Lecture 12

Chapter 5: General Equilibrium Part II: Monetary Economy

7/6, 2023

Goals

- Last week, we introduced prices and market equilibrium. However, we ignored nominal variables and focused on the real economy.
- Today, we finally introduce money and the price level.
- However, I will only scratch the surface of monetary economics as it requires at least one semester to go over a few important topics and models.

Modelling Money

Money is What Money Does

- Definition: Money is an object that serves the following 3 functions:
- 1. Store of Value
- 2. Unit of Account
- 3. Medium of Exchange
- Good idea to review any undergrad macro textbook such as Mankiw.

- Let us formally study why "money" is valued.
- The model is called the Kiyotaki-Wright model.
 - This is a nice application of dynamic programming.
- Consider a primitive economy in which people exchange their commodities to consume a variety of goods. (No supermarket or Amazon.com)
- The key question is whether (as a seller) you should accept a piece of paper called yen in exchange of an apple you own.

- Products are differentiated and you cannot consume everything.
- The probability that you can consume a commodity is x < 1.
 - Likewise, the probability that someone can consume your commodity is x < 1.
- Barter exchange: Even without money, you can exchange commodities if you want what I have and I want what you have.
 - Barter exchange requires a double-coincidence of wants.

- There are two state variables:
 - $s \in \{c, m\}$
 - $\Pi \in [0,1]$
- Total population is normalized to 1 (unit mass). Only a M < 1 of people are endowed with money.
- People can hold <u>at most</u> one unit of money.
 - Accumulation of money is ruled out.
- When you have no money, you are a seller and your state is s=c. When you have money, then you are a buyer and s=m.

- As a buyer, whether you can consume or not depends on whether the seller you will meet in the future will accept money as payment.
- Π is the **aggregate acceptability of money**. If $\Pi = 0.5$, then the probability that your payment in yen is accepted is 0.5.
- If accepted, you consume and obtain \boldsymbol{u} units of utility, and becomes a seller once again.
- Let β < 1 denote the discount factor.

- The value of holding a unit of money is $V(m,\Pi) = (1-M)x\Pi[u+\beta V(c,\Pi)] + [1-(1-M)x\Pi]\beta V(m,\Pi)$
- It is assumed that the probability that a money holder meets a seller is 1-M, which is the proportion of sellers.
- Upon meeting, with probability x you like the commodity and you offer a unit of yen.
- With probability Π the seller accepts money, you consume, and becomes a seller in the next period.

The value of a seller is given by

$$V(c,\Pi) = (1 - M)x^{2}[u + \beta V(c,\Pi)] + Mx\beta \max\{V(m,\Pi), V(c,\Pi)\} + [1 - (1 - M)x^{2} - Mx]\beta V(c,\Pi)$$

- With probability 1-M, the seller meets another seller. With probability x^2 , a double-coincidence of wants occurs.
- With probability M, the seller meets a money holder, and chooses whether to accept money as payment to become a money holder or not.

Consider

$$\max\{V(m,\Pi),V(c,\Pi)\}$$

 It is convenient to transform this binary problem into the following:

$$\max_{\pi}[\pi V(m,\Pi) + (1-\pi)V(c,\Pi)]$$

- π can take any value in [0,1]
- For brevity, let $V(m,\Pi)=V_m$ and $V(c,\Pi)=V_c$.

We rewrite the Bellman equations as

$$(1 - \beta)V_m = (1 - M)x\Pi[u + \beta(V_c - V_m)]$$

$$(1 - \beta)V_c = (1 - M)x^2u + Mx\beta\pi(V_m - V_c)$$

• Subtract one equation from the other to obtain $(1-\beta)(V_m-V_c)=(1-M)x\Pi[u+\beta(V_c-V_m)]\\-(1-M)x^2u-Mx\beta\pi(V_m-V_c)$

Thus,

$$V_m - V_c = \frac{(1 - M)(\Pi - x)xu}{1 - \beta + (1 - M)x\Pi + Mx\beta\pi}$$

• Evidently, $V_m > V_c$ if and only if $\Pi > x$.

 Thus, for each agent, the optimal decision is

$$\pi = 0 \text{ if } \Pi < x$$

 $\pi \in (0,1) \text{ if } \Pi = x$
 $\pi = 1 \text{ if } \Pi > x$

 This is the policy function, which depends on the aggregate state Π.

- You are willing to accept money if and only if you expect that all other people on average tend to accept money $(\Pi > x)$.
- The value of money is backed by your expectations about other peoples' actions.

- We look for a symmetric Nash equilibrium, in which a player's action is the best response against the other players actions.
- Perhaps you are not familiar with a game with a continuum of players.
- In this economy, each agent plays against the aggregate variable Π . Such a game is referred to as a social game.
 - Social games and macroeconomics have many common mathematical structures.

- There are 3 equilibria: $\Pi = 0, \Pi = x, \Pi = 1$
- People have incentives to coordinate their actions.
 - Referred to as a coordination game.
 - Many macroeconomic examples, including financial crises and currency crises.

