Lecture 4

Chapter 1: Difference Equations
Part IV: Stability Analysis
5/2,2023



Phase Diagram

e Consider
{xt+1 = ax; + by,
Viv1 = CX¢ +dY;
* We can rewrite them as
{xt+1 —x¢ = (a — Dx; + by,
Verr — Ve = cxp + (d — Dy,
* In our example (as in the previous lecture),
Xep1 — X = L5y,
Vi+1 — Yt = 0.5%: — ¥,



Phase Diagram

* Because x;,; — x; means the change in x from t to
t + 1, we denote it by Ax.

* Thus, we obtain

Ax = 1.5y,
Ay —_ OSXt — yt

* Let us first consider the steady state, in which all
variables are constant over time:

Ax=0(:) y=20
Ay =0 y = 0.5x



Phase Diagram

Y =0.5x
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Phase Diagram

* Notethat Ax = 0 is

equivalent toy = 0 X increases over time

 Likewise, consider the
region in which x;
grows over time. Such a

region must satisfy

Ax > 0.

* Ax = 1.5y, implies that <
Ax > 0 holds if and

only if y, > 0.
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x; decreases over time
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Phase Diagram

* Similarly, Ay = 0 is
equivalentto y = 0.5x.

* Now, consider the
region in which y,
grows over time. Such a

region must satisfy

Ay > 0.

vy decreases over time

* Ay = 0.5x; implies that
Ay > 0 holds if and
only if 0.5x; > ;.
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Y increases over time
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Phase Diagram

In each region, we know
There are 4 regions which direction to go

Y
% &l

—
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Phase Diagram

e Suppose that point A is
the initial condition W

(X0, Yo)-

* Which way will the
economy go? .

<—/
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Phase Diagram

* The trajectory starting
from point A is
divergent.

* Let us consider many
other points.

&
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Phase Diagram

* There is an infinity of
divergent (or, explosive)
trajectories.

* Does it mean that the
steady state (which is at
the origin) cannot be
reached?




Phase Diagram

* Not really.

* There is exactly one
trajectory leading to
the steady state.

* This trajectory is
referred to as the
saddle path.




Stability of Linear Systems

e Stability of a linear system depends on the absolute
values of its eigenvalues:
1. |A4] > 1and |4,| > 1 = Explosive (source)
2. |A4] < 1and|A,| < 1= Convergent (sink)
3. |A4] <1< |A,]| = Saddle




Stability of Linear Systems

e |A{| >1and|A,]| > 1
— Source

* Remember that the
eneral solution is
ixt = c1e11A] + c2e2145
Ve = C1e124] + €245

* Evidently, when 4] >
1and |4,]| > 1, both x;

and y; are explosive.
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Stability of Linear Systems

* || <1land|1,]| <1
— Sink

* Remember that the
eneral solution is
ixt = c1e11A] + c2e2145
Ve = C1e124] + €245

* Evidently, when |4,] <
1and |4,]| < 1, both x;

and y; converge to the
originas t — oo,
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Stability of Linear Systems

* [4] <1 <A,
—> Saddle

y

* In our example, A; = \
—0.5and A, = 1.5. \ ‘//

* It will be useful to know \

2
how to compute the J

saddle path. /4,\




Computing the Saddle Path

* Remember that the general solution is

xt = ciej AY + e A
4

_ t t
k3’1: = cre147 + crep45

* When [1;| <1< |A;],ast - o0, 4] - 0and A; —
O Or —00,

* Thus, whenever ¢, # 0, the system will explode.

* In other words, we should be looking for the initial
condition such that ¢, = 0.



Computing the Saddle Path

* Imposing ¢, = 0, we obtain

xt — Cl 811/11:
<

_ t
k3’1: = C1€12/41

e Eliminating A} from the two equations, we obtain

y _912x
t — — Xt
€11

* This is the saddle path.

* In our example (see lecture 3), e;, = —1and e;; =
1. Thus, the saddle path is y, = —



Complex Eigenvalues

* Consider
Xt+1 = Xe T Ve

Vi1 = 9% + Yt

* |n matrix form,
Xt+1\ (1 1\ (Xt
(Yt+1) B (—9 1) (Yt)

* The characteristic equation is

A —21+10=0
 What are the eigenvalues?



