Lecture 8

Technological Progress 6/16

Goals

- Today, we introduce <u>technological progress</u> into the model of Pissarides.
- With this new component, we can ask whether a faster technological progress reduces the unemployment rate in the long run.
- We shall also study a model of Creative Destruction, in which a higher rate of technological progress causes a <u>shorter duration</u> of jobs.

Technological Progress and Job Creation

Review of the DMP Model

• Consider (1.6), which is $rV = -pc + q(\theta)(J - V)$

- Now consider (1.33), which is $rV = -pc + q(\theta)(J-V) + \dot{V}$
- Let us introduce V(t) to consider the possibility that V itself grows over time.

Review of the DMP Model

Consider:

$$V(t) = -pc\delta t + \frac{1}{1 + r\delta t} \{ q(\theta)\delta t J(t + \delta t) + [1 - q(\theta)\delta t]V(t + \delta t) \}$$

• Multiply both sides by $1 + r\delta t$ to obtain $(1 + r\delta t)V(t)$

$$= -(1 + r\delta t)pc\delta t + \{q(\theta)\delta tJ(t + \delta t) + [1 - q(\theta)\delta t]V(t + \delta t)\}$$

Arrange terms to obtain

$$r\delta t V(t) = -(1 + r\delta t)pc\delta t + q(\theta)\delta t [J(t + \delta t) - V(t + \delta t)] + V(t + \delta t) - V(t)$$

• Divide both sides by δt to obtain

$$rV(t) = -(1 + r\delta t)pc + q(\theta)[J(t + \delta t) - V(t + \delta t)] + \frac{V(t + \delta t) - V(t)}{\delta t}$$

Review of the DMP Model

Note that

$$\lim_{\delta t \to \infty} \frac{V(t + \delta t) - V(t)}{\delta t} = \frac{dV(t)}{dt} = \dot{V}$$

- Take the limit as $\delta t \to 0$ to obtain (1.33) as $rV = -pc + q(\theta)(J V) + \dot{V}$
- Similarly, we derived (1.34), (1.37) and (1.38) as follows.

$$rJ = p - w + \lambda(V - J) + \dot{J}$$

$$rU = z + \theta q(\theta)(W - U) + \dot{U}$$

$$rW = w + \lambda(U - W) + \dot{W}$$

Technological Progress

- The new ingredient is that we are going to assume that p grows over time.
- In particular,

$$p(t) = p(0)e^{gt}$$

This implies

$$\frac{\dot{p}}{p} = g$$

- Thus, the growth rate of technology is g.
 - We assume g is constant and satisfies g < r.

- Because p grows over time, we cannot find a steady state in the usual sense.
- Instead, we look for a balanced-growth
 equilibrium (BGE), in which all values grow at the
 same rate.
- Thus, we shall now impose

$$\frac{\dot{V}}{V} = \frac{\dot{J}}{J} = \frac{\dot{U}}{U} = \frac{\dot{W}}{W} = \frac{\dot{p}}{p} = g$$

Consider

$$\frac{\dot{V}}{V} = \frac{\dot{J}}{J} = \frac{\dot{U}}{U} = \frac{\dot{W}}{W} = g$$

Interestingly, this implies

$$\dot{V} = gV
\dot{J} = gJ
\dot{U} = gU
\dot{W} = gW$$

• We substitute them into the Bellman equations.

In any balanced-growth equilibrium,

$$rV = -pc + q(\theta)(J - V) + gV$$

$$rJ = p - w + \lambda(V - J) + gJ$$

$$rU = z + \theta q(\theta)(W - U) + gU$$

$$rW = w + \lambda(U - W) + gW$$

• For a technical reason (to be explained), we shall assume that the unemployment benefit z is proportional to p. Thus, we assume

$$z = pb$$
,

where b > 0 is constant.

Thus, we rewrite the equations as

$$(r-g)V = -pc + q(\theta)(J-V)$$

$$(r-g)J = p - w + \lambda(V-J)$$

$$(r-g)U = pb + \theta q(\theta)(W-U)$$

$$(r-g)W = w + \lambda(U-W)$$

- Sometimes we call r-g as the **effective discount** rate.
 - I hope you now understand why we imposed the assumption g < r.
 - We want the effective discount rate to be positive.

