Labor Economics B

Lecture 1

Introduction to advanced labor economics 4/14, 2022

Official Course Names

- 「労働経済 B」 for graduate program.
- 「労働経済特論」 for undergraduate program.
- Labor Economics A for G30 and NUPACE programs.

About Me

- Noritaka Kudoh, Ph.D.
- Professor of Economics at Nagoya University
- Macroeconomist
 - As a result, I will focus on "macro-labor economics".
- Website:

https://sites.google.com/site/noritakakudoh/home

Brief Description

Our Goal for this Semester

- Replication is the key to any scientific activity.
- Our goal is to <u>replicate</u> theoretical (= paper-pencil type) and quantitative (= computer generated) results in professional articles in the field of macrolabor economics.
- By the end of this semester, you should be able to catch up with the research frontier in the field of macro-labor economics.
- Hopefully, you can find your research topic.

Goals Ahead

- (Usual) requirement for MA thesis
 - Fully understand and replicate some existing results.
- Requirement for Ph.D. dissertation
 - Introduce **innovative** assumptions or methods to some existing analyses to find something new.
 - Complete 3 papers, one of which must be published.
- This course is designed for second-year graduate students.
 - All serious students are welcome.

Relationship with Labor Econ A

- In Labor Economics A, which I offered last year, I focused on (short-run) business cycles in the labor market:
 - Interested in time-series facts on the labor market.
 - Discrete-time models for simulation.
- In Labor Economics B, I will focus on long-run issues in the labor market:
 - Interested in technological progress, growth, income distribution, and wage inequality.
 - Continuous-time models for computing steady-states.

Detailed Description

Demand-Supply (Walrasian, or Frictionless) Paradigm

Average Monthly Worker Flows: Japan 1980-2009

Facts

- Unemployment exists.
- People change employment status over time.

- Traditional theory cannot capture these facts.
- We need a new theory (framework, paradigm).

Search-Matching Model

- We call the standard demand-supply paradigm as the Walrasian model.
 - Any individual can meet everyone instantly.
- We start with the observation that <u>it takes time to</u> <u>meet someone</u>.
 - It takes even longer to meet the "right person" for you!
- We study markets with search-matching frictions.

Search-Matching Frictions

DMP Model

- Thanks to the contributions by Nobel-winning professors, Peter Diamond, Dale Mortensen, and Christopher Pissarides, an extremely tractable framework is available.
 - The paradigm is now called the DMP model.
 - https://www.nobelprize.org/prizes/economicsciences/2010/summary/
- Nicely summarized in Pissarides (2000).

Primary Reading

- Pissarides, Equilibrium
 Unemployment Theory,
 MIT Press, 2000.
 - Chapter 1 provides the core of macro-labor analysis.
 - Strongly recommended.
 - Chapter 1 is available from NUCT:

https://ct.nagoyau.ac.jp/x/dLy0e1

Extremely Useful Review Articles

- Rogerson, Shimer, and Wright, "Search-Theoretic Models of the Labor Market: A Survey," *Journal of Economic Literature*, 2005.
 - https://ct.nagoya-u.ac.jp/x/d6A25f
- Mortensen, "Markets with Search Frictions and the DMP Model," American Economic Review, 2011.
 - https://ct.nagoya-u.ac.jp/x/cvo3tn
- See also:

https://www.nobelprize.org/uploads/2018/06/advanced-economicsciences2010.pdf

Computer Languages

- 40 years ago, it was OK to write a paper without any computer simulation. Not any more. The old age has gone.
- It is increasing more important to develop a complicated (realistic) model and solve it using computer.
- There will be many assignments requiring computer simulation and data analysis.

Excel

• Very intuitive and useful.

Mathematica

- Very powerful math package.
- Especially useful for solving a system of nonlinear equations.
- Very expensive.

Maxima

- A close cousin of Mathematica and this one is **free**.
- This is not a clone of Mathematica, but the language is similar.
- Some assignments will require Maxima.
 - No need to install it today.

Python

- The language of the next generation.
- Available for free.
- For more about this language, please visit https://quantecon.org/
- (In the long-run, python will take care of everything I need for my courses.)

Word Processors for Economists

- (For M2 students)
- Microsoft Word is fine.
- LaTeX is currently the best environment for professional articles with (many) mathematical expressions.
- There are many LaTeX packages for free:
 - TeXshop (mac)
 - TeXworks (Win and mac)
 - Overleaf (online)

Job Search and Optimal Stopping

References

- **Section 2** of Rogerson, Shimer, and Wright, "Search-Theoretic Models of the Labor Market: A Survey," *Journal of Economic Literature*, 2005.
 - We shall refer to this as RSW.
- **Section IV** of Mortensen, "Markets with Search Frictions and the DMP Model," *American Economic Review*, 2011.

