Lecture 5

Pissarides, Equilibrium Unemployment Theory
1-4: Wage Determination
5/19

Goals

- Today, we want to fully understand section 1-4 in Pissarides book.
 - As always, I will assume that you read this section.
- We have two specific goals:
 - We want to understand Nash bargaining, which is a powerful device for modeling how prices are determined in markets with search frictions.
 - We will discuss strategic foundations of the Nash solution.

Nash Bargaining

Pricing in a Frictional Market

Pricing in a Frictional Market

- We <u>cannot</u> use the competitive price mechanism because it requires a perfectly competitive market, in which there is an infinity of buyers and sellers in the same place at the same time.
- We need bargaining theory, which is part of game theory.
 - Game theory is a science of strategic interactions among individuals.

Bargaining Problem

- Consider a situation in which two individuals (player A and B) bargain over their shares of a pie of size (normalized to) <u>one</u>.
- A bargaining problem is a pair (S, d) such that
 - S is the set of all utility pairs (s_A, s_B) that correspond to agreement.
 - d is the utility pair (d_A, d_B) that corresponds to disagreement.
- A **bargaining solution** is <u>a function that maps a bargaining problem to a unique allocation</u>.

The Nash Bargaining Solution

 The Nash Bargaining Solution the unique pair of utilities that solves:

$$\underset{s_A \ge d_A, s_B \ge d_B}{\operatorname{argmax}} (s_A - d_A)(s_B - d_B)$$

- argmax *X* means the <u>argument</u> that maximizes *X*.
- $(s_A d_A)(s_B d_B)$ is called the **Nash product**.
- (s_A, s_B) denote utilities from agreement.
- (d_A, d_B) denote utilities from disagreement.
- It is derived from four axioms (i.e., assumptions).

The Nash Bargaining Solution

- $d = (d_A, d_B)$ is referred to as the **threat point**.
 - Threat point must be smaller than the size of the surplus to be divided. Otherwise, there is no need to start a negotiation in the first place.
- $s_A d_A$ is referred to as Player A's <u>net</u> surplus, while s_A is the <u>gross</u> surplus.
 - For example, consider two firms, A and B, dividing 100 yen from a joint project. If firm A has an opportunity to earn 60 yen ($d_A = 60$) without the project, then A is not happy about $s_A = 50$.
- Thus, d matters a lot.

Nash's Theorem

- Nash assumed that a bargaining situation satisfies the following four axioms (i.e., assumptions):
 - Axiom I: Order-preserving linear transformations of u to v such that v=au+b (a and b are parameters) do not change the solution
 - Axiom II (Symmetry): If $d_A = d_B$, then $s_A = s_B$.
 - Axiom III (Independence of Irrelevant Alternatives): If (S,d) and (T,d) are bargaining problems with $S \subset T$ and the solution to (T,d) is an element of S, then the two bargaining problems lead to the same bargaining solution.
 - Axiom IV (Pareto efficiency): If $s \in S$, $t \in S$, and $t_A > s_A$ and $t_B > s_B$. Then $s = (s_A, s_B)$ is not a bargaining solution.
- Theorem: The Nash Bargaining Solution is the unique solution satisfying the four axioms.
 - Do not worry about understanding the meaning of each axiom.
 - It is sufficient to know that the Nash bargaining solution has some foundation.

- Player A and player B bargain over 1 unit of a pie: $s_A + s_B = 1$
- Then the (symmetric) Nash bargaining problem is $\max_{s_A}(s_A-d_A)(1-s_A-d_B)$
- The first-order condition is

$$1 - s_A - d_B - (s_A - d_A) = 0$$

• Solve it for S_A to obtain

$$s_A = \frac{1 + d_A - d_B}{2}$$

• Find the condition under which $s_A > s_B$ holds.