Coordination Games and Macro

- Cooper (1999)
 Coordination Games:
 Complementarities and
 Macroeconomics.
- I highly recommend this textbook.
- Good reading material for the summer.

Cambridge University Press

General Equilibrium with Money

- Consider the competitive economy we studied last week.
- M_t : stock of money at the beginning of period t.
- The budget constraint in nominal terms:

$$A_t + W_t h_t + M_t = P_t c_t + \frac{A_{t+1}}{1 + i_{t+1}} + M_{t+1}$$

• A_t is nominal asset, W_t is the nominal wage rate, h_t is hours of work, P_t is the price of the consumption good, i_t is the nominal interest rate.

• Divide both sides of the nominal budget constraint by P_t to obtain

$$a_t + w_t h_t + m_t$$

$$= c_t + \frac{a_{t+1}}{1 + r_{t+1}} + (1 + \pi_{t+1}) m_{t+1}$$

- This is the budget constraint in real terms
 - $m_t = M_t/P_t$: real money balance
 - $\pi_{t+1} = \frac{P_{t+1} P_t}{P_t}$: inflation rete
 - Fisher equation: $1 + i_t = (1 + r_t)(1 + \pi_t)$
 - Fisher equation can be approximated as $i_t = r_t + \pi_t$.

Models of Money Demand

- The tricky part of monetary economics is that there are too many models of money demand, and you must choose a model from many alternatives.
- If you consider monetary economics as your primary field of research, then you should read Carl Walsh's graduate textbook, Monetary Theory and Policy, for a guided tour.
- On the next page I give you a very short list of models. In one way or another, we need to derive a money demand function.

Models of Money Demand

- Money-in-the-Utility function (MIUF) approach:
 - m_t provides transactions service $\Rightarrow u(c_t, h_t, m_t)$
 - Short-cut for medium of exchange
- Cash-in-Advance (CIA) approach
 - $c_t \leq m_t : m_t$ is needed to consume
 - Short-cut for medium of exchange
- Overlapping Generations (OLG) approach
 - Infinite sequence of finite-horizon agents
 - Money changes hands across generations
- Search Theory approach
 - Explicit trading frictions
 - Money changes hands within a generation

- It is also known as the Sidrauski model.
- There are two means of saving.

$$\max_{\substack{\{c_t\},\{a_{t+1}\},\{m_{t+1}\}\\ \text{subject to:}}} \beta^t [u(c_t) + v(m_t)]$$

$$a_t + w_t + m_t = c_t + \frac{a_{t+1}}{1 + r_{t+1}} + (1 + \pi_{t+1})m_{t+1}$$

- w_t is the exogenous wage income.
- $v(m_t)$ is captures the benefit of money.

• The FOCs are:

$$u'(c_t) = \lambda_t \lambda_t \frac{1}{1 + r_{t+1}} = \beta \lambda_{t+1} \lambda_t (1 + \pi_{t+1}) = \beta v'(m_{t+1}) + \beta \lambda_{t+1}$$

Thus,

$$u'(c_t) = (1 + r_{t+1})\beta u'(c_{t+1})$$

$$(1 + \pi_{t+1})u'(c_t) = \beta v'(m_{t+1}) + \beta u'(c_{t+1})$$

$$\Leftrightarrow$$

$$(1 + i_{t+1})u'(c_{t+1}) = v'(m_{t+1}) + u'(c_{t+1})$$

Rewrite them as

$$\frac{u'(c_t)}{\beta u'(c_{t+1})} = R_t$$
$$v'(m_{t+1}) = i_{t+1}u'(c_{t+1})$$

- The first one is the standard Euler equation.
- The second equation determines the demand for real money balance:

$$v'(m_t) = i_t u'(c_t)$$

Functional forms:

$$u(c) = \frac{c^{1-\sigma}}{1-\sigma}, v(m) = \frac{m^{1-\gamma}}{1-\gamma}$$

- Then, $v'(m_t) = i_t u'(c_t)$ implies $m_t^{-\gamma} = i_t c_t^{-\sigma}$
- Thus,

$$m_t = i_t^{\frac{-1}{\gamma}} c_t^{\frac{\sigma}{\gamma}}$$

 Money demand is decreasing in the nominal interest rate, as in the undergraduate textbook.

Note on Notations

- We defined $\frac{P_{t+1}-P_t}{P_t}=\pi_{t+1}$ is the inflation rete from period t and t+1.
- However, it is OK to define $\frac{P_{t+1}-P_t}{P_t}=\pi_t$ to mean the same object.
- Likewise, it is your choice to denote the interest rate between t and t+1 as i_t or i_{t+1} .
- Similarly, M_t is defined as the stock of money at the beginning of the period (= before transactions), but it is OK to denote M_{t-1} as the current stock.

