Lecture 6

Chapter 2: Dynamic Optimization

Part I: Introduction to Intertemporal Choice

5/18, 2023

Motivation

• In undergraduate macro, we used a model like

$$C = aY + b$$

- *C* is consumption
- *Y* is income
- a is a parameter satisfying 0 < a < 1
- b is a parameter
- In graduate macro, we seek an infinite sequence of \mathcal{C}_t by solving a utility-maximization problem.
- Today, we shall focus on a two-period model.
 - We only need to find out C_0 and C_1 .

- There are two periods, t = 0.1.
- Consider a household <u>representing the economy</u>.
- Abstracting many things, the budget constraint in period t=0 is

$$y_0 = c_0 + s_0$$
Income Consumption Saving

• Saving is a flow concept. Its stock counterpart is asset or wealth.

- Suppose that this household has a_0 units of consumption goods as endowment.
- Let r > 0 denote the interest rate.
- Then, the asset at the beginning of period t=1 is $a_1=(1+r)(a_0+s_0)$
- To shorten the expression, let R=1+r to write $a_1=R(a_0+s_0)$
- We eliminate s_0 to obtain $a_1 = R(a_0 + v_0 c_0)$

Divide both sides by R to obtain

$$a_0 + y_0 = c_0 + \frac{1}{R}a_1$$

- According to this expression, you can spend both your initial wealth a_0 and your income (such as wage income) to make consumption c_0 and to purchase financial asset a_1 at the price 1/R.
- If $s_0 < 0$, then you are borrowing (flow concept).
- If $a_1 < 0$, then you are in debt (stock concept).

• In period t = 1, the budget constraint is

$$y_1 = c_1 + s_1$$

Asset for the next period is

$$a_2 = R(a_1 + s_1) = R(a_1 + y_1 - c_1)$$

Divide both sides by R to obtain

$$a_1 + y_1 = c_1 + \frac{a_2}{R}$$

• Use it to eliminate a_1 from the equation on page 5:

$$a_0 + y_0 = c_0 + \frac{1}{R} \left[c_1 + \frac{a_2}{R} - a_1 - y_1 \right]$$

Arrange terms to obtain

$$a_0 + y_0 + \frac{y_1}{R} = c_0 + \frac{c_1}{R} + \frac{a_2}{R^2}$$

Life-time wealth

- This is called the intertemporal budget constraint.
- Suppose that you can choose $a_2 = -\infty$.
 - What does it mean?
 - Stop for the moment and think before you move on.

- As stated on page 5, a negative wealth means that you are indebted.
 - Thus, $a_2 < 0$ means that you die with the debt. You do not repay the debt.
 - Thus, $a_2 = -\infty$ means that you can spend as much as you want by borrowing and not replaying.
- However, <u>no rational individual will allow you to do so</u>. Thus, we need an additional constraint:

$$a_2 \ge 0$$

 This constraint is called the No-Ponzi-Game (NPG) condition, named after Charles Ponzi (1982-1949).

- Let us now turn to the household's preferences.
- In microeconomics, when there are two goods, x and y, utility function is generally defined as U(x,y).
- The basic idea here is that we treat c_0 and c_1 as different commodities.
 - An apple you consume today and the same apple you consume tomorrow are different commodities because you need to wait until tomorrow.

- In general, utility from consuming c_0 units and c_1 units are given by $U(c_0,c_1)$.
- It is common to assume U to be **time separable**:

$$U(c_0, c_1) = u(c_0) + \beta u(c_1)$$

- This means that in each period t, you evaluate the utility from consumption. Then you add them up by discounting, using the **discount factor** $\beta < 1$.
- You can also consider the **discount rate** ρ such that

$$\beta = \frac{1}{1+\rho}$$

Consider a time-separable utility:

$$U(c_0, c_1) = u(c_0) + \beta u(c_1)$$

• Instantaneous utility function u(c) is assumed to be increasing and concave:

• Further, we assume the **Inada condition**:

$$\lim_{\substack{c \to 0 \\ c \to \infty}} u'(c) = \infty$$

- We now have all the expressions we need.
- The household's problem is written as

$$\max_{c_0, c_1, a_1, a_2} u(c_0) + \beta u(c_1)$$

subject to

$$a_{0} + y_{0} = c_{0} + \frac{1}{R}a_{1}$$

$$a_{1} + y_{1} = c_{1} + \frac{1}{R}a_{2}$$

$$a_{2} \ge 0$$

• Let $\Lambda_0, \Lambda_1, \Lambda_2$ be the Lagrange multipliers. Then the Lagrangian is

$$\mathcal{L} = u(c_0) + \beta u(c_1) + \Lambda_0 \left[a_0 + y_0 - c_0 - \frac{1}{R} a_1 \right] + \Lambda_1 \left[a_1 + y_1 - c_1 - \frac{1}{R} a_2 \right] + \Lambda_2 a_2$$

What are the first-order conditions?

The FOCs with respect to consumption are easy:

$$c_0 : u'(c_0) - \Lambda_0 = 0$$

 $c_1 : \beta u'(c_1) - \Lambda_1 = 0$

• To calculate the FOC with respect to a_1 , observe

$$\mathcal{L} = u(c_0) + \beta u(c_1) + \Lambda_0 \left[a_0 + y_0 - c_0 - \frac{1}{R} a_1 \right] + \Lambda_1 \left[a_1 + y_1 - c_1 - \frac{1}{R} a_2 \right] + \Lambda_2 a_2$$

• Thus, the FOC with respect to a_1 is

$$a_1: -\Lambda_0 \frac{1}{R} + \Lambda_1 = 0$$

Similarly, we obtain

$$a_2: -\Lambda_1 \frac{1}{R} + \Lambda_2 = 0$$

 The FOCs with respect to the multipliers give us the budget constraints:

$$a_0 + y_0 = c_0 + \frac{1}{R}a_1$$

$$a_1 + y_1 = c_1 + \frac{1}{R}a_2$$

- Finally, we need to deal with the inequality constraint $a_2 \ge 0$.
- The intuition tells us that you should choose $a_2 = 0$ because $a_2 > 0$ means you lend money before you die. This seems irrational.
- In the real world, we observe $a_2 > 0$ for many reasons:
 - Uncertainty: You do not usually know when to die.
 - Bequest: If you have children, you are more than happy to leave money to them.

The condition associated with the inequality constraint is

$$KKT : a_2 \ge 0, \Lambda_2 \ge 0, \Lambda_2 a_2 = 0$$

- This is called the **Karush-Kuhn-Tucker condition**, formally known as the **Kuhn-Tucker condition**.
 - I know the inequality constraint $a_2 \ge 0$ is not required for solving this model as it is evident that $a_2 = 0$ is optimal.
 - The purpose here is to extend the idea to understand the more general condition, the transversality condition for the infinite-horizon problem.

For now, consider the following problem:

$$\max_{x} f(x)$$

$$x \ge 0$$

subject to

- Suppose that function f(x) has one peak.
- Then, without the inequality constraint, the solution (=peak) is easily found by solving:

$$f'(x) = 0$$

- Let the peak be x^* .
- The problem is, there is no guarantee that x^* is found in the region x > 0.

• Let λ denote the Lagrange multiplier. Then, $\mathcal{L} = f(x) + \lambda x$

The FOCs are

$$x: f'(x) + \lambda = 0$$

$$KKT: x \ge 0, \lambda \ge 0, \lambda x = 0$$

- Because $\lambda x = 0$, either λ or x must be zero.
- There are two cases to consider:
 - Case 1: $\lambda = 0$ and $x^* > 0$
 - Case 2: $\lambda > 0$ and $x^* = 0$

- Consider Case 1: $\lambda = 0$ and $x^* > 0$
- The FOCs simply require f'(x) = 0.
- In this case, the peak x^* is found in the region $x \ge 0$.