It is easy to show that

$$s_A > s_B \Leftrightarrow \frac{1 + d_A - d_B}{2} > 1 - \frac{1 + d_A - d_B}{2}$$

Arrange terms to obtain

$$s_A > s_B \Leftrightarrow d_A > d_B$$

- Thus, the threat point plays a central role in determining the bargaining outcome.
- Evidently, when $d_A=d_B$, we obtain $s_A=s_B=\frac{1}{2}$.

Asymmetric Nash Bargaining

- For any $\beta \in (0,1)$, consider: $\max_{s_A \geq d_A, s_B \geq d_B} (s_A d_A)^{\beta} (s_B d_B)^{1-\beta}$
- We refer to the problem as the asymmetric (or, generalized) Nash bargaining.
- This solution satisfies axioms I, III, and IV.
- Because the real-world negotiations are not necessarily symmetric, the asymmetric Nash bargaining is employed in many applications.

• Player A and player B bargain over 1 unit of a pie: $s_A + s_B = 1$

• The asymmetric Nash bargaining problem is
$$\max_{s_A} (s_A - d_A)^{\beta} (1 - s_A - d_B)^{1-\beta}$$

• The first-order condition is

$$\beta (s_A - d_A)^{\beta - 1} (1 - s_A - d_B)^{1 - \beta} - (s_A - d_A)^{\beta} (1 - \beta) (1 - s_A - d_B)^{-\beta} = 0$$

Arrange terms to obtain

$$\beta(1 - s_A - d_B) = (1 - \beta)(s_A - d_A)$$

• Solve it for S_A as

$$s_A = \beta (1 - d_B) + (1 - \beta) d_A$$

• When $d_A = d_B = 0$, we obtain

$$\begin{aligned}
 s_A &= \beta \\
 s_B &= 1 - \beta
 \end{aligned}$$

- Thus, an increase in β alters player A's share of a pie in favor of him/her even in the absence of d.
 - In this sense, β is referred to as player A's **exogenous** bargaining power. This one is <u>exogenous</u> because it is artificially imposed to alter the original Nash solution.
 - Note that A's threat d_A can also be interpreted as A's bargaining power. This one is **endogenous**.

Consider once again

$$s_A = \beta (1 - d_B) + (1 - \beta) d_A$$

We can rewrite it as

$$s_A - d_A = \beta(1 - d_A - d_B)$$

- Interpretation:
 - Because $s_A + s_B = 1$, we observe that $1 d_A d_B = s_A d_A + s_B d_B$ is the sum of the net surpluses for A and B. This sum is the **total (net) surplus** to be shared.
 - This expressions states that the share of player A's surplus is β .

Strategic Foundations

Motivation

- Nash bargaining is an ingenious theory, but it is a cooperative game theory and lacks <u>strategic</u> foundations.
- We wish to describe the details of how people interact with each other, using non-cooperative game theory, which is (once again) pioneered by the same genius, John Nash.
- We shall then verify that the Nash solution can be constructed by an appropriately designed strategic environment.

Take-it-or-leave-it offer

- Consider the bargaining problem.
- If player A has the right to make an offer and player B has no right to make a counteroffer, then this offer is a take-it-or-leave-it offer. (e.g., vending machines)
- Any offer must be acceptable, so it must be that $s_B \geq d_B$
- Because A has no incentive to give anything to B, the offer must make B indifferent between "accept" and "reject". Thus,

$$s_B = d_B$$

• Thus, the equilibrium outcome is $s = (1 - d_B, d_B)$.

Nash's Demand Game

- Suppose that player A can make a take-it-or-leave-it offer with probability ½ and B can make an offer with probability ½. There is no counter offer.
- A's offer must make B indifferent between "accept" and "reject". Thus, $s_B = d_B \iff s_A = 1 d_B$.
- B's offer must make A indifferent. Thus, $s_A=d_A$.
- The expected surplus for A is

$$\frac{1}{2}(1-d_B) + \frac{1}{2}d_A = \frac{1+d_A-d_B}{2}$$

• This corresponds to the Nash solution on page 10.

