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The Solow Model: A Brief Review

* It is good idea to start with the Solow model.
* Let K; and N; denote capital and labor.

* The aggregate output Y; is determined by
Yt — F(Kt'Nt)
* Neoclassical assumptions:
e F;, >0,F,>0,F; <0,F,, <0
* Inada conditions:
e limF; =00, lim F; =0

K—-0 K—oo0
° 11mF2=OO,11mF2=0
N-0 N—-oo

e Constant Returns to Scale



The Solow Model: A Brief Review

* Most widely used specification is Cobb-Douglas:
Y, = AKFNL ¢

e a satisfiesl < a <1
» A is referred to as Total Factor Productivity (TFP).

* Capital accumulation:
Kt+1 — Kt ~+ It — 5Kt

* [; is capital formation (investment) in t.
* 0 is the depreciationrate (0 < 6 < 1).



The Solow Model: A Brief Review

* One household represents the entire economy (the
representative household assumption).

* Household has two roles:

e Supplier of capital (via saving)
e Supplier of labor

* Savings are exogenously determined by
St — SYt

* sisthe savingrate (0 < s < 1)

* Equivalently, consumption decision is exogenous:
C: =(1-3s)Y,;




The Solow Model: A Brief Review

* Household supplies labor input inelastically. In
other words, labor supply is exogenous. Thus,
Labor input = Population

* Population is assumed to grow exogenously:
Niy1 = nhg
*n > 1is the gross population growth rate.

* Also referred to as the population growth factor.

* You might prefer N¢,; = (1 + n)N; instead.
e Thisis fine, too.
* This is just a matter of taste.



The Solow Model: A Brief Review

* We consider a closed economy without
government.

* Without government and foreign countries, output
is either consumed or invested:
Yt — Ct ~+ It

* This is the goods market equilibrium condition.

e As usual, we can transform the goods market
equilibrium condition into the capital market
equilibrium condition:

Iy =Y —C = 5¢



The Solow Model: A Brief Review

* Model summary:
Y, = F(K¢, N;) = AKFN; ¢
Kiyr =1 + (1 - 8K,
Y, =C+ 1, &I, =5,
S = sY;
Niy1 = niNg

* We can reduce the system to a two-dimensional
nonlinear system:

{Kt_l_l —_ SAKtC(Ntl—C( + (1 — 6)Kt
Niy1 = nhN;



The Neoclassical Growth Model

* Consider the equations again:
Y. = F(K;, N¢) = AKtaNtl_a
Kiyr =1 + (1 - 8K,
Y, =C+ 1, &I, =5,
® St = sty
® Niy1 = niNg

* We shall continue to use the first three equations.
* We will drop the fourth equation.

* Only to simplify the analysis, we shall assume no
population growth:n =1 = N1 = N;.



The Neoclassical Growth Model

* Consider the equations once again:

Y, = F(Kt; Nt)
Kiy1 =1 + (1 = 6)K,
Yt — Ct + It

* Eliminate Y; and I; to obtain a single equation:
Kiy1 = F(K, Ne) — Ce + (1 — 8)K;

* Divide both sides by population N, to obtain

N K K C K
tH1 t+1:F( t 1)__t+(1_6)_t

Nt ~ Ny, N.'") N, N,




The Neoclassical Growth Model

. Corlm\?ider X Y - ¥
LHL e F(—t,l) i (1-8)t
Nt Niyq N N N

* Let k; = K;/N; denote the capital-labor ratio.
* Let ¢; = C;/N; denote consumption per capita.

* Because N;,; = N; (by assumption), we obtain
kiy1 = F(ky, 1) — ¢ + (1 —6)k,

* It is convenient to define f(k;) = F(k., 1). Then,
kiyr = f(ke) — ¢ + (1= 8k,



The Neoclassical Growth Model

* Instead of imposing S; = sY;, we shall find the
optimal sequence of consumption by solving the
infinite-horizon utility-maximization problem:

max i Btu(c,)

{Ct}gio»{kt+1}gio

subject to =0
kt+1 — f(kt) — Ct + (1 — 6)kt fOI‘ t = 0,1,

* The initial condition k, is given (parameter).

* Likewise, k; cannot be chosen in period t. k; is a
state variable.



The Neoclassical Growth Model

* The cogrrent-value Lagrangian is
L= BHulc) + AclfUee) + (1 = ke — ¢ — ke )
t=0

* FOCs are :
c;:u'(cy) —A; =0 fort =0,1, ...

keyr ' —Ae + BAegalf ' (key1) +1-6] =0 fort = 0,1, ...
At . kt-l—l — f(kt) — C¢ + (1 — 6)kt fOI‘ t = 0,1,

TVC : lim B'Aks = 0

t—oo



The Neoclassical Growth Model

* Eliminate the multipliers to obtain

u'(ct)
= F'(kps) +1 =8
,Bu’(ct+1) f ( t+1)
kipr = flke) + (1= 68)ks — ¢
glm ﬁtﬂ,tkt —_ O

ko : given

* The optimal allocation is determined by the
solution to the above system of nonlinear
difference equations.



Global Analysis

* Let us start with finding the steady states.
* let k41 = k; = k and ¢, = ¢; = c in the system.
* Then, a steady state (k, ¢) is a solution to

%zf’(k)+1—5
c = f(k) — 5k

* The first equation determines the value of k. Then,
given this value, we can calculate the value ¢ from
the second equation.

