Lecture 7

Chapter 2: Dynamic Optimization

Part II: Infinite Horizon

5/25, 2023

- There are T + 1 periods: t = 0,1,2,...,T.
- You should go back to the two-period model (lecture 6) whenever you are stuck.
- The household's budget in period t is

$$y_t = c_t + s_t$$

Asset accumulates according to

$$a_{t+1} = R(a_t + s_t)$$

= $R(a_t + y_t - c_t)$

Divide both sides to obtain

$$a_t + y_t = c_t + \frac{1}{R} a_{t+1}$$

• In period 0,

$$a_0 + y_0 = c_0 + \frac{1}{R}a_1$$

• Substitute the period-1 constraint into above to eliminate a_1 :

$$a_0 + y_0 + \frac{y_1}{R} = c_0 + \frac{c_1}{R} + \frac{a_2}{R^2}$$

• Substitute the period-2 constraint into above to eliminate a_2 :

$$a_0 + y_0 + \frac{y_1}{R} + \frac{y_2}{R^2} = c_0 + \frac{c_1}{R} + \frac{c_2}{R^2} + \frac{a_3}{R^3}$$

Continue this for T times to finally obtain

$$a_0 + \sum_{t=0}^{T} \frac{y_t}{R^t} = \sum_{t=0}^{T} \frac{c_t}{R^t} + \frac{a_{T+1}}{R^{T+1}}$$

 As in our previous class, we obtain the No-Ponzi-Game condition as

$$a_{T+1} \ge 0$$

The household's problem is written as

$$\max_{\{c_t\}_{t=0}^T,\{a_{t+1}\}_{t=0}^T} \sum_{t=0}^T \beta^t u(c_t)$$

subject to

$$a_t + y_t = c_t + \frac{1}{R}a_{t+1}$$
 for $t = 0, 1, ... T$
 $a_{T+1} \ge 0$

Remember that the initial wealth a_0 cannot be chosen. Likewise, in any period t, the household can only choose a_{t+1} .

• Let Λ_t be the multipliers. Then the Lagrangian is

$$\mathcal{L} = \sum_{t=0}^{T} \beta^{t} u(c_{t}) + \sum_{t=0}^{T} \Lambda_{t} \left[a_{t} + y_{t} - c_{t} - \frac{1}{R} a_{t+1} \right] + \Lambda_{T+1} a_{T+1}$$

- Note that there are T+1 budget constraints.
- What are the FOCs?

• FOCs are:

$$c_{t}: \beta^{t}u'(c_{t}) - \Lambda_{t} = 0$$

$$a_{t+1}: -\Lambda_{t} \frac{1}{R} + \Lambda_{t+1} = 0$$

$$\Lambda_{t}: a_{t} + y_{t} = c_{t} + \frac{1}{R} a_{t+1}$$

$$KKT: a_{T+1} \ge 0, \Lambda_{T+1} \ge 0, \Lambda_{T+1} a_{T+1} = 0$$

- Go back to lecture 6 whenever necessary.
- For the same reasoning as the one we studied last week, we obtain $a_{T+1} = 0$ from the KKT condition.

• Eliminate the multipliers to obtain

Euler equation :
$$\frac{u'(c_t)}{\beta u'(c_{t+1})_T} = R$$
Budget constraint :
$$a_0 + \sum_{t=0}^{T} \frac{y_t}{R^t} = \sum_{t=0}^{T} \frac{c_t}{R^t}$$

- There are T+1 equations in T+1 unknowns.
- We can solve the system just as in the two-period model.

