Lecture 4

Pissarides, Equilibrium Unemployment Theory

1-3: Workers

5/12

Goals

- Today, we want to fully understand section 1-3 in Pissarides book.
 - I will assume that you read this section.
 - The contents are parallel to those in section 1-2.
- There are additional issues that help you dig deeper in this section:
 - Reservation wage rate.
 - Out-of-steady-state equations in section 1.7.
 - Duration of unemployment.
 - Newton's method.

Worker Flows and Bellman Equations

Worker Flows

We can summarize worker flows below.

 The Bellman equations for workers must be consistent with worker flows.

Derivation of (1.10)

• Equation (1.10) in discrete time is expressed as $U = z\delta t + \frac{1}{1 + r\delta t} \{\theta q(\theta)\delta tW + [1 - \theta q(\theta)\delta t]U\}$

- Interpretation:
 - If you are unemployed (= job seeker), then your current income during an interval δt is $z\delta t$. For example, this is unemployment insurance from the government. This can also include utility from leisure.
 - W is the present value of employment, explained later.
 - Because the job-finding probability is $\theta q(\theta) \delta t$, with probability $\theta q(\theta) \delta t$ you become employed, in which case you receive W instead of U.

Derivation of (1.10)

Consider:

$$U = z\delta t + \frac{1}{1 + r\delta t} \{\theta q(\theta)\delta tW + [1 - \theta q(\theta)\delta t]U\}$$

- Multiply both sides by $1 + r\delta t$ to obtain $(1 + r\delta t)U$ = $(1 + r\delta t)z\delta t + \{\theta q(\theta)\delta tW + [1 \theta q(\theta)\delta t]U\}$
- Arrange terms to obtain $r\delta t U = (1 + r\delta t)z\delta t + \theta q(\theta)\delta t(W U)$
- Divide both sides by δt to obtain $rU = (1 + r\delta t)z + \theta q(\theta)(W U)$

Derivation of (1.10)

• Finally, take the limit as $\delta t \to 0$ to obtain the Bellman equation in continuous time as $rU = z + \theta q(\theta)(W - U)$

• This is (1.10).

Derivation of (1.11)

• Equation (1.11) in discrete time is expressed as

$$W = w\delta t + \frac{1}{1 + r\delta t} \{\lambda \delta t U + (1 - \lambda \delta t)W\}$$

- Interpretation:
 - If you are employed, then your current income during an interval δt is $w\delta t$. Today we do not worry about how w is determined. That will be the topic for the next week.
 - *U* is the present value of unemployment.
 - Because the separation probability is $\lambda \delta t$, with probability $\lambda \delta t$ you lose your job for a purely exogenous reason and receive U instead of W.

Derivation of (1.11)

Consider:

$$W = w\delta t + \frac{1}{1 + r\delta t} \{\lambda \delta t U + (1 - \lambda \delta t)W\}$$

• Multiply both sides by $1 + r\delta t$ to obtain

$$(1 + r\delta t)W$$

= $(1 + r\delta t)w\delta t + {\lambda \delta t U + (1 - \lambda \delta t)W}$

• Arrange terms to obtain $r\delta tW = (1 + r\delta t)w\delta t + \lambda \delta t(U - W)$

• Divide both sides by δt to obtain

$$rW = (1 + r\delta t)w + \lambda(U - W)$$

Derivation of (1.11)

• Finally, take the limit as $\delta t \to 0$ to obtain the Bellman equation in continuous time as

$$rW = w + \lambda(U - W)$$

• This is (1.11).

Reservation Wage

Reservation Wage

- You want to accept any wage rate w satisfying $W(w) \ge U$
- There must be a number w_R that satisfies $W(w_R) = U$
- At w_R , you are exactly indifferent between accepting and rejecting the offer.
- This wage rate is referred to as the **reservation** wage rate. You accept any wage rate w_R satisfying $w \ge w_R$

Reservation Wage Rate

- As a function of w, W(w) is given by $rW(w) = w + \lambda [U W(w)]$
- At the reservation wage rate w_R , we have $rW(w_R) = w_R + \lambda [U W(w_R)]$
- Substitute the definition $W(w_R) = U$ into the above to eliminate $W(w_R)$ to obtain $rU = w_R$
- Thus, rU can be interpreted as the reservation wage rate. See page 14 in Pissarides.

Out-of-Steady-State Bellman Equations

Derivation of (1.33)

• Consider (1.6), which is $rV = -pc + q(\theta)(I - V)$

- Now consider (1.33), which is $rV = -pc + q(\theta)(J V) + \dot{V}$
- The purpose here is to derive (1.33).
- Let us introduce V(t) as a <u>function of time</u> to consider the possibility that V itself grows over time.