• Notice that once we redefine r-g as ρ , say, our model looks nearly the same as the original model:

$$\rho V = -pc + q(\theta)(J - V)$$

$$\rho J = p - w + \lambda(V - J)$$

$$\rho U = pb + \theta q(\theta)(W - U)$$

$$\rho W = w + \lambda(U - W)$$

 We can now derive the job-creation condition and the wage equation from the model.

• As in the model without technological progress, we can determine a balanced-growth equilibrium by the set of (θ, w, u) satisfying

$$u = \frac{\lambda}{\lambda + \theta q(\theta)}$$
$$(r - g + \lambda) \frac{pc}{q(\theta)} = p - w$$
$$w = \beta p + (1 - \beta)pb + \beta pc\theta$$

• First, observe that the wage equation implies that the wage rate is proportional to p. To see this,

$$w = \beta p + (1 - \beta)pb + \beta pc\theta$$
$$= [\beta + (1 - \beta)b + \beta c\theta]p$$

- In other words, the wage rate grows at rate g.
 - This result is derived, not assumed.
 - For this to be true, the unemployment benefit and the vacancy cost are both proportional to p. Remember our additional assumption z=pb.

 Substitute the wage equation into the job-creation condition to obtain

$$(r - g + \lambda)\frac{pc}{q(\theta)} = p - [\beta + (1 - \beta)b + \beta c\theta]p$$

- Both sides are proportional to p.
- For this to be true, the vacancy cost must be proportional to pc, as in Pissarides.
 - In other words, without technological progress, it is OK to assume the vacancy cost to be c not pc.

• Divide both sides by p to obtain

$$(r - g + \lambda)\frac{c'}{q(\theta)} + \beta c\theta = (1 - \beta)(1 - b)$$

- Because p is dropped, all variables in this expression can be constant over time.
 - We can safely find a balanced-growth equilibrium.
- The left-hand side is increasing in θ .
- The right-hand side is constant. The sign is positive if and only if b < 1 (i.e., z < p).

- There is a unique BGE, as shown in the diagram.
- An increase in g will increase θ in BGE.
- Because $u = \frac{\lambda}{\lambda + \theta q(\theta)}$ implies a negative relationship between θ and u, an increase in g will decrease u.

Capitalization Effect

- We have now shown that a faster technological progress will create more jobs and reduce the unemployment rate in the long run.
- This result is referred to as the capitalization effect.

Capitalization Effect

• To fully understand the capitalization effect, consider the job-creation condition:

$$\frac{(r-g+\lambda)pc}{q(\theta)} = p - w$$

- Let $r g + \lambda = \tilde{r}$ be the effective discount rate.
- Then we rewrite it as

$$\underbrace{\frac{1}{q(\theta)}}_{\text{Expected duration}} \times \underbrace{pc}_{\text{Vacancy cost}} = \underbrace{\frac{p-w}{\tilde{r}}}_{\text{Discounted Infinite Sum of Profits}}$$
Expected Total Vacancy Costs

Capitalization Effect

- It is now clear that the job-creation condition balances the cost and benefit of creating a vacancy.
- The effective discount rate $\tilde{r} = r g + \lambda$ captures two things:
 - Technological progress
 - Separations.
- Suppose that you must borrow money to finance the vacancy cost. Then, $\frac{p-w}{\tilde{r}}$ is the maximum amount of money you can repay in the future.
 - A lower interest rate expands this amount.

Technological Progress and Job Destruction

Mortensen, Dale T., and Christopher A. Pissarides. "Technological progress, job creation, and job destruction." Review of Economic dynamics (1998): 733-753.

Goals

- An implicit assumption was made in the previous model that technological progress improves the labor productivity <u>for all jobs</u>.
 - Often referred to as disembodied technological progress.
- We now consider the polar opposite in which only the newly created job can enjoy the cutting-edge technology.
 - After a job is created, there are newer, better technology outside, causing the job obsolete.