- Let us explicitly solve the model.
- Utility function is $u(c) = \ln c$.
- Further, we assume $a_0=0$, T=30, and $\beta R=1$.
- Let $\beta = 0.99$.
- Income satisfies

$$y_t = \begin{cases} 10 \text{ for } t = 0, \dots 10 \\ 20 \text{ for } t = 11, \dots 20 \\ 0 \text{ for } t = 21, \dots 30 \end{cases}$$

• The Euler equation (with $\beta R=1$) implies $c_{t+1}=c_t=c$

The intertemporal budget constraint implies

$$\sum_{t=0}^{30} \frac{y_t}{R^t} = c \sum_{t=0}^{30} \frac{1}{R^t} \Longrightarrow c = \frac{\sum_{t=0}^{30} \beta^t y_t}{\sum_{t=0}^{30} \beta^t}$$

• Thus, $c = \frac{\sum_{t=0}^{10} 0.99^{t} 10 + \sum_{t=11}^{20} 0.99^{t} 20 + 0}{\sum_{t=0}^{30} 0.99^{t}} = \frac{275.9}{26.8}$ = 10.3

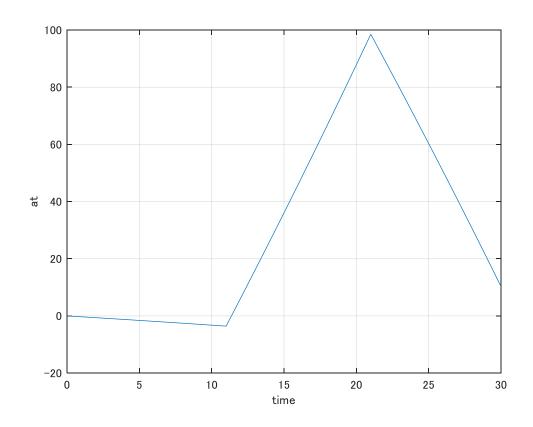
• The budget constraint for t=0 implies

$$a_0 + y_0 = c_0 + \beta a_1$$

Thus,

$$a_1 = \frac{a_0 + y_0 - c_0}{\beta} = \frac{10 - 10.3}{0.99} = -0.31$$

- This process will generate a sequence of a_{t+1} .
- Matlab (Octave) code is available for download at NUCT.
 - File name is "Finite.m"



- Almost every macro model has infinite horizon.
- The household's problem is written as

$$\max_{\{c_t\}_{t=0}^{\infty},\{a_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t)$$

subject to

$$a_t + y_t = c_t + \frac{1}{R}a_{t+1}$$
 for $t = 0,1,...$

There is no terminal period.

 The intertemporal budget constraint for the general finite-horizon model is

$$a_0 + \sum_{t=0}^{T} \frac{y_t}{R^t} = \sum_{t=0}^{T} \frac{c_t}{R^t} + \frac{a_{T+1}}{R^{T+1}}$$

• Let $T \to \infty$ to obtain

$$a_0 + \sum_{t=0}^{\infty} \frac{y_t}{R^t} = \sum_{t=0}^{\infty} \frac{c_t}{R^t} + \lim_{t \to \infty} \frac{a_t}{R^t}$$

• Is it optimal to choose $\lim_{t\to\infty} \frac{a_t}{R^t}$ to be positive?

Proposition: Optimal allocation satisfies

$$\lim_{t \to \infty} \frac{a_t}{R^t} = 0$$

Proof)

Let $\{c_0^*, c_1^*, \dots\}$, $\{a_1^*, a_2^*, \dots\}$ denote the optimal allocation. Suppose that the optimal allocation satisfies $\lim_{t\to\infty}\frac{a_t^*}{R^t}=\varepsilon>0$.

(Our strategy is to show that this statement is contradictory.)

Consider an alternative allocation

$$\{c_0^* + \varepsilon, c_1^*, c_2^*, \dots\}, \{a_1', a_2', \dots\}$$

- Consumption path of this allocation is exactly the same as the optimal allocation except for t=0.
 - The first-period consumption $c_0'=c_0^*+\varepsilon$ is increased by $\varepsilon=\lim_{t\to\infty}\frac{a_t^*}{R^t}$. Then back to the optimal path from t=1
 - Such a deviation should not be feasible.
- In period t = 0, the budget constraint implies

$$a_0 + y_0 = c_0^* + \varepsilon + \frac{1}{R}a_1'$$

Thus,

$$a'_{1} = R(a_{0} + y_{0} - c_{0}^{*} - \varepsilon)$$

= $R(a_{0} + y_{0} - c_{0}^{*}) - R\varepsilon$
= $a_{1}^{*} - R\varepsilon$

Similarly, in period 1, the budget constraint implies

$$a_1' + y_1 = c_1^* + \frac{1}{R}a_2'$$

- Note that in period t = 1, consumption is c_1^* .
- However, a_2 cannot be a_2^* because a_1' is smaller than a_1^* . In fact, $a_1' = a_1^* R\varepsilon$.