- Consider Case 2: $\lambda > 0$ and $x^* = 0$
- The FOCs imply $f'(x) = -\lambda < 0$
- In this case, the peak x^* is found at the edge of the region $x \ge 0$.

Let us go back to our two-period model.

$$KKT : a_2 \ge 0, \Lambda_2 \ge 0, \Lambda_2 a_2 = 0$$

- We shall consider two cases:
 - Case 1: $\Lambda_2 = 0$ and $a_2 > 0$
 - Case 2: $\Lambda_2 > 0$ and $\alpha_2 = 0$
- In Case 1, one of the FOCs implies

$$-\Lambda_1 \frac{1}{R} + \Lambda_2 = 0 \Rightarrow -\Lambda_1 \frac{1}{R} = 0 \Rightarrow \Lambda_1 = 0$$

However, another FOC implies

$$\beta u'(c_1) - \Lambda_1 = 0 \Rightarrow \beta u'(c_1) = 0$$

Consider

$$\beta u'(c_1) = 0$$

- Because of the Inada condition $\lim_{c\to\infty} u'(c) = 0$, for a finite level of consumption, we can never find the solution to $u'(c_1) = 0$.
- Thus, there is no solution in Case 1.

- Now consider case 2: $\Lambda_2 > 0$ and $a_2 = 0$
- The FOCs are summarized by

$$c_{0}: u'(c_{0}) - \Lambda_{0} = 0$$

$$c_{1}: \beta u'(c_{1}) - \Lambda_{1} = 0$$

$$a_{1}: -\Lambda_{0} \frac{1}{R} + \Lambda_{1} = 0$$

$$a_{2}: -\Lambda_{1} \frac{1}{R} + \Lambda_{2} = 0$$

$$a_{0} + y_{0} = c_{0} + \frac{1}{R} a_{1}$$

$$a_{1} + y_{1} = c_{1}$$

Eliminate the multipliers to obtain

Euler equation :
$$\frac{u'(c_0)}{\beta u'(c_1)} = R$$
Budget constraint : $a_0 + y_0 + \frac{y_1}{R} = c_0 + \frac{c_1}{R}$

- Notice that this is a system of nonlinear equations.
- There are two equations in two unknowns c_0 and c_1 .

- We can draw a diagram just as in the standard undergraduate micro.
- The Euler equation tells us that the slope of the indifference curve and the slope of the budget constraint must be the same.

- To explicitly solve the equations, we need to specify u(c). The most commonly-used functional form is $u(c) = \ln c$
- Economics only considers natural logarithm, so we may also write $\log c$.
- $\ln c$ satisfies all assumptions we impose such as u'>0>u'' and the Inada condition.
- More importantly, u'(c) = 1/c. This greatly simplifies the analysis.

 Another functional form employed in many macro models is CRRA form:

$$u(c) = \frac{c^{1-\sigma}}{1-\sigma}$$

- CRRA means constant relative risk aversion.
- The marginal utility is $u'(c) = c^{-\sigma}$.
- This function contains $\ln c$ as a special case when $\sigma=1.$
 - To exactly derive $\ln c$, we need to start with $\frac{c^{1-\sigma}-1}{1-\sigma}$. But this form is not very popular.

• Let us solve the equations with $u(c) = \ln c$:

Euler equation :
$$\frac{1/c_0}{\beta/c_1} = R \Leftrightarrow c_1 = \beta R c_0$$
Budget constraint : $a_0 + y_0 + \frac{y_1}{R} = c_0 + \frac{c_1}{R}$

We can easily solve them and obtain:

$$c_{0} = \frac{a_{0} + y_{0} + \frac{y_{1}}{R}}{1 + \beta}$$

$$c_{1} = \frac{\beta}{1 + \beta} R \left[a_{0} + y_{0} + \frac{y_{1}}{R} \right]$$