Lecture 3

Chapter 1: Difference Equations

Part III: Linear Systems

4/27, 2023

• Given a set of parameters a, b, c, d, we consider

$$\begin{cases} x_{t+1} = ax_t + by_t \\ y_{t+1} = cx_t + dy_t \end{cases}$$

- This is a first-order linear system of difference equations.
- In matrix form,

$$\binom{x_{t+1}}{y_{t+1}} = \binom{a}{c} \quad \binom{x_t}{y_t}$$

Because the matrix is 2 by 2, this is a <u>two-dimensional</u> system.

• Define a column vector z_t such that

$$z_t = \begin{pmatrix} x_t \\ y_t \end{pmatrix}$$

• Define a 2×2 square matrix such that

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

- Then, our system of DE can be written compactly as $z_{t+1} = Az_t$
- This system is homogeneous as it has no constant term.

Now consider a second-order equation:

$$x_{t+1} = ax_t + bx_{t-1}$$

• Defining $y_t = x_{t-1}$ allows us to rewrite the equation as $x_{t+1} = ax_t + by_t \\ y_{t+1} = x_t$

• In matrix form,

$$\begin{pmatrix} x_{t+1} \\ y_{t+1} \end{pmatrix} = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_t \\ y_t \end{pmatrix}$$

- Higher-order equations can always reduce to <u>higher-dimensional first-order systems</u>.
 - We no longer need to study higher-order equations separately.

• Today we shall focus on $z_{t+1} = Az_t$, or

$$\binom{x_{t+1}}{y_{t+1}} = \binom{a}{c} \binom{b}{d} \binom{x_t}{y_t}$$

- I hope you are now convinced that this system is sufficiently general.
- How can we solve it analytically?
- Too hard? Then how about this?

$$\begin{pmatrix} x_{t+1} \\ y_{t+1} \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \begin{pmatrix} x_t \\ y_t \end{pmatrix}$$

• When b=c=0, the system reduces to $\begin{cases} x_{t+1}=ax_t\\ y_{t+1}=dy_t \end{cases}$

We can solve them <u>separately</u> as

$$\begin{cases} x_t = a^t x_0 \\ y_t = d^t y_0 \end{cases}$$

• In other words, for any diagonal matrix A, we can solve the system immediately.

- Our solution strategy is to
 - transform $z_{t+1} = Az_t$ into another system with a diagonal matrix,
 - solve the transformed DE, and
 - recover the original solution from the transformed solution.
- As an example, in what follows we shall consider

$$A = \begin{pmatrix} 1 & 1.5 \\ 0.5 & 0 \end{pmatrix}$$

- There are 4 steps to solve the system of DE:
 - 1. Find the eigenvalues of A and eigenvectors.
 - 2. Diagonalize A and obtain the transformed system
 - Solve the transformed system
 - Recover the original solution form the transformed solution.
- In what follows, we need to work with matrices.
 - I made Chapter 23 of Simon and Blume available at TACT for your convenience.

- Definition: Consider a square matrix A. An eigenvalue of A is a number λ which converts A into a singular matrix by subtracting λ from each of the diagonal entries of A.
- Thus, λ is an eigenvalue of A if and only if $A \lambda I$ is singular, where I is the identity matrix.
 - A square matrix is singular if and only if its determinant is zero.
- In other words, λ is an eigenvalue of A if and only if $\det(A \lambda I) = 0$.

• Let us calculate $\det(A - \lambda I)$.

$$\det(A - \lambda I) = \det\begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$$

$$= \det\begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$$

$$= (a - \lambda)(d - \lambda) - bc$$

$$= \lambda^2 - (a + d)\lambda + (ad - bc)$$

$$\frac{\det(A)}{\det(A)}$$

• Thus, λ is found by solving

$$\lambda^2 - (a+d)\lambda + (ad-bc) = 0$$

- $\lambda^2 (a+d)\lambda + (ad-bc) = 0$ is called the characteristic equation of A.
- Because this equation is quadratic, there are two solutions, λ_1 and λ_2 , say.
- The solutions to the characteristic equation are the **eigenvalues** of *A*.
 - They are also known as the characteristic roots.