- Consider (1.33) in Pissarides, which is $rV = -pc + q(\theta)(J V) + \dot{V}$
- This is the value of creating a vacancy.
- We shall introduce the idea of job vintage.
- Let $J(\tau)$ denote the value of job filled in period τ , evaluated in period t.
 - τ is the **vintage** of a particular job.
 - t is the actual time.
 - For brevity, we denote $J(\tau)$ instead of $J(\tau, t)$.

We shall extend this expression as

$$rV = -pc + q(\theta)(J(t) - V - pK) + \dot{V}$$

- J(t) is the value of a job of vintage t.
- pK is the cost of starting a new job. Training cost.
- As always, we assume free entry of jobs: V=0
- Thus, this Bellman equation implies

$$\frac{c}{q(\theta)} + K = \frac{J(t)}{p}$$

- This is (3) in MP.
 - For simplicity, we will assume K=0.

- In Pissarides: $rJ = p w + \lambda(V J) + \dot{J}$
- The value of a job of vintage τ satisfies $rJ(\tau) = p(\tau) w(\tau) + \lambda \big(V J(\tau)\big) + \dot{J}(\tau)$
- This is (4) in MP (when V=0).
 - We drop x by assuming x = 1.
 - Imagine an extreme example where you stop learning on the date you are hired.

• In Pissarides,

$$rW = w + \lambda(U - W) + \dot{W}$$

- The value of employment of vintage τ is $rW(\tau) = w(\tau) + \lambda \big(U W(\tau)\big) + \dot{W}(\tau)$
- This is (5) in MP.

In Pissarides,

$$rU = z + \theta q(\theta)(W - U) + \dot{U}$$

- The value of unemployment in MP is $rU = pb + \theta q(\theta)(W(t) U) + \dot{U}$
- W(t) means that at the time you are hired, your job vintage is $\tau = t$ because the date you are hired is indexed by t.
- Your job vintage is fixed at τ while t increases over time. Thus, $t > \tau$ and $t \tau$ is job **tenure**.
- As $t \tau$ expands, the job becomes **obsolete**.

• (1.17) in Pissarides:

$$W_i - U = \beta(J_i + W_i - V - U)$$

With vintage,

$$W(\tau) - U = \beta(J(\tau) + W(\tau) - V - U)$$

Or,

$$\beta[J(\tau) - V] = (1 - \beta)[W(\tau) - U]$$

- This is (7) in MP.
- Differentiate it by t to obtain

$$\beta \left[\dot{J}(\tau) - \dot{V} \right] = (1 - \beta) \left[\dot{W}(\tau) - \dot{U} \right]$$

Rewrite the values as

$$(r+\lambda)[J(\tau)-V] = p(\tau) - w(\tau) - rV + \dot{J}(\tau)$$

Similarly,

$$(r + \lambda)[W(\tau) - U] = w(\tau) - rU + \dot{W}(\tau)$$

Substitute these expressions into the bargaining outcome to obtain

$$\beta [p(\tau) - w(\tau) - rV + \dot{J}(\tau)]$$

= $(1 - \beta) [w(\tau) - rU + \dot{W}(\tau)]$

Thus,

$$w(\tau) = \beta p(\tau) + (1 - \beta)rU + \beta \dot{J}(\tau) - (1 - \beta)\dot{W}(\tau)$$

The bargaining outcome implies

$$[W(\tau) - U] = \frac{\beta}{1 - \beta} [J(\tau) - V]$$

Substitute the equations on page 24 into above:

$$[W(\tau) - U] = \frac{\beta}{1 - \beta} \frac{pc}{q(\theta)}$$

• Thus, rU (on page 27) satisfies

$$rU = pb + \frac{\beta}{1 - \beta}pc\theta + \dot{U}$$

• Substitute rU into $w(\tau)$ to obtain

$$w(\tau) = \beta p(\tau) + (1 - \beta) \left\{ pb + \frac{\beta}{1 - \beta} pc\theta \right\} + \beta \dot{J}(\tau) - (1 - \beta) \left[\dot{W}(\tau) - \dot{U} \right]$$

