + \frac{b_{t+1}}{1 + r_{t+1}}$$

• The government's budget constraint:

$$G_t + r_t b_t = T_t + b_{t+1} - b_t$$

• $\{G_t\}_{t=0}^{\infty}$ is exogenous.

- **Theorem**: Suppose that the sequence of government spending $\{G_t\}_{t=0}^{\infty}$ is exogenously given. Then, the timing of lump-sum tax does not matter for the equilibrium allocation and welfare.
- To fix idea, consider a scenario in which the government reduces T_t to $T_t \Delta$ without changing its spending plan $\{G_t\}_{t=0}^{\infty}$.
- This tax-cut must be financed by the same amount of bonds.
- The bonds must be financed by future tax.

From the government's budget constraint,

$$G_t + r_t b_t = T_t - \Delta + b_{t+1} - b_t$$

- Thus, b_{t+1} must the increase by Δ .
- In the next period, $G_{t+1} + (1 + r_{t+1})(b_{t+1} + \Delta) = (T_{t+1} + \Omega) + b_{t+2}$
- Suppose T_{t+1} must be increased by Ω to offset the budget impact of Δ . Then,

$$\Omega = (1 + r_{t+1})\Delta$$

Now consider the household's budget constraint:

$$b_t + w_t h_t - T_t = c_t + \frac{b_{t+1}}{1 + r_{t+1}}$$

The intertemporal budget constraint is

$$\sum_{t=0}^{C_t} \frac{c_t}{\prod_{i=0}^t (1+r_i)} = w_0 h_0 - T_0 + \cdots + \frac{w_t h_t - T_t + \Delta}{\prod_{i=0}^t (1+r_i)} + \frac{w_{t+1} h_{t+1} - T_{t+1} - \Omega}{\prod_{i=0}^{t+1} (1+r_i)} + \cdots$$

• Substitute $\Omega = (1 + r_{t+1})\Delta$ into the above:

$$\sum_{t=0}^{C_t} \frac{c_t}{\prod_{i=0}^t (1+r_i)} = w_0 h_0 - T_0 + \cdots + \frac{w_t h_t - T_t + \Delta}{\prod_{i=0}^t (1+r_i)} + \frac{w_{t+1} h_{t+1} - T_{t+1} - (1+r_{t+1})\Delta}{\prod_{i=0}^{t+1} (1+r_i)} + \cdots$$

• The terms on Δ disappears!

- Thus, the household's intertemporal budget constraint is **invariant** to any government intervention that change the timing of lump-sum taxation.
- The same budget constraint, the same consumption path.
- Therefore, this policy will never stimulate consumption.

Fiscal Stimulus

- Given the Ricardian equivalence theorem, fiscal stimulus must change either
 - relative prices (by distortionary taxes), or
 - household wealth (by permanent tax changes).
- Under the balanced budget, a permanent increase in G_t will increase output because...
 - There is a permanent increase in T_t
 - This will reduce the household's lifetime wealth.
 - The household wants to (needs to?) work harder.
 - Output goes up.

Household's problem:

$$\max_{\substack{\{c_t\},\{h_t\},\{a_{t+1}\}\\ \text{subject to:}}} \sum_{t=0}^{\infty} \beta^t [u(c_t) - v(h_t)]$$
subject to:
$$a_t + (1-\tau)w_t h_t = c_t + \frac{a_{t+1}}{R_{t+1}}$$

- τ : labor income tax rate.
- This is a distortionary tax.

• Demand for c_t , a_{t+1} and labor supply h_t satisfy:

$$\frac{v'(h_t)}{u'(c_t)} = (1 - \tau)w_t,$$

$$\frac{u'(c_t)}{\beta u'(c_{t+1})} = R_{t+1},$$

$$a_t + (1 - \tau)w_t h_t = c_t + \frac{a_{t+1}}{R_{t+1}}$$

Market clearing conditions:

$$F(K_t, L_t) = c_t + I_t + G_t$$

$$h_t = L_t$$

$$\frac{1}{R_{t+1}} a_{t+1} = K_{t+1} + b_{t+1}$$

• Budget constraints:

$$a_{t} + (1 - \tau)w_{t}h_{t} = c_{t} + \frac{a_{t+1}}{R_{t+1}}$$
$$G_{t} + r_{t}^{b}b_{t} = \tau w_{t}h_{t} + b_{t+1} - b_{t}$$

Functional form:

$$F(K,L) = AK^{\alpha}L^{1-\alpha}$$

• Factor prices:

$$r_t = \alpha A K_t^{\alpha - 1} L_t^{1 - \alpha}$$

$$w_t = (1 - \alpha) A K_t^{\alpha} L_t^{-\alpha}$$

Thus, in any steady state,

$$r = \alpha A k^{\alpha - 1}$$

$$w = (1 - \alpha) A k^{\alpha}$$

• k = K/L is the capital-labor ratio.