From the period-1 budget constraint,

$$a'_{2} = R(a'_{1} + y_{1} - c_{1}^{*})$$

$$= R(a'_{1} - R\varepsilon + y_{1} - c_{1}^{*})$$

$$= a'_{2} - R^{2}\varepsilon$$

Repeating this process, we obtain

$$a_t' = a_t^* - R^t \varepsilon$$

Thus,

$$\lim_{t \to \infty} \frac{a_t'}{R^t} = \lim_{t \to \infty} \frac{a_t^* - R^t \varepsilon}{R^t} = \lim_{t \to \infty} \frac{a_t^*}{R^t} - \varepsilon$$
$$= \varepsilon - \varepsilon = 0$$

- This means that the initial increase in consumption by $\varepsilon = \lim_{t \to \infty} \frac{a_t^*}{R^t}$ was <u>feasible after all.</u>
- The alternative allocation c_t' does not violate any budget constraint, yet this is strictly better than the "optimal allocation".
- This is a contradiction.
- Thus, $\lim_{t\to\infty}\frac{a_t}{R^t}=0$ must hold at the optimal allocation, as claimed.
- End of the proof.

• Let Λ_t be the multipliers. Then the Lagrangian is

$$\mathcal{L} = \sum_{t=0}^{\infty} \beta^{t} u(c_{t}) + \sum_{t=0}^{\infty} \Lambda_{t} \left[a_{t} + y_{t} - c_{t} - \frac{1}{R} a_{t+1} \right]$$

- There is an <u>infinity</u> of budget constraints.
- What are the FOCs?

FOCs are straightforward:

$$c_t : \beta^t u'(c_t) - \Lambda_t = 0 \text{ for } t = 0,1,2,...$$
 $a_{t+1} : -\Lambda_t \frac{1}{R} + \Lambda_{t+1} = 0 \text{ for } t = 0,1,2,...$
 $\Lambda_t : a_t + y_t = c_t + \frac{1}{R} a_{t+1} \text{ for } t = 0,1,2,...$

• The second FOC, $\Lambda_{t+1} = \left(\frac{1}{R}\right) \Lambda_t$, is a simple difference equation, and the solution is

$$\Lambda_t = \left(\frac{1}{R}\right)^t \Lambda_0 = \frac{1}{R^t} \Lambda_0$$

- Consider $\Lambda_t = \frac{1}{R^t} \Lambda_0$.
- Substitute $\Lambda_0=u'(c_0)$ (FOC at t=0) into above: $\Lambda_t=\frac{1}{R^t}u'(c_0)$
- Thus,

$$\lim_{t \to \infty} \frac{a_t}{R^t} = 0 \Leftrightarrow \lim_{t \to \infty} \frac{\Lambda_t a_t}{u'(c_0)} = 0$$

• Because $u'(c_0)>0$, $\lim_{t\to\infty}\Lambda_t a_t=0$

Transversality Condition

- Thus, $\lim_{t\to\infty}\frac{a_t}{R^t}=0$ is equivalent to $\lim_{t\to\infty}\Lambda_t a_t=0$.
- Also, notice that the Lagrangian for the finite-horizon problem:

$$\mathcal{L} = \sum_{t=0}^{T} \beta^{t} u(c_{t}) + \sum_{t=0}^{T} \Lambda_{t} \left[a_{t} + y_{t} - c_{t} - \frac{1}{R} a_{t+1} \right] + \Lambda_{T+1} a_{T+1}$$

- If we take the limit of KKT condition as $T \to \infty$, then we obtain the same condition, $\lim_{t \to \infty} \Lambda_t a_t = 0$.
- $\lim_{t\to\infty} \Lambda_t a_t = 0$ is known as the **transversality condition**.

