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Chapter 1: Difference Equations
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Nonlinear Systems

e Consider:
Xt+1 = Xt — AXYt
Vie1 = Ve T aXtyY:r — BY:
* This is an example of a nonlinear system.
* We shall come back to this system later.

* We can generally describe the system as
Xer1 = [ (X6, V)
Verr = 9(Xe, Vi)



Nonlinear Systems

* Consider a two-dimensional nonlinear system:

{xt+1 = f(X¢, Ye)
Ve+1 = 9(Xe, Yt)

* Steps:
1. Find all steady states.
2. Pick one steady state.
3. Linearize the system around the steady state.
4

Study the linearized system.
* Referred to as a local analysis.



Nonlinear Systems

* Let (x, y) denote a steady state of the system. Then,

x=f(x,y)
y=gxy)
* There may be two or more steady states.

* The existence of a steady state is not guaranteed.

* Thus, if your model is nonlinear, then it is critical that
you count the number of steady states.

* In what follows, we assume that there is at least
one steady state.

* Notations | use are x, x5, X. They all mean the same.



Nonlinear Systems

* Remember that, for x close enough to a point X, we
can linearly approximate f(x) at x as

flx) =f(x)+ fx0)(x —x)
* Now consider f(x,y). For (x,y) close enough to a
point (i, y), we can linearly approximate f(x,y) at

(X, V) as
of (x,v af (x,v
Fooy) = 7 + 2D ey 4 f(’;y)@—y)

* |In what follows, we denote
of (x,y) . of(x,y) _
= f1, = f
dx dy




Nonlinear Systems

* Thus, we can linearize the two-dimensional
nonlinear system around (x, y) as:

{xm =x+ f106, ) —x) + 06) (e — )

Vesr =Y + 910, y) (xg — %) + g2 (6, y) (Ve — ¥)

°Inr;1atrixfg)crm, (f( ) A )) vy
(t+1_ )= 1Y 2\X, Y (t_)

Yer1 =Y 91(x,y) g2(x,y)) \Ye =¥
* More compactly,

Zty1 = J 2
* [ is called the Jacobian matrix of the system.



Nonlinear Systems

* As before, we want more speed.

* Let us totally differentiate the system and evaluate
each coeffic{ent at its steady-state value to obtain

dAxiyq = frdxe + fody;
AYiy1 = g1dX: + gody;
* |n matrix form,
() =1 (32
AYii1 dy;
* More compactly,
Zev1 = ]2t



Nonlinear Systems

* In many macroeconomic models, explicit
expressions (x;41 = --+) are not available.

* Thus, the most general description of a two-

dimensiona

9

nonlinear system is in implicit form:
r —
F(Xt41,Yer1, X6 Ye) = 0

LG(xt+1' Yt+1r Xt yt) =0

* A steady state (x, y) satisfies

F(x,y,x,y) =0
G(x,y,x,y) =0



Nonlinear Systems

* Linearize the system around (x, y) to obtain
Fidxiyq + F,dyeq + Fzdx + Fpdy, =0
GldxH_l + szyt+1 + G3dxt ~+ G4dyt —_ O

* |n matrix form,
(e e)we) = (e =6) (@)
Gy G2/ \dYr4q —Gz  —G4/\dy;
* More compactly, let z, = (dx,, dy,)’ to write
Bziy, = Cz

* If B is invertible, then
Zir1 = B71Cz, = Az,



Stability

* We are now ready to formally discuss the stability
of a dynamical system.

* Definition: A steady state x is globally
(asymptotically) stable if L]im x; = X for any x;.

* Definition: A steady state X is locally stable if
lim x; = x for any x; in the neighborhood of x (i.e.,

t—o oo

X, such that [x, — X| < & for some ¢ > 0).

* For any linear system, these two stability concepts
are the same.



Stability

* Consider a first-order linear scalar equation:
Xirq1 = axy + b

 Steady state x is globally stable if and only if
lal < 1

* To see this, consider the sequence {x;}{~,
generated by the equation, which is given by
x, =X+ at(x, — x)

* Evidently, for any initial condition x,,
llm xt =X

t— oo

holds if and only if |a| < 1.