• Because $\beta[\dot{J}(\tau)-\dot{V}]=(1-\beta)[\dot{W}(\tau)-\dot{U}]$ and $V=\dot{V}=0$, we obtain

$$w(\tau) = \beta p(\tau) + (1 - \beta) \left\{ pb + \frac{\beta}{1 - \beta} pc\theta \right\}$$

Consider

$$w(\tau) = \beta p(\tau) + (1 - \beta) \left\{ pb + \frac{\beta}{1 - \beta} pc\theta \right\}$$

• Collect the terms independent of τ to define

$$\omega(\theta) = b + \frac{\beta}{1 - \beta} c\theta$$

- This is (9) in MP. Thus, the wage equation is $w(\tau) = \beta p(\tau) + (1-\beta)p\omega(\theta)$
- This is (8).
 - We are assuming x = 1.

Consider the wage equation

$$w(\tau) = \beta p(\tau) + (1 - \beta)p\omega(\theta)$$

- Observe:
 - $p(\tau)$ is constant.
 - $p = p(0)e^{gt}$ is growing over time.
- The key here is that the wage rate for a job of vintage τ grows over time even though the productivity of the worker-firm pair is not growing.
 - $w(\tau)$ is growing because the worker's reservation wage rU is growing because of economic growth.

Obsolescence and Job Destruction

- The value of a job of vintage τ in period t satisfies $rJ(\tau,t)=p(\tau)-w(\tau,t)+\lambda\big(V-J(\tau,t)\big)+\dot{J}(\tau,t)$
- With $w(\tau, t)$ and V = 0, rewrite above as $(r + \lambda)J(\tau, t) = (1 \beta)[p(\tau) p(t)\omega(\theta)] + \dot{J}(\tau, t)$
- Multiply both sides by $e^{-(r+\lambda)t}$ to obtain $(r+\lambda)J(\tau,t)e^{-(r+\lambda)t}-j(\tau,t)e^{-(r+\lambda)t} = (1-\beta)[p(\tau)-p(t)\omega(\theta)]e^{-(r+\lambda)t}$
- Observe that the left-hand side is

$$\frac{d\big[J(\tau,t)e^{-(r+\lambda)t}\big]}{dt} = -(r+\lambda)J(\tau,t)e^{-(r+\lambda)t} + \dot{J}(\tau,t)e^{-(r+\lambda)t}$$

Obsolescence and Job Destruction

 Thus, $-\frac{d[J(\tau,t)e^{-(r+\lambda)t}]}{dt} = (1-\beta)[p(\tau)-p(t)\omega(\theta)]e^{-(r+\lambda)t}$

• Integrate both sides from t to $\tau + T$ to obtain

$$e^{-(r+\lambda)t}J(\tau,t) - e^{-(r+\lambda)(\tau+T)}J(\tau,\tau+T)$$

$$= \int_{t}^{\tau+T} (1-\beta)[p(\tau) - p(s)\omega(\theta)]e^{-(r+\lambda)s}ds$$

• Multiply both sides by
$$e^{(r+\lambda)t}$$
 to obtain
$$J(\tau,t) = \int_t^{\tau+T} (1-\beta)[p(\tau)-p(s)\omega(\theta)]e^{-(r+\lambda)(s-t)}ds \\ + e^{-(r+\lambda)(\tau+T-t)}J(\tau,\tau+T)$$

Obsolescence and Job Destruction

Consider

$$J(\tau,t) = \int_{t}^{\tau+T} (1-\beta)[p(\tau) - p(s)\omega(\theta)]e^{-(r+\lambda)(s-t)}ds$$
$$+e^{-(r+\lambda)(\tau+T-t)}J(\tau,\tau+T)$$

• Let $\tau + T$ be the date at which the job must be destroyed. Then, the terminal value of the job must satisfy (by definition)

$$J(\tau, \tau + T) = 0$$

Thus,

$$J(\tau,t) = \int_{t}^{\tau+T} (1-\beta)[p(\tau)-p(s)\omega(\theta)]e^{-(r+\lambda)(s-t)}ds$$

• Let the firm choose *T*:

$$J(\tau,t) = \max_{T} \int_{t}^{\tau+T} (1-\beta)[p(\tau) - p(s)\omega(\theta)]e^{-(r+\lambda)(s-t)}ds$$