Consider our example:

$$A = \begin{pmatrix} 1 & 1.5 \\ 0.5 & 0 \end{pmatrix}$$

The corresponding characteristic equation is

$$\lambda^{2} - (1+0)\lambda + (0-1.5\times0.5) = 0$$

 $\Leftrightarrow (\lambda - 1.5)(\lambda + 0.5) = 0$
 $\Rightarrow \lambda_{1} = -0.5, \lambda_{2} = 1.5$

• It is OK to label $\lambda_1=1.5, \lambda_2=-0.5$, but I chose λ_1 to be the smaller one in absolute value.

- Consider a nonzero vector P.
- $(A \lambda I)$ is singular if and only if the system of equations $(A \lambda I)P = 0$ has a nonzero solution.
 - Such a nonzero vector P is called an **eigenvector** of A.
- A two-dimensional system has two eigenvalues, and we can find an eigenvector for each eigenvalue.
- Let $P_1 = \begin{pmatrix} e_{11} \\ e_{12} \end{pmatrix}$ correspond to λ_1 .
- Let $P_2 = \begin{pmatrix} e_{21} \\ e_{22} \end{pmatrix}$ correspond to λ_2 .

• Consider
$$P_1={e_{11}\choose e_{12}}$$
 for $\lambda_1=-0.5$. Then,
$$(A-\lambda_1I)P_1=0\Leftrightarrow {a-\lambda_1\choose c}\frac{b}{d-\lambda_1}{e_{12}\choose e_{12}}=0$$

In our example, we have

$$\begin{pmatrix} 1.5 & 1.5 \\ 0.5 & 0.5 \end{pmatrix} \begin{pmatrix} e_{11} \\ e_{12} \end{pmatrix} = 0 \Leftrightarrow \begin{cases} 1.5e_{11} + 1.5e_{12} = 0 \\ 0.5e_{11} + 0.5e_{12} = 0 \end{cases}$$

What is the solution?

Consider

$$\begin{cases} 1.5e_{11} + 1.5e_{12} = 0 \\ 0.5e_{11} + 0.5e_{12} = 0 \end{cases}$$

- Notice that one equation is a linear transformation of the other (i.e., one equation is redundant).
- Consider $e_{11} + e_{12} = 0$.
 - One equation in two unknowns.
 - There is an infinity of solutions.

- Consider $e_{11} + e_{12} = 0$.
- Any combination of e_{11} and e_{12} satisfying $e_{11}+e_{12}=0$ is a solution.
- Examples are:

$$P_1 = \begin{pmatrix} e_{11} \\ e_{12} \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ -2 \end{pmatrix}, \dots$$

• Before going to the next page, pick up your paper and pencil to calculate examples of P_2 .

• Consider
$$P_2 = \binom{e_{21}}{e_{22}}$$
 for $\lambda_2 = 1.5$. Then, $(A - \lambda_2 I)P_2 = 0$ $\Leftrightarrow \binom{1 - 1.5}{0.5} \binom{0 - 1.5}{1.5} \binom{e_{21}}{e_{22}} = 0$ $\Leftrightarrow \binom{-0.5}{0.5} \binom{-1.5}{e_{21}} \binom{e_{21}}{e_{22}} = 0$ $\Leftrightarrow \begin{cases} -0.5e_{21} + 1.5e_{22} = 0 \\ 0.5e_{21} - 1.5e_{22} = 0 \end{cases}$

• Thus, examples of P_2 are

$$P_2 = \begin{pmatrix} e_{21} \\ e_{22} \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \begin{pmatrix} -3 \\ -1 \end{pmatrix}, \begin{pmatrix} 6 \\ 2 \end{pmatrix}, \dots$$

- Open your Octave or Matlab.
- In Octave or Matlab, we can calculate the eigenvalues and eigenvectors within a second.
- In the command window, execute the following:

$$A = [1, 1.5; 0.5, 0]$$

• It defines matrix A. Then, execute the following:

Finally, execute the following:

$$[V,D] = eig(A)$$

Matlab/Octave: Eigenvalues and Eigenvectors of A

- How can Octave (or Matlab) choose one particular eigenvector?
- From an infinity of vector satisfying $e_{11}+e_{12}=0$, the one satisfying $e_{11}^2+e_{12}^2=1$ is chosen.
- This is called the unit eigenvector.
 - Meaning, the length of the vector is 1.

```
>> A=[1,1.5;0.5,0]
   1.00000
             1.50000
   0.50000
             0.00000
>> eig(A)
   1.50000
  -0.50000
>> [V,D]=eig(A)
   0.94868 -0.70711
   0.31623 0.70711
D =
Diagonal Matrix
   1.50000
         0 -0.50000
```

Python: Eigenvalues and Eigenvectors of A

 In Python, we need a longer code to do the same.

```
[ 1.5 -0.5]
[[ 0.9486833 -0.70710678]
[ 0.31622777 0.70710678]]
```

Define a new matrix E as

$$E = (P_1, P_2) = \begin{pmatrix} e_{11} & e_{21} \\ e_{12} & e_{22} \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ -1 & 1 \end{pmatrix}$$

- First, let us check if *E* is **invertible**.
- \Leftrightarrow E is nonsingular, which is satisfied because

$$\det\begin{pmatrix} 1 & 3 \\ -1 & 1 \end{pmatrix} = 4 \neq 0$$

Pick up your paper and pencil to find the inverse of E.

Remember that the inverse of A is

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Apply this rule to obtain

$$E = \begin{pmatrix} 0.25 & -0.75 \\ 0.25 & 0.25 \end{pmatrix}$$

- You can verify this using Octave by inv(E), or using Python by np.linalg.inv(A).
- Use your paper and pencil to calculate $E^{-1}AE$.

• Consider $E^{-1}AE$. After several lines of calculation (or, one line in Octave or Matlab), you should be able to verify that

$$E^{-1}AE = \begin{pmatrix} -0.5 & 0\\ 0 & 1.5 \end{pmatrix}$$

Surprisingly, this magical manipulation gives us

$$E^{-1}AE = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

For convenience, we shall define a matrix

$$\Lambda = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

• Pre-multiply both sides of $z_{t+1} = Az_t$ by E^{-1} :

$$E^{-1}z_{t+1} = E^{-1}Az_{t}$$

$$= E^{-1}A(EE^{-1})z_{t}$$

$$= (E^{-1}AE)E^{-1}z_{t}$$

$$= \Lambda E^{-1}z_{t}$$

Define

$$\hat{z}_t = E^{-1} z_t$$

Then, we obtain

$$\hat{z}_{t+1} = \Lambda \hat{z}_t$$

• This is the transformed system.

Step 3: Solving $\hat{z}_{t+1} = \Lambda \hat{z}_t$

• Let the elements of \hat{z}_t be

$$\hat{z}_t = \begin{pmatrix} \hat{x}_t \\ \hat{y}_t \end{pmatrix}$$

• The transformed system $\hat{z}_{t+1}=\Lambda\hat{z}_t$ reduces to $\begin{cases} \hat{x}_{t+1}=\lambda_1\hat{x}_t\\ \hat{y}_{t+1}=\lambda_2\hat{y}_t \end{cases}$

Then, we can solve them <u>separately</u> as

$$\begin{cases} \hat{x}_t = \lambda_1^t \hat{x}_0 \\ \hat{y}_t = \lambda_2^t \hat{y}_0 \end{cases}$$

Step 4: Recovering the Original Solution

• Remember how \hat{z}_t is defined.