Nash's Demand Game

- Suppose that player A can make a take-it-or-leave-it offer with probability β and B can make an offer with probability 1β . There is no counter offer.
 - A's offer must make B indifferent between "accept" and "reject". Thus, $s_B=d_B \Leftrightarrow s_A=1-d_B$.
 - B's offer must make A indifferent. Thus, $s_A = d_A$.
- The expected surplus for A is

$$\beta(1-d_B)+(1-\beta)d_A$$

- This is the Nash bargaining outcome on page 15.
- This game is called the Nash demand game.

Rubinstein's (1982) Alternating Offer Bargaining Game

- In period 0, player A
 makes the first offer,
 and player B chooses to
 accept or reject.
 - If accept, the game ends.
 - If reject, the game continues.
- In period 1, player B
 makes a counteroffer,
 and player A chooses to
 accept or reject.

- Rubinstein (1982) proved that there is a <u>unique</u> subgame perfect equilibrium (SPE) for this game.
- SPE satisfies:
 - No delay: Whenever a player makes an offer, his/her offer is immediately accepted by the other player.
 - Stationarity: Whenever a player makes an offer, he/she makes the same offer.

- $x = (x_A, x_B)$ is A's offer.
- $y = (y_A, y_B)$ is B's offer.
- δ_A < 1: Discount factor for A.
- $\delta_B < 1$: Discount factor for B.
- A's offer makes B indifferent between "accept" and "reject".
- B's offer makes A indifferent between "accept" and "reject".

- A's offer (x_A, x_B) must make B indifferent between "accept" and "reject".
- From B's point of view,
 - The value of "accept" = x_B
 - The value of "reject" = the value of making a counteroffer (y_A, y_B) , which will be accepted = $\delta_B y_B$
- Thus,

$$x_B = \delta_B y_B$$

- B's offer (y_A, y_B) must make A indifferent between "accept" and "reject".
- From A's point of view,
 - The value of "accept" = y_A
 - The value of "reject" = the value of making a counteroffer (x_A, x_B) , which will be accepted = $\delta_A x_A$
- Thus,

$$y_A = \delta_A x_A$$

SPE is a solution to

$$x_B = \delta_B y_B$$

$$y_A = \delta_A x_A$$

$$x_A + x_B = 1$$

$$y_A + y_B = 1$$

Find the solution.

Let us reduce the number of equations:

$$x_B = \delta_B y_B = \delta_B (1 - y_A) = \delta_B (1 - \delta_A x_A)$$

$$y_A = \delta_A x_A$$

$$x_A + x_B = 1$$

$$y_A + y_B = 1$$

• Thus, we obtain

$$1 - x_A = \delta_B (1 - \delta_A x_A)$$

• Solve it for x_A as

$$x_A = \frac{1 - \delta_B}{1 - \delta_A \delta_B}$$

• Thus, x_B is

$$x_B = 1 - \frac{1 - \delta_B}{1 - \delta_A \delta_B}$$

• When $\delta_A = \delta_B = \delta$, we obtain

$$x_A = \frac{1 - \delta}{1 - \delta^2} = \frac{1}{1 + \delta} > \frac{1}{2} > x_B$$

- This occurs because player A happens to be the first mover in this game.
- This result is referred to as the first-mover advantage.

Removing the First-Mover Advantage

- In many applications, it is inappropriate (or impossible) to specify who makes the first move.
- One way to deal with this issue is to consider a continuous-time environment.
 - Length of each bargaining round is Δ . The first-mover advantage should disappear as $\Delta \to 0$.
- Then the discount factor is $\delta^{\Delta} < 1$. Then, $x_A = \frac{1}{1 + \delta^{\Delta}}$
- Evidently, $\lim_{\Delta \to 0} x_A = 1/2$.