- This is (10) in MP.
- The first-order condition with respect to T is $(1-\beta)[p(\tau)-p(\tau+T)\omega(\theta)]e^{-(r+\lambda)(\tau+T-t)}=0$
- Equivalently,

$$p(\tau) - p(\tau + T)\omega(\theta) = 0$$

- Consider $p(\tau) p(\tau + T)\omega(\theta) = 0$
- Because $p(\tau + T) = p(\tau)e^{gT}$, $p(\tau) = p(\tau)e^{gT}\omega(\theta)$
- Thus,

$$1 = e^{gT}\omega(\theta)$$
$$= e^{gT}\left(b + \frac{\beta}{1-\beta}c\theta\right)$$

- This is (13) in MP.
- This defines the relationship between θ and T.

Consider

$$1 = e^{gT}\omega(\theta) = e^{gT}\left(b + \frac{\beta}{1-\beta}c\theta\right)$$

- This implies a <u>negative</u> relationship between $\theta \& T$.
- From page 24,

$$\frac{c}{q(\theta)}p(t) = J(t,t)$$

The right-hand side is

$$J(t,t) = \int_{t}^{t+T} (1-\beta)[p(t) - p(s)\omega(\theta)]e^{-(r+\lambda)(s-t)}ds$$

Rewrite the previous equation as

$$J(t,t)$$

$$= (1-\beta)p(t) \int_{t}^{t+T} \left[1 - e^{g(s-t)}\omega(\theta)\right] e^{-(r+\lambda)(s-t)} ds$$

$$= (1-\beta)p(t) \int_{0}^{t} \left[1 - e^{gs}\omega(\theta)\right] e^{-(r+\lambda)s} ds$$

Thus,

$$\frac{c}{q(\theta)} = (1 - \beta) \int_0^T [1 - e^{gs} \omega(\theta)] e^{-(r+\lambda)s} ds$$

Consider

$$\frac{c}{(1-\beta)q(\theta)} = \int_0^T [1 - e^{gs}\omega(\theta)]e^{-(r+\lambda)s}ds$$

 The derivative of the right-hand side with respect to T is

$$[1 - e^{gT}\omega(\theta)]e^{-(r+\lambda)T} = 0$$

- This is because $1 = e^{gT}\omega(\theta)$.
- This implies that this equation is independent of T.

• Equilibrium is determined by a pair $\{\theta, T\}$ satisfying

$$1 = e^{gT} \left\{ b + \frac{\beta c}{1 - \beta} \theta \right\} = e^{gT} \omega(\theta)$$

$$\frac{c}{(1 - \beta)q(\theta)} = \int_0^T [1 - e^{gs} \omega(\theta)] e^{-(r + \lambda)s} ds$$

• The first equation implies a negative relationship, while the second implies a unique θ for each T.

- An increase in g decreases both θ and T.
- Thus, when technology is embodied, a faster technological progress makes the life of each job shorter.
- This is called creative destruction of jobs.

- Let us consider worker flows. In the basic Pissarides model, total job creation is $\theta q(\theta)u_t$ and total job destruction is $\lambda(1-u_t)$.
- With obsolescence, total job creation at t is $C_t = \theta q(\theta) u_t$
- Because jobs are destroyed exogenously at rate λ , \mathcal{C} satisfies the following differential equation:

$$\dot{C} = -\lambda C$$

• To solve it, multiply by integration factor $e^{\lambda t}$ to get $\dot{C}e^{\lambda t} + \lambda Ce^{\lambda t} = 0$

- Consider $\dot{C}e^{\lambda t} + \lambda Ce^{\lambda t} = 0$.
- Note that $(Ce^{\lambda t})' = \dot{C}e^{\lambda t} + \lambda Ce^{\lambda t}$
- Thus,

$$\left(Ce^{\lambda t}\right)'=0$$

• Integrate this from t - T to t:

$$\left[Ce^{\lambda s}\right]_{t-T}^{t} = C_t e^{\lambda t} - C_{t-T} e^{\lambda(t-T)} = 0$$

• Thus,

$$C_t = C_{t-T}e^{-\lambda T}$$

Consider

$$C_t = C_{t-T}e^{-\lambda T}$$

- This is a solution to the differential equation.
- Instead of the usual initial condition at C_0 , the initial condition is set at C_{t-T} .
- The expression tells us the number of jobs created at t-T that survived after T periods.
- Because the optimal tenure length is T, $C_{t-T}e^{-\lambda T}$ is the number of jobs destroyed because of obsolescence (not by separation shock).