Complex Eigenvalues

* Note that there is no w
real solution to %Wolfram
AZ — ZA + 10 — O Plot[x*2-2x+10, {x, 0,2}]
* To see this, visit i Excended Keyboard & Upload
https://www.wolframal
pha.com/ and execute S 222010 | xoov2
Plot[x"2 — 2x Plot

+ 10, {x, 0,2}]
* As you can see, the

curve has no . \

intersection with the
horizontal axis.

SR
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https://www.wolframalpha.com/
https://www.wolframalpha.com/

Complex Eigenvalues

* Consider the characteristic equation:
A2 —21+10=0

 What are the eigenvalues?
 Remember the solutions to ax? + bx + ¢ = 0 are

—b + Vb2 — 4ac
X =
20
* Thus, the solutions to A2 — 24 + 10 = 0 must be
2 + 4 — 4x10
A= =1++v-9

2



Complex Eigenvalues

* Never seen 1 4+ v/—9 before?

* This is an example of complex numbers.
e Let i satisfy i = —1.

* Then i is called an imaginary number.

* Let a and b real numbers. Then a + bi is a complex
number and a — bi its complex conjugate.

* In our example, the eigenvalues are 1 £ 3i.

* Can we take the absolute value of a complex
number such that |1 + 3i]?



Complex Eigenvalues

* To consider the length of a complex number, we
introduce the concept of modulus.

* Consider a complex number a + bi. Its norm or
modulus is given by

r = \/a2 + b?
* When b = 0, we have a real number a and its
modulusisr = Va? = |a].

* Thus, the concept of modulus includes the absolute
value of a real number as a special case.




Complex Eigenvalues

er=+Va?2+bh?2<1
—> Spiral sink.

39

e Consider

A= o)

* The eigenvalues are
A=0.1+%0.45(

* In Octave or Matlab,

N

48

execute “abs(eig(A))” to
obtainr = 0.458 < 1.
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Complex Eigenvalues

e Consider

NCETN
e r =0.458 < 1-. O: 0\(4

* Dynamical systems with
complex eigenvalues
generate rich time
series patterns.




Complex Eigenvalues

er=+a?2+bh%2>1
— Spiral source.

e Consider

A= (S 0?1)

* The eigenvalues are
A=01+141i

* In Octave or Matlab,
execute “abs(eig(A))” to
obtainr = 1.418 > 1.
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Complex Eigenvalues

e Consider

A= (2; 0?1)

er=1418 > 1.
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Summary

* Consider a two-
dimensional linear
system: z;,; = Az,

e Characteristic equation:

A% —trAAd + detA = 0

stable
ode

detA detA=(trA)*/4

stable
node

spiral source spiral source

saddle

saddle

detA = trA-1

unstable node ! unstable node
!

detA =trA-1

Oded Galor, Discrete Dynamical Systems, Springer, 2010.
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Higher-Dimensional Systems

 Consider a
1
Xt+1

n
xt+1/

nigher-dimensional

Inear system:

Xt b,
|+
X by

* More compactly, x;.; = Ax; + b
e Steady stateisx = —(A —1)"1b

* The general solutions is

X, = x + z c; AL P;



Higher-Dimensional Systems

* Theorem: Suppose all eigenvalues of A have moduli
different from 1. Then the unique steady state of
the system, x, is globally (asymptotically) stable if
and only if all the eigenvalues of A have moduli
strictly smaller than 1, and unstable if at least one
eigenvalue has modulus strictly larger than 1.

* Definition: A steady state x is globally
(asymptotically) stable if L]im x; = x for any x,.



Further Readings

e Simon and Blume, Mathematics for Economists,
Norton, 1994.

* Chapter 23 “Eigenvalues and Eigenvectors” is made
available for download from TACT.

e Sydsaeter, Hommond, Seierstad, and Strom, Further
Mathematics for Economic Analysis, 2nd edition,
Prentice Hall, 2008.