* Thus, there is a unique steady state.




Global Analysis

* First, consider
kevr = f(ke) + (1= 6)k: — ¢
* Subtract k; from both sides to obtain
kKeyr — ke = f(ke) — 6k — ¢

* Thus, k; in increasing over time (k;,; > k;) if and
only if
flke) =8k — ¢ > 0 & ¢, < f(ke) — Ok,

* Let us draw a diagram.



Global Analysis

* To verify the shape of
f(k;) — 6k, draw
f(k;) and 8k,
separately on the same
plane.

* The shape of f(k;) —
Ok; is below.
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Global Analysis

* k; in increasing over time (k;,, > k;) if and only if
¢ < f(ks) — 6k,

é—

CoeT(8)—54
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<= Fo s olecruasing
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Global Analysis

* Next, consider the Euler equation:

,BZ’((CC:)l) = f'(key) +1-6

* This equation does not contain ¢;,; — ¢; term.

e Let us therefore consider the condition
Cry1 > €t © U (Cepq) < U'(ct)

u'(c u'(c 1
(@) _ . we) 1

W (D) Bu' (cesr) ~ B




Global Analysis

* Thus, () ,
u'(c
!/ t >
pu'(cri1) 1 B

(Kesn —0>
s f( )+ 1 >,3

Ciy1 > Cp ©

* Therefore,

1
Ct>Ct—1 ®f’(kt)+1_6>g

* Thus, ¢; is increasing over, time if and only if

f@J>E—1+6



Global Analysis

* Let k™ solve

f’(k*)=%—1+6 )

* Then, f" <10 implies | 1\

f’(kt)>E_1+5 \%
Sk < k” B
* Thus, c; increases over * #

time if and only if
k; <k’
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Global Analysis

* There are 4 regions.
Cx

A

B o]

F1#)=5
C(—-:.f(ip)—;é.f-
L, [
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ﬁ
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Global Analysis

* The steady-state is a saddle.
C« 540&(/&101%

A '\
—
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Global Analysis

* Every trajectory in the phase diagram satisfies the
Euler equation and the budget constraint:

w'(c)
, t = f'(key1) +1-=6
Bu'(criq)
kKipr = flke) + (1= 68)k: — ¢
* Finally, we impose the transversality condition and
the initial condition
tllm ﬁtﬂ.tkt —_ O
ko : given

* This gives us a point on the saddle path.




Saddle Path = Unigue Solution

* Consider the transversality condition

t

lim Bt Ak, = l}im Bru'(c )k, =0

* Notice that all trajectories other than the saddle

path wil

eventually hit an axis or diverge.

* For example, consider a path leading eventually to
k; — 0. Output will be zero and thus¢; - 0 =
u'(c;) = oo, violating the transversality condition.

* The only path that never violate the transversality

condition is the saddle path.




Saddle Path = Unigue Solution

 Optimal sequences {c; };=o and {k;;1}:i=o are
uniquely determined for each k.
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A
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Blanchard and Kahn (1980)

* Consider the local dynamics around a steady state.

* Suppose we obtain the eigenvalues of the
linearized system.

* Theorem: Let #, denote the number of explosive
eigenvalues denote. Let #, the number of jump
variables. Then,

#, = #, = Solution path is unique
#, < #. = Solution path is indeterminate
#, > #. = Solution path does not exist




A

* |In this model, the
solution path is unique
because k; is a state
variable and ¢; is a
jump variable (or,
control variable).

* As you can see, a state
variable needs an initial
value, while a jump
variable is determined
within the model.

C+
A




1=

1<

* Suppose that in some
model, the steady state

is a saddle, but there

are two jumpers.

* Because (xg, ) must
be chosen by the
household and any

point on the saddle

path is fine, there is an
infinity of solution

paths.




/1:1> C:O

* Suppose that in some
model, the steady state is
a saddle, but there is no
jumper. “

/ 57'6019(7 Stacte
* Because (xg, y9) must be ’i/
chosen outside of the
model (by us), the /\

probability that the initial * :
point happens to be on oo
the saddle path is zero.

* Thus, the model explodes.



A c =0

e Suppose that in some
model, the steady state is
a sink, and there is no
jumper.

* Because every trajectory
leads to the steady state,
any initial point chosen
outside of the model is
fine.

* The solution path is
unique for each initial

point (xq, Vo).




* Suppose that in some

1=

0 <

model, the steady state is

a sink, and there is one

jumper.

e Because every trajectory
leads to the steady state,

given xg, thereis an

infinity of initial value y,

for the household.

Stesoly state

* Thus, the solution path is

indeterminate.



A

2 >

* Suppose that in some
model, the steady state

is a source, and thereis

one jumper.

* Given any initial value

Xy, every path is
explosive.




A

e Suppose that in some
model, the steady state is
a source, and there are
two jumpers.

e The initial point (x,, yg)
is entirely chosen by the
household.

* The household optimally
chooses (xg, yo) to be
exactly at the steady
state, and stay there
forever.

v




Summary

* The Blanchard-Kahn condition is quite useful for
checking whether your model has a unique solution.

* In general, any non-monetary model without
external effects (such as public goods and
environments) has a unique solution or a unique
equilibrium.

* In many monetary models, however, we often
encounter both multiple steady states and local
indeterminacy.