Stability

e Consider a first-order nonlinear scalar equation
Xep1 = f(x¢)
 Steady state x is locally stable if and only if
o)l <1
* To see this, consider the linearized equation
Xep1 = (X)X,
* The solution, or the sequence {X;};2,, is given by
2 = [f' (0] %,

* Given {X;};=,, we know {x;};=, by x; = X; + X.




Stability

* Because we obtain the linearized equation by
considering the neighborhood of one particular
steady state X, our initial condition x, must be
chosen from the neighborhood of of x.

* In other words, we can no longer talk about the
global stability of a nonlinear system by looking at
its linearized equation.



Stability

* Consider the sequence {x;};2, generated by the
linearized equation, which is given by

xy =X + [f' (0] (xg — %)
* Evidently, for any initial condition x;, in the
neighborhood of X, we can show that
}lm Xt =X
holds if and only if |f' (k)| < 1.
* This is the condition for local stability.



Stability

* Consider a higher-dimensional linear system:

xgﬂ\ _a.ll a%n_ Xt b4
s R [ Y
X?.H/ An1 0 Auald \x[ by

* More compactly, x;.; = Ax; + b
e Steady stateisx = —(A —1)"1b
* The general solutions is ,

X, = x + z c; AL P;

=1




Stability

* Theorem: Suppose all eigenvalues of A have moduli
different from 1. Then the unique steady state of
the system, x, is globally (asymptotically) stable if
and only if all the eigenvalues of A have moduli
strictly smaller than 1, and unstable if at least one
eigenvalue has modulus strictly larger than 1.

* If you have a higher-dimensional nonlinear system,
then you should study its Jacobian matrix J for each
steady state.



Stability

* An important caveat is that we have not yet
considered any equilibrium concept.

* It is very, very important to know at this point that
a steady state being stable does not necessarily
mean that the equilibrium at that point is stable.

* For example, a saddle point is unstable as a dynamical
system. However, we will learn that the saddle path is
the unique equilibrium path.

* This happens because we will consider forward-looking
rational individuals. Remember: Econ # Physics.




Applications



Solow Growth Model

* A good example of a nonlinear system is the Solow
model. Let K; and N; denote capital and labor used
in production. Then, a country’s aggregate output
Y; (i.e., real GDP) is determined by Y; = F(K,, N,).

* We adopt the Neoclassical assumptions:
* F;,>0,F, > 0,F{; <0,F,, <0
* Inada conditions:
* limF; =00, lim F; =0

K—-0 K—oo0
° 11mF2=OO,11mF2=0
N-0 N—-oo

e Constant Returns to Scale



Solow Growth Model

* Most widely used specification is Cobb-Douglas:
Y, = AKFNL ¢

e xsatisfiesl <a <1

* Often referred to as the capital share.
* a = 1/3 in many countries in many era.

» A is referred to as Total Factor Productivity (TFP).



Solow Growth Model

* The key driving force of economic growth in the
Solow model is capital formation over time.

* Stock of capital evolves according to the following

difference equation:
Kt+1 — Kt + It — 5Kt

* [; is capital formation (investment) in t.
* 0 is the depreciationrate (0 < 6 < 1).



Solow Growth Model

* One household represents the entire economy (the
representative household).

* Household has two roles:
e Supplier of capital (via saving)
e Supplier of labor

* Savings are exogenously determined by
St — SYt

* sisthe savingrate (0 < s < 1)

* Equivalently, consumption decision is exogenous:
C: =(1-3s)Y,;




Solow Growth Model

* Household supplies labor input inelastically. In
other words, labor supply is exogenous. Thus,
Labor input = Population

* Population is assumed to grow exogenously:
Niy1 = nhg
*n > 1is the gross population growth rate.

* Also referred to as the population growth factor.

* You might prefer N¢,; = (1 + n)N; instead.
e Thisis fine, too.
* This is just a matter of taste.



Solow Growth Model

* We consider a closed economy without
government.