$$\hat{z}_t = E^{-1} z_t$$

Pre-multiply both sides by E to obtain

$$E\hat{z}_t = EE^{-1}z_t = z_t$$

• It tells us how to transform \hat{z}_t back into the original solution z_t . Thus, the solution is

$$\begin{pmatrix} x_t \\ y_t \end{pmatrix} = \begin{pmatrix} e_{11} & e_{21} \\ e_{12} & e_{22} \end{pmatrix} \begin{pmatrix} \lambda_1^t \hat{x}_0 \\ \lambda_2^t \hat{y}_0 \end{pmatrix}$$

Step 4: Recovering the Original Solution

We can rewrite the solution as

$$\begin{cases} x_t = c_1 e_{11} \lambda_1^t + c_2 e_{21} \lambda_2^t \\ \tilde{x}_0 & \tilde{y}_0 \end{cases}$$

$$y_t = c_1 e_{12} \lambda_1^t + c_2 e_{22} \lambda_2^t$$

$$\tilde{x}_0 & \tilde{y}_0 \end{cases}$$

Or, more compactly,

$$z_t = c_1 P_1 \lambda_1^t + c_2 P_2 \lambda_2^t$$

- This is referred to as the **general solution**.
 - Because we are not specifying the initial condition.

Step 4: Recovering the Original Solution

Consider the solution:

$$\begin{pmatrix} x_t \\ y_t \end{pmatrix} = \begin{pmatrix} e_{11} & e_{21} \\ e_{12} & e_{22} \end{pmatrix} \begin{pmatrix} \lambda_1^t \hat{x}_0 \\ \lambda_2^t \hat{y}_0 \end{pmatrix}$$

Notice

$$\begin{pmatrix} \lambda_1^t \hat{x}_0 \\ \lambda_2^t \hat{y}_0 \end{pmatrix} = \begin{pmatrix} \lambda_1^t & 0 \\ 0 & \lambda_2^t \end{pmatrix} \begin{pmatrix} \hat{x}_0 \\ \hat{y}_0 \end{pmatrix}$$

• Thus, the solution is

$$\begin{pmatrix} x_t \\ y_t \end{pmatrix} = E \begin{pmatrix} \lambda_1^t & 0 \\ 0 & \lambda_2^t \end{pmatrix} E^{-1} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$

Non-Homogeneous Systems

- Consider $z_{t+1} = Az_t + B$, where B is a column vector with parameters.
- This system is not homogeneous.
- Let z denote the steady state vector. Then, z = Az + B
- To find the steady state, manipulate the equation:

$$z = Az + B \Leftrightarrow -B = (A - I)z$$
$$\Leftrightarrow -(A - I)^{-1}B = z$$

Non-Homogeneous Systems

• Subtract z from both sides of $z_{t+1} = Az_t + B$:

$$z_{t+1} - z = Az_t + B - z$$
$$= Az_t + B - Az - B$$
$$= A(z_t - z)$$

- Define $Z_t = z_t z$ to obtain $Z_{t+t} = AZ_t$
- We know how to solve it: $Z_t = c_1 P_1 \lambda_1^t + c_2 P_2 \lambda_2^t$.
- Thus, the solution to the non-homogeneous system is given by

$$z_t = z + Z_t = z + c_1 P_1 \lambda_1^t + c_2 P_2 \lambda_2^t$$

Higher Dimensional Systems

Consider the n-dimensional non-homogeneous system:

$$\begin{pmatrix} x_{t+1}^1 \\ \vdots \\ x_{t+1}^n \end{pmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \begin{pmatrix} x_t^1 \\ \vdots \\ x_t^n \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

- More compactly, $x_{t+1} = Ax_t + b$.
- The steady state is $x = -(A I)^{-1}b$
- The general solutions is given by

$$x_t = x + \sum_{i=1}^{\infty} c_i \lambda_i^t P_i$$

Further Readings

- Simon and Blume, *Mathematics for Economists*, Norton, 1994.
 - Chapter 23 "Eigenvalues and Eigenvectors" is made available for download from TACT.
- Sydsaeter, Hammond, Seierstad, and Strom, Further Mathematics for Economic Analysis, 2nd edition, Prentice Hall, 2008.