Derivation of (1.33)

Consider:

$$V(t) = -pc\delta t + \frac{1}{1 + r\delta t} \{ q(\theta)\delta t J(t + \delta t) + [1 - q(\theta)\delta t]V(t + \delta t) \}$$

• Multiply both sides by $1 + r\delta t$ to obtain $(1 + r\delta t)V(t)$

$$= -(1 + r\delta t)pc\delta t + \{q(\theta)\delta tJ(t + \delta t) + [1 - q(\theta)\delta t]V(t + \delta t)\}$$

Arrange terms to obtain

$$r\delta t V(t) = -(1 + r\delta t)pc\delta t + q(\theta)\delta t [J(t + \delta t) - V(t + \delta t)] + V(t + \delta t) - V(t)$$

• Divide both sides by δt to obtain

$$rV(t) = -(1 + r\delta t)pc + q(\theta)[J(t + \delta t) - V(t + \delta t)] + \frac{V(t + \delta t) - V(t)}{\delta t}$$

Derivation of (1.33)

Note that

$$\lim_{\delta t \to \infty} \frac{V(t + \delta t) - V(t)}{\delta t} = \frac{dV(t)}{dt} = \dot{V}$$

• Finally, take the limit as $\delta t \to 0$ to obtain the Bellman equation in continuous time as

$$rV = -pc + q(\theta)(J - V) + \dot{V}$$

- This is (1.33).
- In any steady state, we can impose $\dot{V}=0$ and immediately obtain (1.6).

Review Questions

- a) Derive (1.34).
- b) Derive (1.37).
- c) Derive (1.38).

Duration of Unemployment

- Suppose that the monthly job finding rate is x. Then, the average duration of unemployment is 1/x months.
- Proof)
- The probability that you find a job in the first month (t = 1) is x.
- The probability that you find a job in t=2 is (1-x)x
- The probability that you find a job in t = 3 is $[1 x (1 x)x]x = (1 x)^2x$

• The probability that you find a job in t=4 is

$$[1 - x - (1 - x)x - (1 - x)^{2}x]x$$

$$= (1 - x)[1 - x - (1 - x)x]x$$

$$= (1 - x)^{3}x$$

- Thus, the probability that you find a job in t=n is $(1-x)^{n-1}x$
- The average (i.e., expected) duration is

$$D = x \times 1 + (1 - x)x \times 2 + (1 - x)^{2}x \times 3 + (1 - x)^{3}x \times 4 + \dots + (1 - x)^{n-1}x \times n$$

Consider

$$D = x \times 1 + (1 - x)x \times 2 + (1 - x)^{2}x \times 3 + (1 - x)^{3}x \times 4 + \dots + (1 - x)^{n-1}x \times n$$

• Then, $D - (1 - x)D = x + (1 - x)x + (1 - x)^{2}x + (1 - x)^{3}x + \dots - (1 - x)^{n}x \times n$

• Or,

$$D$$

 $= 1 + (1 - x) + (1 - x)^2 + \dots + (1 - x)^{n-1}$
 $- (1 - x)^n \times n$

• Thus, $D - (1 - x)D = 1 - (1 - x)^{n}$ $-(1 - x)^{n} \times n + (1 - x)^{n+1} \times n$ $= 1 - (1 - x)^{n} - (1 - x)^{n}xn$

Or,

$$D = \frac{1}{x} - \frac{(1-x)^n}{x} - (1-x)^n n$$

• Take the limit as $n \to \infty$ to obtain

$$D = \frac{1}{x} - \lim_{n \to \infty} (1 - x)^n n$$

Consider

$$\lim_{n\to\infty} (1-x)^n n = \lim_{n\to\infty} \frac{n}{(1-x)^{-n}}$$

• l'Hôpital's rule implies

$$\lim_{n \to \infty} \frac{n}{(1-x)^{-n}} = \lim_{n \to \infty} \frac{1}{-(1-x)^{-n} \log(1-x)} = 0$$

• Thus,

$$D = \frac{1}{x}$$

• QED.

Newton's Method (Maxima)

- A useful command for solving equations is mnewton(). This command finds a solution by the method of successive approximation, the algorithm discovered by Newton.
- To execute the command, we need the initial value (= our guess) for the solution.
- Unlike the solve() command, mnewton() command will give us <u>one solution</u>.
 - solve() command can be used only for linear or quadratic equations.

Newton's Method (Maxima)

- To use mnewton() command, we need to load it first.
- "\$" at the and of the command is used when you do not need to see the outcome of the line.
- [1,1] specifies the initial guess.
- As you can see, the output is a list inside a list.

```
load("mnewton")$
mnewton([y=0.5·x+1,y=0.5·x^2],[x,y],[1,1]);
[[x=2.0,y=2.0]]
```

Newton's Method

- To understand the basic idea of the Newton method, let us construct the algorithm.
- Let x^* be the solution to f(x) = 0.
- Suppose that we have an initial guess about the solution, x_n . mnewton() command need it, too.
- Apply <u>linear approximation</u> on f(x), evaluated at x_n , to obtain:

$$f(x) \approx f(x_n) + f'(x_n)(x - x_n) \equiv g(x)$$

• We can easily solve the linear equation g(x) = 0.

Newton's Method

• The solution to the linear equation g(x) = 0 is

$$x = x_n - \frac{\dot{f}(x_n)}{f'(x_n)}$$

• This is the "updated guess" x_{n+1} . We then consider the sequence generated by:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- Note that this is a (nonlinear) difference equation!
- As $n \to \infty$, $x_n \to x^*$. A computer needs less than a second to find x^* .

Reading Assignment

Reading Assignment

- Christopher A.
 Pissarides, Equilibrium
 Unemployment Theory,
 second edition, MIT
 Press, 2000.
- Read Section 1.4 (Wage Determination).
- Due is 5/19.
- 5/19 Class will focus on this section.