* Without government and foreign countries, output
is either consumed or invested:
Yt — Ct ~+ It

* This is the goods market equilibrium condition.

e As usual, we can transform the goods market
equilibrium condition into the capital market
equilibrium condition:

Iy =Y —C = 5¢



Solow Growth Model

* Model summary:
Y, = AKFNL ¢
Kepy =1, + (1 - 6)K,

St — SYt
Niy1 = nhNy
I, = 5;

* Note that the Solow model is essentially a system
of nonlinear difference equations.

* 5 equations in 5 unknowns.
* By substitutions, we can reduce the dimension.



Solow Growth Model

* We have a two-dimensional nonlinear system:
{Ktﬂ = SAKENLI % 4+ (1 — &K,
Niy1 = nNg
* (0,0) is a steady state. Not interesting, though.

* N..; = nN, implies N, = n*N,. Thus,
Kev1 = SAKZ(nN)'™% + (1 — 8K,

* This scalar equation is a non-autonomous DE.

* K, never stop growing. Thus, (0,0) is the only
steady state.




Solow Growth Model

* Instead of searching for a steady state, we look for
a balanced-growth path (BGP).

* Transform the system as follows

N, K
L = SAKENY + (1 — 6)

Nt Neyq
e Thus,

Ky
Ny

let+1 —_ SAkg + (1 — 6)kt
* k;, = K;/N; is the capital-labor ratio.
* BGP is a solution to nk = sAk* + (1 + 6)k.



Solow Growth Model

* BGP (steady state in terms of k;) satisfies
k(sAk* 1 +1-6—-—n)=0

* Thus, k = 0 and .

. SA m_k
_(n+5—1) - ss

e Computing the impact of s on1 BGP is easy:

Ok, 1 ( sA )m‘l A

ds :1—0( n+d6—1

>
n+d6—1

0



Solow Growth Model

e Consider
Ak + (1 —98)k
kepy = —————— = Q(ky)
* From this,
asA 1—-6
Q' (k) = —k{f‘_l + —
n n
Q'(0) =00>1
1—-6

<1

A'(kss) =a+ (1 - a) Tl



Solow Growth Model

* Q'(0) = 0 > 1 implies
that the steady state at
(0,0) is locally unstable. /ﬁw

* Q'(kss) = a +
(1— a)% <1
implies that the other :
steady state is locally

O (k)

le. -
stable 3

e



Solow Growth Model

* Log-linearize the equation around k.:
- [aSA 1— 6] P
t

— k& +
n >° n
* Because kg satisfies sAk& 1 +1 -8 —n =0, We
can simplify the log-linearized equation as

-~ 1-01-
kt+1:[“+(1—a) - ]kt

kt+1 —




Covid-19 Outbreak in 2020
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Covid-19 Outbreak in 2020
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SIR Model

* The Covid-19 model presented here is known as
the SIR model.

* Individuals are classified into 3 states.

* Let x; denote the number of “susceptible”
individuals who have not infected in date t.

* Let vy, denote the number of “infected” (and
circulating) individuals in date ¢.

* Let z; denote the number of “removed” individuals
(either died, isolated, or recovered).



SIR Model

e Let us assume that total number of contacts within
a day is x;y;.

* Let @ denote the infection rate, which is assumed
to be a parameter.

* Then, the number of newly infected individuals in
day t is given by ax;y;.

* An infected is removed at rate [5, a parameter.

* Then the number of removed individuals in day t is

BY:.



SIR Model

* Total number of susceptible indate t + 1 is
Xt+1 = Xt — AXt Yt
e Total number of infected in datet + 1 is
Viv1r = Ye + XY — BVt

e Total number of removed indatet + 1 is
Zty1 = Zt + BVt

* Let n denote total population. Then,
Xe T Ve +Zp =N




SIR Model

* Without loss of generality, we can focus on:
Xt+1 = Xt — XYt
Vier1 = Ve T XY — BYe
e Let us first find the steady states. Let (x, y) satisfy
X =X —axy
y=y+axy—py
* They reduce to
xy =0
(ax —B)y =0
* Thus, any point on the x-axis (y = 0) is a steady
state.