Total job creation at t is

$$C_t = \theta q(\theta) u_t$$

Total job destruction at t is

$$D_t = \lambda (1 - u_t) + C_{t-T} e^{-\lambda T}$$

In any steady state, two flows must be the same:

$$\theta q(\theta)u = \lambda(1-u) + \theta q(\theta)ue^{-\lambda T}$$

Solve it to obtain

$$u = \frac{\lambda}{\lambda + [1 - e^{-\lambda T}]\theta q(\theta)}$$

Consider

$$u = \frac{\lambda}{\lambda + [1 - e^{-\lambda T}]\theta q(\theta)}$$

- We have shown that an increase in g decreases both θ and T.
- Because $\left[1 e^{-\lambda T}\right]\theta q(\theta)$ is increasing in both θ and T, an increase in g decreases u.
- Thus, <u>embodied technological progress increases</u> <u>unemployment</u>.

• Equilibrium is determined by a set of $\{\theta, T, u\}$ satisfying

$$1 = e^{gT} \left\{ b + \frac{\beta c}{1 - \beta} \theta \right\} = e^{gT} \omega(\theta)$$

$$\frac{c}{q(\theta)} = (1 - \beta) \int_0^T [1 - e^{gs} \omega(\theta)] e^{-(r + \lambda)s} ds$$

$$u = \frac{\lambda}{\lambda + [1 - e^{-\lambda T}] \theta q(\theta)}$$

 The second equation is still too complicated as it includes integration.

Let us simplify the second equation.

$$\frac{c}{(1-\beta)q(\theta)} = \int_0^T [1 - e^{gs}\omega(\theta)]e^{-(r+\lambda)s}ds$$

$$= \int_0^T e^{-(r+\lambda)s}ds - \omega(\theta) \int_0^T e^{-(r-g+\lambda)s}ds$$

$$= \left[-\frac{1}{r+\lambda}e^{-(r+\lambda)s} \right]_0^T$$

$$-\omega(\theta) \left[-\frac{1}{r-g+\lambda}e^{-(r-g+\lambda)s} \right]_0^T$$

• Thus, we obtain

$$\frac{c}{(1-\beta)q(\theta)} = \frac{1}{r+\lambda} \left[1 - e^{-(r+\lambda)T} \right]$$
$$-\frac{\omega(\theta)}{r-g+\lambda} \left[1 - e^{-(r-g+\lambda)T} \right]$$

This equation does not contain integration.

• Equilibrium is determined by a set of $\{\theta, T, u\}$ satisfying

$$1 = e^{gT} \left\{ b + \frac{\beta c}{1 - \beta} \theta \right\} = e^{gT} \omega(\theta)$$

$$\frac{c}{(1 - \beta)q(\theta)} = \frac{1}{r + \lambda} \left[1 - e^{-(r + \lambda)T} \right]$$

$$-\frac{\omega(\theta)}{r - g + \lambda} \left[1 - e^{-(r - g + \lambda)T} \right]$$

$$u = \frac{\lambda}{\lambda + \left[1 - e^{-\lambda T} \right] \theta q(\theta)}$$

Further Readings

- Chapter 3 in Pissarides (2000).
- Mortensen, Dale T., and Christopher A. Pissarides. "Technological progress, job creation, and job destruction." *Review of Economic dynamics* (1998) 733-753.

Reading Assignment

- Acemoglu. "Good Jobs versus Bad Jobs." *Journal of Labor Economics*, 2001.
- Downloadable from UNCT.
- Read Section I (Introduction), and Section II (The Basic Model).
- Due is on 6/23.
- 6/23 class will focus on this paper.