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Basic ldea



Finite Horizon

* Consider a two-period version of the Neoclassical
growth model:

max Incy + [ lnc
Co,Cl,klzo,kzzo

* Subject to the initial condition k, > 0 and
kiyr = Aki — ¢,

* This problem is equivalent to:

a a
klg(lf}ézoln[AkO kil + BIn|Ak{ — k,]

* We shall call it the Sequence Problem (SP).



Finite Horizon

* The first-order condition with respect to k is
-1 N aAk$™H 0
Ak% — k, ’BAk]O_‘—kz_

* Evidently, k, = 0 is optimal because increasing k,

will only decrease the level of utility. Thus,
Akf - O _ Cl . Aka_l
AkE — K, o, PeAk

* This is the Euler equation.




Finite Horizon

* Solve the Euler equation for k; to obtain

_ e,
e _1+0(,8Ak0

e Thus,

1
cO=Ak8‘—k1:1+aﬁAkg

c; = Ak — 0 = Ak?
* The solution is given by the sequences of numbers.




Finite Horizon

* Let us now solve the same problem differently.
* By the method of backward induction.

* Suppose that we are in the terminal period.

* The problem:

max Inc,
Cc1,k2=0

* Subject to
kz —_ Akf — Cl

* In this period, k, is given because the level has
been determined by your own actions in the past.




Finite Horizon

* The problem reduces to:

a _
rlgz?é In[Aky — k]

* Evidently, the optimal choice is k, = 0.

* The maximized utility (i.e., indirect utility) is:
In[Ak7]| = v, (kq)

* Indirect utility is a function of the state variable k;.

* Given the predetermined level of capital, the household
makes the best choice.

* This function is called the value function.



Finite Horizon

* Now consider the problem in the initial period.

* The household takes into account that ¢; and k,
will be chosen optimally in the next period, and the
result is summarized by v, (k).

* Thus, the problem becomes:
max Incy + Bv,(k,)

Co,k120
* Subject to
k1 —_ Akg — CO

* In this period, k; can be chosen by the household.



Finite Horizon

* The problem is equivalent to:

max In[AkS — k] + B In[AkY]
12

* The first-order condition with respect to k is
-1 . aAk§™h 0
AkS — k, g AkS

e Solving it for k to obtainlB
a
ki = AkY
Y14




Finite Horizon

* The optimal consumption levels are:
Ak§

C0:1+a,8

Cl —_ Aki(

* The solutions from the two different methods are
the same.

* In principle, for any large T, a T-period problem can
be solved backward from the terminal period.

* For infinite-horizon problems, there is no terminal
period. Backward induction method does not work.




Infinite Horizon

* Consider the neoclassical growth model:

max z Lrtu(c,)

{Ct}t o{kt+1}t 0

* Subject to given k, and
kiyr = Ak — ¢
* The depreciation rate is 6 = 1 for simplicity.
* This problem reduces to:

max Z,Btu(/lk“ kiiq)

{Kt+1}i=0



Infinite Horizon

e Suppose that we somehow find the optimal
sequence {k;41}r=o-

 We can then define the value function v as:
v(ky) = max Z BUu(AkE — kpyy)
(K1}t

* This is the maximized I|fe time utility as a function

of the initial capital stock.




Infinite Horizon

* For now, let us forget about maximization.
* Take any feasible sequence {k;;1}7=0-

* Define v nearly identical to v (except for max) by:

o(ky) = Zﬁtu(Akt Kesn)

= u(Adky — ky) + ,Bz B u(Akf — keyq)
= u(Aky — kq) + ,Bv(kl)



Infinite Horizon

* We obtain:

U(k:) = u(Aky — keyq) + BU(Keyq)
* Very nice expression!
* But, can we introduce maximization here?

* In other words, is it OK to write the following?
v(k:) = maxu(Ak{ — keyq) + Bv(keyq)

Kt+1
e (With some cautions) it is OK.

* We call it the Bellman equation.



Infinite Horizon

* More generally, the Bellman equation is
v(k,) = max F(ke, keyq) + Br(keyq)

Kty1

e F(ke, k;y1) is (generally defined) payoff function.