- Theorem: The solution to an infinite-horizon optimization problem is given by the sequence satisfying:
 - 1. The budget constraints,
 - 2. The Euler equations,
 - 3. The transversality condition (TVC).

• Given the theorem, let us redo the problem

$$\max_{\{c_t\}_{t=0}^{\infty},\{a_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t)$$

subject to

$$a_t + y_t = c_t + \frac{1}{R}a_{t+1}$$
 for $t = 0$...

• The Lagrangian is

$$\mathcal{L} = \sum_{t=0}^{\infty} \beta^t u(c_t) + \sum_{t=0}^{\infty} \Lambda_t \left[a_t + y_t - c_t - \frac{1}{R} a_{t+1} \right]$$

• FOCs are:

$$c_t: \beta^t u'(c_t) - \Lambda_t = 0 \text{ for } t = 0,1,2,...$$
 $a_{t+1}: -\Lambda_t \frac{1}{R} + \Lambda_{t+1} = 0 \text{ for } t = 0,1,2,...$
 $\Lambda_t: a_t + y_t = c_t + \frac{1}{R} a_{t+1} \text{ for } t = 0,1,2,...$
TVC: $\lim_{t \to \infty} \Lambda_t a_t = 0$

- Thus, the optimal allocation satisfies:
- 1. The budget constraints:

$$a_t + y_t = c_t + \frac{1}{R}a_{t+1}$$
 for $t = 0,1,2,...$

2. The Euler equation:

$$\frac{u'(c_t)}{\beta u'(c_{t+1})} = R \text{ for } t = 0,1,2,...$$

3. The transversality condition:

$$\lim_{t\to\infty}\Lambda_t a_t = 0$$

- Notice that the first-order conditions are given by <u>a</u> system of nonlinear difference equations.
- Thus, we must solve a system of difference equations to find the optimal allocation.

Current-Value Form

- Define $\lambda_t = \frac{\Lambda_t}{\beta^t}$.
- Then, we can rewrite the Lagrangian as

$$\mathcal{L} = \sum_{t \equiv 0}^{\infty} \beta^{t} u(c_{t}) + \sum_{t=0}^{\infty} \Lambda_{t} \left[a_{t} + y_{t} - c_{t} - \frac{1}{R} a_{t+1} \right]$$
$$= \sum_{t=0}^{\infty} \beta^{t} \left\{ u(c_{t}) + \lambda_{t} \left[a_{t} + y_{t} - c_{t} - \frac{1}{R} a_{t+1} \right] \right\}$$

• The latter form of the Lagrangian is referred to as the **current-value form**.

Current-Value Form

FOCs from the current value form are :

$$\begin{split} c_t : u'(c_t) - \lambda_t &= 0 \ \text{ for } t = 0,1,2,... \\ a_{t+1} : -\lambda_t \frac{1}{R} + \beta \lambda_{t+1} &= 0 \ \text{for } t = 0,1,2,... \\ \lambda_t : a_t + y_t &= c_t + \frac{1}{R} a_{t+1} \ \text{for } t = 0,1,2,... \\ \text{TVC} : \lim_{t \to \infty} \beta^t \lambda_t a_t &= 0 \end{split}$$

• FOCs from the current-value form are <u>autonomous</u> <u>difference equations</u>.

Consider the following infinite-horizon problem:

$$\max_{\{c_t\}_{t=0}^{\infty}, \{a_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t \left(\ln c_t - \frac{h_t^{1+\mu}}{1+\mu} \right)$$
subject to $a_0 = 0$ and
$$a_t + w_t h_t = c_t + \frac{1}{R} a_{t+1} \text{ for } t = 0 \dots$$

- $\mu > 0$ is a parameter.
- The sequence of wage rates $\{w_t\}_{t=0}^{\infty}$ is exogeneous.
- Assume $\beta R = 1$.

- a) Find the optimal consumption.
- b) Find the optimal labor supply.
- c) Compute the wage elasticity of labor supply. That is,

$$\frac{\partial h_t}{\partial w_t} \frac{w_t}{h_t}$$

d) Compute the wage elasticity of labor supply by keeping the Lagrange multiplier constant. This elasticity is often called the **Frisch elasticity**.