Random Proposer Model

- To neutralize the first-mover advantage <u>even in a discrete-time environment</u>, suppose that at each node of the game, player A makes an offer with probability π .
- SPE is a solution to

$$x_{B} = \delta\{(1 - \pi)y_{B} + \pi x_{B}\}$$

$$y_{A} = \delta\{\pi x_{A} + (1 - \pi)y_{A}\}$$

$$x_{A} + x_{B} = 1$$

$$y_{A} + y_{B} = 1$$

This extends expressions on page 26.

Random Proposer Model

Consider

$$x_{B} = \delta\{(1 - \pi)y_{B} + \pi x_{B}\}$$

$$y_{A} = \delta\{\pi x_{A} + (1 - \pi)y_{A}\}$$

$$x_{A} + x_{B} = 1$$

$$y_{A} + y_{B} = 1$$

After several lines of calculation, we obtain

$$x_A = 1 - \delta(1 - \pi)$$

$$x_B = \delta(1 - \pi)$$

$$y_A = \delta\pi$$

$$y_B = 1 - \delta\pi$$

Random Proposer Model

• Because A makes an offer with probability π to get $1 - \delta(1 - \pi)$ and accepts B's offer with probability $1 - \pi$ to get $\delta \pi$, the expected payoff for A is

$$s_A = \pi \times [1 - \delta(1 - \pi)] + (1 - \pi) \times \delta\pi = \pi$$

- Similarly, $s_B = \pi \times \delta(1-\pi) + (1-\pi) \times (1-\delta\pi) = 1-\pi$
- This corresponds to the asymmetric Nash bargaining solution for $d_A=d_B=0$ on page 14 if we replace π with β .
- Thus, the exogenous bargaining power in the Nash bargaining can be interpreted as the likelihood of making offers.

Wage Determination

Brief Summary of the Model

- We derived (1.6), $rV = -pc + q(\theta)(I V)$
- We also derived

$$rJ = p - w + \lambda(V - J)$$

- With free entry (V = 0), this implies (1.8).
- We derived (1.10),

$$rU = z + \theta q(\theta)(W - U)$$

We also derived (1.11),

$$rW = w + \lambda(U - W)$$

Understanding (1.16)

- We are now ready to study the Nash wage bargaining problem.
- Consider a pair of an employee and a firm instead of players A and B.
- The set of agreement payoffs is (W, J).
- The set of disagreement payoffs is (U, V):
 - Disagreement of a wage negotiation means unemployment for the worker and vacant for the firm.

Understanding (1.16)

The Nash wage bargaining problem is given

$$\max_{w_i} (W_i - U)^{\beta} (J_i - V)^{1-\beta}$$

- This is (1.16) in Pissarides.
 - Subscript i reflects the fact that we are looking at <u>one</u> particular pair from an infinity of pairs in the economy.
 - There is no subscript *i* for *U* and *V* because the values of unemployment and vacancies are common for all workers and jobs.
 - More importantly, each bargaining pair cannot influence the threat point (U, V). This is outside of bargaining.

Let us now solve the problem:

$$\max_{w_i} (W_i - U)^{\beta} (J_i - V)^{1-\beta}$$

- Because each bargaining pair cannot influence the threat point (U, V), the pair takes U and V as given.
- Remember that the Bellman equations satisfy

$$rW_i = w_i + \lambda(U - W_i)$$

$$rJ_i = p - w_i + \lambda(V - J_i)$$

• Let us construct $W_i - U$ and $J_i - V$ in terms of w_i and parameters alone.