* Value function v is unknown.
* The solution to the Bellman equation is the shape of v.
* Bellman equation is a functional equation.

 Our objective is to find the value function v(k,)
and the (time-invariant) policy function:

¢t = g(ke)



Infinite Horizon

* We are not looking for the optimal sequence.
* We are looking for the best response function.

* Thus, time subscript is irrelevant.

* The Bellman equation is generally written as:
v(x) = max F(x,y) + Bv(y)

* v is used to define v itself (recursive)

* v is the unknown (functional equation).

* How can we solve it?



Mathematical
Background



Solution as the Limit of
Convergent Sequence of Numbers

* Finding a solutionto 2x + 1 = 0 is easy.

* We say that an equation has a closed-form solution
if the solution is obtained by a finite number of
operations (addition, multiplication, log
transformation, etc.).

* Let us find a solution to the following:
—x3—x>+3=0

* This equation has no closed-form solution.



Solution as the Limit of
Convergent Sequence of Numbers

* Let me use
Mathematica (or PLot[-xA3-xA5+3, (x, -2, 2))
NSolve[-xA3 -xA5+3 == 0, x, Reals]
Wolfram Alpha web) to

numerically find the \

solution. \

* By the figure, we are e o —

100% sure that thereis R Y
a solution. \

° HOW can a COmpUter {{x=1.1053}}
find the solution?



Solution as the Limit of
Convergent Sequence of Numbers

* Equation is generally written as:
fix)=0
* In other words, finding a solution is equivalent to
finding a zero point of function f.

* Another representation is
F(x) =x

* Here, finding a solution is equivalent to finding a
fixed point of map F.

e If we define f(x) = F(x) — x, then we can switch
these two representations.



Solution as the Limit of
Convergent Sequence of Numbers

* To understand the basic idea of finding a solution as the
limit of convergent sequence, consider Newton'’s
method, a famous algorithm for finding a numerical
solution using computer.

* Let x* be the solution to f(x) = 0.

* Suppose that we have an initial guess about the
solution, x,,.

* Apply linear approximation on f(x), evaluated at x,,, to
obtain:

f) = fQxn) + fxn)(x —xy) = g(x)

* We can easily solve the linear equation g(x) = 0.



Solution as the Limit of
Convergent Sequence of Numbers

e The solution is
f(xn)
f'(xn)

* This is our new “guess” from the initial guess x,,.

X =Xy —

* Consider the sequence generated by the following
difference equation:
f(xn)

Xn+1 = Xn —
f(xn)
* Asn — 00, x,, = X . The solution is found as the
limit of a convergent sequence of numbers.




Convergent Sequence of
Functions (?)

* Key idea: When a closed-form solution is not
available, we look for a convergent sequence.

e Suppose we have an initial guess about the value
function v,, not a number.

* We construct a new guess v,,,1 by
Up41(x) = m;lXF(x; y) + Bv,(y)
* Qur hopeis,asn — o, v, — V.

* This requires us to work with a sequence of
functions on a space filled with functions.




Metric Space (Distance Space)

* The core concept is how we measure the distance
between two functions.

* Otherwise, we cannot talk about convergence.

* Definition: A metric space (or distance space) is a
set S, together with a metric (distance function)
p:SXS — R, such thatforallx,y,z € S:

1. p(x,y) = 0, with equality if and only if x = y;
2. p(x,y) = p(y, x) (Symmetry); and
3. p(x,z) <p(x,y)+ p(y,z) (Triangle inequality).



Examples of Metric Space

e R1: The set of all real numbers with distance
p(x,y) = |x—yl
* This one is very easy.

* When we measure the distance between two real
numbers, we use |x — y| as our measure.

* It is also straightforward to prove that this measure
satisfies all the three properties of a metric space.



Examples of Metric Space

* R™: n-dimensional Euclidean space is a metric
space with distance

p(x,y) = \/ k=1 — Vi)*

* Any high-school student knows how to measure
the distance between two points on the two-
dimensional space.

* This is just an extension to a higher-dimensional
space.



