Pattern Recognition and Exercises

Kenichiro ISHII Professor

Department: School of Engineering / Graduate School of Engineering

Class Time: 2011 Spring Tuesday
Recommended for: School of Infomatics and Science

close Course Overview

Course Aims

Pattern recognition is a technique for recognizing speech, images, characters and so on by computers. In this course, basic ideas of pattern recognition, classification theory, learning theory and their algorithms are introduced. A variety of exercises are presented, in order that students gain deeper understanding and acquire the ability to apply the technology to actual problems.

Key Features

  1. In order to provide a better understanding of the lecture, two kinds of exercises are given. One is to solve pattern recognition problems by hand, and the other is to solve problems using a computer. These problems are given in the first (lecture time) and the second (exercise time) hours, respectively.
  2. In the exercises, hand-printed characters written by students during the course are used, so that students comprehend the technology as completely as possible.
  3. During each lecture some application examples and related topics are introduced by audio-visual demonstration.
  4. After several sessions have been completed, the course is assessed by students using questionnaires. The result of the assessment is utilized to improve the rest of the sessions.

Close Section

close Syllabus

Course Objectives

The major objectives of this course are, to understand the basic ideas of pattern recognition, and to acquire skills in solving actual problems using classification/learning algorithms.

Course Outline

This course consists of two parts. The first part is a lecture, where not only technological explanation but also some exercise problems are given. The second part is an exercise for solving pattern recognition problems using a computer.

Requirements and Recommended Courses

A sufficient knowledge of linear algebra, probability theory and statistics is required. Having some programming skills is preferable in order to perform computer simulations in exercises.

Course Schedule

1 pattern recognition system, feature extraction, feature vector
2 prototype, nearest neighbor rule, linear discriminant function
3 perceptron learning rule, weight space, solution region
4 perceptron convergence theorem, dimension size, sample size
5 majority voting, piecewise linear discriminant function
6 Widrow-Hoff learning rule, multiple regression analysis
7 error estimation and perceptron
8 back propagation method, neural network, feature evaluation
9 transformation of feature space, Fisher's method
10 K-L expansion
11 empirical probability, subjective probability, Bayes theorem
12 Bayesian updating, Bayesian estimation
13 Bayes decision rule, Bayes error
14 parameter estimation by maximum likelihood method


Grading is based on reports and the final examination.

Close Section

Page last updated March 8, 2011

The class contents were most recently updated on the date indicated. Please be aware that there may be some changes between the most recent year and the current page.

Browse by Category

  • Letters
  • History
  • Arts & Culture
  • Politics & Economics
  • Law
  • Philosophy
  • Education, Development & Psychology
  • International Studies
  • Informatics
  • Engineering & Technology
  • Physics
  • Chemistry
  • Mathematics
  • Life Sciences & Medicine
  • Environmental Studies & Earth Studies

Browse by School / Graduate School