Functional forms:

$$u(c) = \ln c$$
, $v(h) = \phi \frac{h_t^{1+\mu}}{1+\mu}$

Household's optimization:

$$\phi h_t^{\mu} c_t = (1 - \tau) w_t, \qquad \frac{c_{t+1}}{c_t} = \beta R_{t+1},$$

In any steady-state,

$$\frac{\phi h^{\mu}c = (1 - \tau)(1 - \alpha)Ak^{\alpha}}{\frac{1}{\beta}} = \alpha Ak^{\alpha - 1} + 1 - \delta$$

• The resource constraint (p.35):

$$Y_t + (1 - \delta)K_t + (1 + r_t^b)b_t - \tau w_t h_t$$

= $c_t + K_{t+1} + b_{t+1}$

The government budget

$$G_t + r_t b_t = \tau w_t h_t + b_{t+1} - b_t$$

They imply

$$Y_t + (1 - \delta)K_t = c_t + K_{t+1} + G_t$$

• Assuming a constant G, in any steady-state,

$$Y = c + \delta K + G$$

- In any steady-state, $Y = c + \delta K + G$
- Divide both sides by L

$$Ak^{\alpha} = \frac{c}{L} + \delta k + \frac{G}{L}$$

- Remember that $\frac{1}{\beta} = \alpha A k^{\alpha 1} + 1 \delta$ determines k.
- Thus, (with g = G/L) $\frac{c}{L} = Ak^{\alpha} \delta k g$
- So far, the equilibrium is independent of τ .

• Given k, we can find the steady-state labor supply by

$$L = \left[\frac{(1-\tau)(1-\alpha)Ak^{\alpha}}{\phi(Ak^{\alpha}-\delta k-g)} \right]^{\frac{1}{1+\mu}}$$

• The steady-state labor supply depends on the labor income tax (as expected).

 The relationship between the government's tax revenue and the tax rate is called the Laffer curve:

$$\tau wL = \tau (1 - \alpha)Ak^{\alpha} \left[\frac{(1 - \tau)(1 - \alpha)Ak^{\alpha}}{\phi (Ak^{\alpha} - \delta k - g)} \right]^{\frac{1}{1 + \mu}}$$

$$= \tau (1 - \alpha) y \left[\frac{(1 - \tau)(1 - \alpha)}{\phi \left(1 - \delta \frac{k}{y} - \frac{g}{y} \right)} \right]^{\frac{1}{1 + \mu}} = \Omega(\tau)$$

• Evidently, $\Omega(0) = \Omega(1) = 0$.

- Note that the revenue is measured in units of consumption goods, not in Yen or Dollars.
- For numerical analysis, it is convenient to measure the Laffer curve as a fraction of GDP:

$$\frac{\tau wL}{y} = \tau (1 - \alpha) \left[\frac{(1 - \tau)(1 - \alpha)}{\phi \left(1 - \delta \frac{k}{y} - \frac{g}{y} \right)} \right]^{\frac{1}{1 + \mu}}$$

Parameter values:

$$\beta = 0.91, \delta = 0.1, \alpha = 0.4, \phi = 3.46, \mu = 2, A = 1, \frac{g}{y} = \frac{1}{5}$$

```
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import root
plt.rcParams['figure.figsize'] = (6,6)
# Parameter values
\beta = 0.91
\delta = 0.1
\alpha = 0.4
\phi = 3.46
\mu = 2
R = 1/\beta - 1 + \delta
kI = (R/(\alpha*A))**(1/(\alpha-1))
y = A*(k|**\alpha)
tauless \Omega = (1-\alpha)*A*(k|**\alpha)/(\phi*A*(k|**\alpha)-\phi*\delta*k|-\phi*g)
# The Laffer curve
def laffer(tau):
    return tau*(1-\alpha)*A*(k|**\alpha)*(((1-tau)*tau|ess\Omega)**(1/(1+\mu)))/y
# Drawing a diagram
grid = np.linspace(0, 1, 100)
fig, ax = plt.subplots()
eq = laffer(grid)
ax.plot(grid, eq, 'b-', lw=3, label='The Laffer Curve')
ax.set xlabel('$\tau$')
ax.set_ylabel('Tax Revenue (as a proportion of output)')
ax.legend()
plt.show()
```


Further Readings

• Trabandt and Uhlig, "The Laffer Curve Revisited," Journal of Monetary Economics, 2011.