Examples of Metric Space

* Measuring the distance between two functions can
be tricky because there are too many points (or an
infinity of points) to consider.

* Function space (|, ,1: The set of all continuous
functions defined on the closed interval [a, b] with
distance

p(f,g9) = C{Q%If(t) — g(®)

* The idea is that if the |largest gap between the two
functions is nearly zero, then it is safe to say that
the two functions are sufficiently similar.




Cauchy Sequence

* Definition: A sequence {x, },—, in S converges to
x € S, if foreach € > 0, there exits N, such that
p(x,,x) < eforalln > N..

* Definition: A sequence {x,, },—, in S is a Cauchy
sequence if for each € > 0, there exits N, such
that p(x,, x,,,) < € foralln,m > N..

» Key idea: Cauchy offers a convergence concept that
does not require our knowledge about the limit
point.




Complete Metric Space

* Definition: A metric space (S, p) is complete if
every Cauchy sequence in S converges to an
elementin S.

* In a complete metric space, we can verify the existence
of a limit point by showing that a sequence is Cauchy.

* Fact: The set of real numbers R with metric
p(x,y) = |x — y| is a complete metric space.



Contraction Mapping

e Definition: Let (S, p) be a metricspaceand T: S —
S be a function mapping S into itself. T is a
contraction mapping if for some 8 € (0,1),

p(Tx,Ty) < Bp(x,y)
forallx,y € S.

* Mapping and function are the same meaning. We
use the term “mapping” because we are talking
about a function that transforms a function, and it
sounds confusing.

T can also be a function that transforms numbers.



Example

* Consider f(x) = 0.9x + 1.

* To verify whether f is a contraction, consider two
elements (numbers), x and y.

* The question is whether we can find 8 € (0,1) such

that
p(f(x), f(3) < Bp(x,y)



Example

* The distance between two numbers f(x) and f(y)

IS
p(f(x), f(») =109x — 0.9y | = 0.9|x — y|

* Thus, for any 8 satisfying 0.9 < f < 1, we can
show that

p(f(x),f(¥)) =09]x —y| < Blx —y| = Bp(x,y)

* Thus, f is a contraction mapping.



Contraction Mapping

Every contraction mapping is uniformly continuous.

Proof) Suppose p(x,y) < § forsome § > 0. Then,
Bp(x,y) < Bé
Any contraction mapping satisfies
p(Tx,Ty) < Bp(x,y) < B&
If we define € = (4, then, forany € > 0, there is

(= €/) such that
p(x,y) <dé6=p(Tx,Ty) <e

This is a definition of continuity. End of the proof.



Contraction Mapping Theorem

 Theorem: (a) Every contraction mapping defined on a
complete metric space S has a unique fixed point x in
S; and (b) forany xy € S, p(T"xy, x) < B"p(xq, x) for
n=2012,..

e Sketch of Proof)

* Given x,, construct a sequence: x; = Txg,x, = Tx{ =
T?xg, ..., X, = T™x,.

Contraction = forn < m, p(x,, X)) < Bp(xg, Xm—n)-
Triangle inequality = p(x,, x,,,) < € forn,m > N,. Cauchy.
Since S is complete, Cauchy implies a limit x.

Tx =T lim x, = lim Tx,, = lim x,,,1 = x.

n—->00 n—->00 n—->00

Two fixed points result in a contradiction. Unigueness proven.




Application: Difference Equation

* Consider a scalar linear difference equation
X1 = axe + b = f(x)
*Letp(x,y) = |x —yl.

* There is a unique fixed point x if f is a contraction
mapping. Thus, if for some 8 € (0,1),

p(f(x), f(¥)) < Bo(x,y)
e
fx)—f| < Blx—y|
e

ax —ay| < Blx —y|



Application: Difference Equation

e We further rewrite the condition as

lax — ay|
=la| = p €(0,1)
lx — ]

* Thus, there exists a unique fixed point if |a| < 1.

* (b) of the Theorem implies a convergent sequence.
This implies that for any initial condition, we have a
convergent sequence, and its limit point is the fixed
point.

* To be brief, the fixed point is globally (asymptotically)
stable.