Fiscal Implications of Money and Inflation

Inflation as a Tax

- Suppose you have M units of money.
- The price level in this period is P_t
- The value (= purchasing power) of money in this period is

$$\frac{M}{P_t}$$

 Suppose you did not spend it. The purchasing power in the next period becomes

$$\frac{M}{P_{t+1}} = \frac{P_t}{P_{t+1}} \frac{M}{P_t}$$

Inflation as a Tax

- Now suppose there is a direct tax on M
- The tax rate is x.
- Then the quantity of goods you can buy is

$$\frac{(1-x)M}{P_t}$$

Under inflation, the purchasing power is

$$\frac{P_t}{P_{t+1}} \frac{M}{P_t}$$

• These scenarios are essentially the same thing.

Inflation as a Tax

Solve the following equation:

$$1 - x = \frac{P_t}{P_{t+1}} = \frac{1}{1 + \pi}$$

$$\Leftrightarrow$$

$$x = \frac{\pi}{1 + \pi} \approx \pi$$

- This is the inflation tax rate.
- Observation: We can study monetary policy from a viewpoint of the theory of public finance.
 - Optimal inflation rate
 ⇔ Optimal inflation tax rate

The budget constraint in nominal terms:

$$A_t + W_t h_t + M_t - T_t = P_t c_t + \frac{A_{t+1}}{1 + i_t} + M_{t+1}$$

• Divide both sides by P_t

$$a_t + w_t h_t + \frac{P_{t-1}}{P_t} \frac{M_t}{P_{t-1}} - \tau_t = c_t + \frac{a_{t+1}}{1 + r_t} + \frac{M_{t+1}}{P_t}$$

• We redefine m_t as

$$m_t \equiv \frac{M_t}{P_{t-1}}$$

We do it only for exposition.

• Then, $a_t + w_t h_t + \frac{1}{1 + \pi_t} m_t - \tau_t = c_t + \frac{a_{t+1}}{1 + r_t} + m_{t+1} \Leftrightarrow a_t + w_t h_t + \left(1 - \frac{\pi_t}{1 + \pi_t}\right) m_t - \tau_t = c_t + \frac{a_{t+1}}{1 + r_t} + m_{t+1} \Leftrightarrow a_t + w_t h_t + (1 - x_t) m_t - \tau_t = c_t + \frac{a_{t+1}}{1 + r_t} + m_{t+1}$

• Our definition of m_t allows us to see the inflation tax rate on the left-hand side.

Thus,

$$a_t + w_t h_t + m_t - x_t m_t - \tau_t = c_t + \frac{a_{t+1}}{1 + r_t} + m_{t+1}$$

- Is now clear that the household <u>pays</u> the inflation tax ($x_t m_t$ in each period). But, to whom?
- Our next question is whether the government receives the inflation tax from us.
 - The government's revenue from inflation tax is referred to as **seigniorage**.

Open Market Operations

Government's budget in nominal terms:

$$P_t G_t + i_t^b B_t = P_t T_t + B_{t+1} - B_t$$

 Money is supplied through open market purchases of government bonds from the public:

$$B_t = B_t^p + B_t^c$$

- B_t^p is the nominal bonds held by the public.
- B_t^c is the nominal bonds held by the central bank.
- The central bank's balance sheet:

$$B_{t+1}^c - B_t^c = M_{t+1} - M_t + i_t^b B_t^c$$

Consolidated Budget Constraint

Combine the two balance sheets:

$$P_t G_t + i_t^b B_t^p = P_t T_t + B_{t+1}^p - B_t^p + M_{t+1} - M_t$$

• Divide both sides by P_t

$$D_{t} = \frac{B_{t+1}^{p}}{P_{t}} - \left(1 + i_{t}^{b}\right) \frac{B_{t}^{p}}{P_{t}} + \frac{M_{t+1}}{P_{t}} - \frac{M_{t}}{P_{t}}$$

• Redefine
$$b_t \equiv B_t^p/P_t$$
 and $m_t \equiv M_t/P_{t-1}$ to get
$$D_t = b_{t+1} - \left(1 + r_t^b\right)b_t + \left(m_{t+1} - \frac{1}{1 + \pi_t}m_t\right)$$

Seigniorage

Consolidated Budget Constraint

Rewrite it as

$$D_{t} + r_{t}^{b}b_{t}$$

$$= b_{t+1} - b_{t} + \left(m_{t+1} - m_{t} + m_{t} - \frac{1}{1 + \pi_{t}}m_{t}\right)$$

$$= b_{t+1} - b_{t} + m_{t+1} - m_{t} + x_{t}m_{t}$$
Seigniorage

- In any steady state, Seigniorage = xm.
 - This amount is the same as what we pay.
 - The government indeed <u>receives</u> the inflation tax.

Seigniorage in Japan

Helicopter Money

- Suppose there is no government bonds.
- When $B_t^c = 0$, there is no way to supply money.
- Let $G_t = 0$. The previous budget constraint is

$$-T_t = \left(m_{t+1} - \frac{1}{1 + \pi_t} m_t\right)$$
Seigniorage

- When open market operations are not modeled, you need to assume government transfer: $-T_t > 0$.
- Transfer takes the form of money injection.

Further Readings

- Walsh (2017) Monetary Theory and Policy, 4th edition.
- I highly recommend this textbook as your (serious) summer reading.
- You may be able to find your research topic in this book.

The MIT Press