- First, consider $rW_i = w_i + \lambda(U W_i)$.
- Arrange terms to obtain $(r + \lambda)W_i = w_i + \lambda U$.
- Subtract $(r + \lambda)U$ from both sides to write $(r + \lambda)(W_i U) = w_i rU$
- Similarly, from $rJ_i=p-w_i+\lambda(V-J_i)$, we obtain $(r+\lambda)(J_i-V)=p-w_i-rV$
- Thus, we can rewrite the Nash product as

$$\left(\frac{w_i - rU}{r + \lambda}\right)^{\beta} \left(\frac{p - w_i - rV}{r + \lambda}\right)^{1-\beta}$$

Consider the problem:

$$\max_{w_i} \left(\frac{w_i - rU}{r + \lambda} \right)^{\beta} \left(\frac{p - w_i - rV}{r + \lambda} \right)^{1 - \beta}$$

- This problem is quite intuitive:
 - For the worker, w_i is the payoff, rU is the reservation wage, so $w_i rU = w_i w_R$ is the net surplus from bargaining. This surplus lasts forever with separation rate λ . Thus, the surplus must be discounted by $r + \lambda$.

 Drop the constant terms from the problem and consider:

$$\max_{w_i} (w_i - rU)^{\beta} (p - w_i - rV)^{1-\beta}$$

• The first-order condition is

$$\beta(w_i - rU)^{\beta - 1}(p - w_i - rV)^{1 - \beta} - (w_i - rU)^{\beta}(1 - \beta)(p - w_i - rV)^{-\beta} = 0$$

Simplify this condition as

$$\beta(p - w_i - rV) = (1 - \beta)(w_i - rU)$$

Consider

$$\beta(p - w_i - rV) = (1 - \beta)(w_i - rU)$$

- By arranging terms, we obtain (1.18).
- To obtain (1.17), remember

$$(r + \lambda)(W_i - U) = w_i - rU$$

$$(r + \lambda)(J_i - V) = p - w_i - rV$$

Substitute them back into the above to obtain

$$\beta(J_i - V) = (1 - \beta)(W_i - U)$$

Arrange terms to obtain (1.17) as

$$W_i - U = \beta(J_i + W_i - V - U)$$

• Consider (1.17):

$$W_i - U = \beta(J_i + W_i - V - U)$$

- It states that the share of worker's surplus is β .
- Let us go back to the previous expression:

$$\beta(J_i - V) = (1 - \beta)(W_i - U)$$

• With free entry of jobs (V = 0), this reduces to

$$W_i - U = \frac{\beta}{1 - \beta} J_i = \frac{\beta}{1 - \beta} \frac{pc}{q(\theta)}$$

• $J_i = pc/q(\theta)$ is from (1.7).

Derivation of (1.20)

Consider once again

$$\beta(p - w_i - rV) = (1 - \beta)(w_i - rU)$$

• Solve it for w_i and impose the free entry condition (V = 0) to obtain (1.18):

$$w_i = \beta p + (1 - \beta)rU \longleftarrow$$

- (1.10) implies $rU = z + \theta q(\theta)(W_i U)$.
- Thus, substitute it into the other to get $w_i = \beta p + (1 \beta)[z + \theta q(\theta)(W_i U)]$

Derivation of (1.20)

• We are almost there. Consider $w_i = \beta p + (1 - \beta)[z + \theta q(\theta)(W_i - U)]$

• From page 26, we know

$$W_i - U = \frac{\beta}{1 - \beta} \frac{pc}{q(\theta)}$$

- Thus, we finally obtain the wage equation as $w_i = \beta p + (1 \beta)z + \beta pc\theta = w$
- Because the terms on the right-hand side are independent of i, we no longer need it.
- This is (1.20).

Wage Equation

- The wage equation: $w = \beta p + (1 - \beta)z + \beta pc\theta$
- This is linear in θ .
- The interpretation of the wage equation is found on page 17 in Pissarides.

Further Readings

- Binmore, Rubinstein, and Wolinsky. "The Nash Bargaining Solution in Economic Modelling." Rand Journal of Economics, 1986.
- Osborne & Rubinstein, Bargaining and Markets, 1990.
- Muthoo, Bargaining Theory with Applications, 1999.

Reading Assignment

Reading Assignment

- Christopher A.
 Pissarides, Equilibrium
 Unemployment Theory,
 second edition, MIT
 Press, 2000.
- Read Section 1.5
 (Steady-State Equilibrium).
- 5/26 Class will focus on this section.