Neoclassical Growth Model

* Consider the Bellman equation:
v(ky) = maxu(Aky — kiyq) + Br(kesq)

Kty1

* Rewrite it as:
v(x) = maxu(Ax® —y) + Bv(y)
y

* Using theorems we skip, we can prove that the
mapping (including all operations such as
maximization) from a function to another one is a
contraction mapping. = unique v exits.



Further Readings

e Simon and Blume, Mathematics for Economists,
Norton, 1994. Chapter 29.

* A. N. Kolmogorov and S. V. Fomin, Introductory Real
Analysis, Dover, 1970. Chapter 2.

* Nancy Stokey & Robert Lucas, Recursive Methods in
Economic Dynamics, Harvard University Press, 1989.
Chapters 3 & 4.

* Adda and Cooper, Dynamic Economics, MIT Press,
2003. Chapter 2.



Applications



Envelope Condition

e Consider the neoclassical growth model with
perfect depreciation 6 = 1 (for simplicity):

max z Lrtu(c,)

{Ct}t o{kt+1}t 0

* Subject to given k, and
kiyr = Ak — ¢

* Thus, the sequence problem is:

max Z,Btu(/lk“ kiiql)

{Kt+1}i=0



Envelope Condition

* From the original (sequence) problem, we obtain
the associated Bellman equation:

v(ky) = maxu(Aky — kiyq) + Br(keyq)

Kt41

* Suppose the utility function is In c. Then,
v(k:) = maxIn(Ak; — kiyq) + Br(kesq)

t+1

* FOC with respect to ks, q:
1
= Bv'(Kes1)

Akt(:x —kiiq



Envelope Condition

* Remember
kiyr = Aki — ¢,

* An alternative representation of the Bellman
equation is
v(k;) = maxu(c;) + fv(Ak{ — c;)
Ct

* FOC with respect to ¢; is
u'(cy) = pv'(Ak¢ — cr)

* With log utility, this is identical to the FOC on the
previous page.



Envelope Condition

* Note that FOC contains the unknown v'.

* Thanks to the recursive structure, we can calculate
v’ from the Bellman equation itself:

v(k:) = maxIn(Ak;y — kiyq) + fr(kesq)

kt+1
* The derivative with respect to the current sate is
, aAkE1
U (kt) — a
Ak —kiiq

* This is called the Envelope condition.



Envelope Condition

* From these conditions,
1 a’Akt+1

=p
Ak —kiyq Akiyy — kiyr
* This is the Euler equation. To(se)e this,
Ct+1 u'(c ,
= f'(kesr)

Ct = padkiiy < Bu'(cr41)
* With FOC and the Envelope condition, we can
obtain the same set of equations as in the
Lagrangian method.




Envelope Condition

* With the budget constraint and the transversality
condition, we can study the optimal sequence
instead of finding the policy function.

* In other words, (in many, not all, applications) the
Bellman equation can be used as a tool to obtain
the first-order conditions for optimality just like the
Lagrange method.

* For that purpose, the Envelope condition plays a
central role.



When to Use DP?

* DP is particularly useful when the state is discrete.

* There are many real-world examples in which the
state is discrete:
* employment status (employed/unemployed)
* marital status (married/single)
e success/failure
* high/low
* Infected/Not infected

* Some people use DP extensively, others do not use
it at all.



Further Readings

* Ljungqvist & Sargent,
Recursive
Macroeconomic Theory,
4th edition, MIT Press,
2018.

* Any addition is fine.
* |t starts with DP.
* Over 1,400 pages long!!

|t takes forever to read
the entire book.

LARS LJUNGQVIST
THOMAS J. SARGENT

recursive

macroeconomic theory



Further Readings

* https://quantecon.org/

* You can find lectures on QuantEcon

Open source code for economic modeling

economic dynamics
using Python.

Y M QuantEcon is a NumFOCUS fiscally sponsored project dedicated to development and documentation of modern
O O I e a O S p e n open source computational tools for economics, econometrics, and decision making. We welcome contributions
and collaboration from the economics community and other partner organizations.
time on this site
L] .
durlng the summer relects
[
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https://quantecon.org/