SIR Model

* Let us study the global behavior of the model
through a phase diagram:
Xt+1 — Xt = —AXt Yt
Vier1 — Ve = AXtYe — BYe

* Note that x; and y; cannot be negative. Thus,
Ax <0

for any region.

* Similarly, for any y, > 0,
a
Ay >0 x >—

p



SIR Model

 Each initial condition
leads to a distinct
trajectory.

* The steady state level
of y is necessarily 0.

* However, the steady
state level of x takes
any value, depending
on the initial condition.

* Local analysis seems to
be meaningless.




Simulating SIR Model
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Simulating SIR Model
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Results are from Excel

A | 8 | ¢ | ©o | e | FfF | & | wm | v | v | k| L | M| N | o | P
1t Infection rate  Removal rate Susceptible (x) Infected (y) Removed (z) Newly Infected Removed

2| 0 0.00000005 0.02 9999999 1 0 0.49999995 0.02 Infected (y)

3 1 0.00000005 0.02 99999985  1.47999995 0.02 0.739999864  0.0296 5000000

4 | 2 0.00000005 0.02  9999997.76  2.190399815 0.049599999 1.095199662 0.043808 8000000

5 | 3 0.00000005 0.02  9999996.665  3.241791481 0.093407995 1.6208952 0.064836 7000000

6 | 4 0.00000005 0.02  9999995.044  4.797850851 0.158243825 2.398924237 0.095957 6000000

7| 5 0.00000005 0.02  9999992.645  7.100818071 0.254200842 3550406424 0.142016 5000000

8 | 6 0.00000005 0.02  9999989.095  10.50920813 0.396217203 5.254598336 0.210184 4000000

9| 7 0.00000005 0.02  9999983.84  15.55362231 0.506401366 7.776798586 0.311072 3000000

10| 8 0.00000005 0.02  9999976.063  23.01934845 0.917473812 11.50964667 0.460387 2000000

11: 9 0.00000005 0.02  9999964.554  34.06860815 1.377860781 17.03424369 0.681372 1000002

12 10 0.00000005 0.02 9999947.519 50.42147968 2.059232944 25.21060753  1.00843 0 3 6 91215182124273033363942454851545760636669727578818487
13| 11 0.00000005 0.02  9999922.309  74.62365762 3.067662538 37.31153893 1.492473

14| 12 0.00000005 0.02  9999884.997  110.4427234  4.56013569 55.22072664 2.208854

15 13 0.00000005 002 9999820776  163.4545956 6.768990158 8172500659 3.269092 Newdy Infected

16 | 14 0.00000005 0.02 9999748051  241.9114103 10.03808207 120.9526577 4.838228 o000

17| 15 0.00000005 0.02  9999627.098  358.0258397 14.87631027 179.0062444 7.160517 1200000

18| 16 0.00000005 0.02 9999448092  529.8715673 22.03682707 264.9211616 10.59743 1000000

19| 17 0.00000005 0.02  9999183.17  784.1952976 32.63425842 392.0656211 15.68391 800000

20: 18 0.00000005 0.02  9998791.105  1160.577013 48.31816437 580.2183556 23.21154 so0000

21 19 0.00000005 0.02  9998210.886  1717.583828 71.52970462 858.6382664 34.35168

22| 20 0.00000005 0.02  9997352.248  2541.870418 105.8813812 1270.598697 50.83741 o000

23 21 0.00000005 0.02  9996081.65  3761.631707 156.7187895 1880.078884 75.23263 200000

24 | 22 0.00000005 0.02 9994201571  5566.477956 231.9514237 2781.625137 111.3296 0

25 | 23 0.00000005 0.02  9991419.945  8236.773534 343.2809828 4114.853169 164.7355 0% 8 T IS 0S SRS S SO ee TR SRS BT
26 | 24 0.00000005 0.02  9987305.092  12186.89123 508.0164535 6085.710043 243.7378
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Further Readings

* Luenberger. Introduction to Dynamic Systems, John
Wiley & Sons, 1979.

* Acemoglu, Introduction to Modern Economic
Growth, Princeton University Press, 2009.
e Chapter 2 “The Solow Growth Model”