Expectations

- Suppose there are two states, g (good) and b (bad).
- State g occurs with probability p_q .
- State b occurs with probability p_b .
- Since there is no other state, $p_g + p_b = 1$.
- Your income is y_q if state g occurs.
- Your income is y_b if state b occurs.
- The expected income is

$$\mathbb{E}y = p_g y_g + p_b y_b$$

Expectations

- Suppose there are n states: s = 1,2,3,...,n.
- Let p(s) be the probability that state s occurs.
- Let y(s) be the income when state s.
- The expected income is $\mathbb{E}y = p(1)y(1) + p(2)y(2) + \dots + p(n)y(n)$
- Or,

$$\mathbb{E}y = \sum_{s=1}^{n} p(s)y(s)$$

Probability Distribution

- Consider a continuous state, s.
- Suppose $s \in [\underline{s}, \overline{s}]$. We say that the support is $[\underline{s}, \overline{s}]$.
- We introduce cumulative distribution function (cdf), F(s), defined on the support.
- f(s) = F'(s) is the probability density function.
- The expected income is

$$\mathbb{E}y = \int_{\underline{s}}^{\overline{s}} y(s) dF(s) = \int_{\underline{s}}^{\overline{s}} y(s) f(s) ds$$

Useful Probability Distribution Functions for Search Theory

- Uniform distribution
- Pareto distribution

Uniform Distribution

- Uniform distribution on [a, b].
- Cumulative distribution function:

$$F(w) = \frac{w - a}{b - a}$$

• Density:

$$f(w) = F'(w) = \frac{1}{b-a}$$

• If y(s) = s, the expected income is

$$\mathbb{E}w = \int_{\underline{s}}^{\overline{s}} w dF(w) = ??$$

Pareto Distribution

- Pareto distribution with shape parameter k > 1 and scale parameter a > 0 on $[a, \infty)$.
- Cumulative distribution function:

$$F(w) = 1 - \left(\frac{a}{w}\right)^k$$

• Density:

$$f(w) = F'(w) = ka^k w^{-k-1}$$

• If y(s) = s, the expected income is

$$\mathbb{E}w = \int_{\underline{s}}^{\overline{s}} w dF(w) = ??$$

Present Discounted Values

• Suppose you receive w yen every period for n+1 periods. Your lifetime income is

$$Y = w + \beta w + \beta^{2} w + \dots + \beta^{n} w = \sum_{t=0}^{n} \beta^{t} w = \frac{1 - \beta^{n+1}}{1 - \beta} w$$

• Let $n \to \infty$ to obtain

$$Y = \sum_{t=0}^{\infty} \beta^t w = \frac{w}{1 - \beta}$$

- Review:
 - Consider $S = 1 + x + x^2 + \cdots + x^n$ and xS.

Recursive Formulation

• You receive w yen every period forever:

$$Y = w + \beta w + \beta^2 w + \cdots$$

= $w + \beta \{w + \beta w + \cdots \}$
= $w + \beta Y$

Thus, we immediately obtain the same result

$$Y = \frac{w}{1+\beta}$$

The core of our theory is

$$Y = w + \beta Y$$

• We call it a **Bellman equation** (in discrete time).

Job Search in Discrete Time

• Expected lifetime income:

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^t\,x_t,$$

where

$$x_t = \begin{cases} w \text{ in state } E \\ b \text{ in state } U \end{cases}$$

- Probability that you receive a job offer is α .
- Offer w is a random variable from cdf F(w).

Job Search Problem

- Following the notations in RSW, we have $U = b + \alpha \int_0^{\overline{w}} \max\{\beta W(w), \beta U\} dF(w) + (1 \alpha)\beta U$
- *b* is the unemployment benefit.
- W(w) is the value of a contract with wage w.
- If we set $\alpha = 1$, this reduces to (2) in RSW.
- Rewrite this expression as

$$(1-\beta)U = b + \alpha\beta \int_0^{\overline{w}} \max\{W(w) - U, 0\} dF(w)$$

Optimal Stopping

- It is optimal to "stop" (and take it) if and only if W(w) > U
- Let R denote the **reservation wage rate**, defined by $W(w_R) = U$
- Then, stop if and only if

$$w > w_R$$

• Then,

$$(1 - \beta)U = b + \alpha\beta \int_{w_R}^{w} [W(w) - U]dF(w)$$

Optimal Stopping

- The value of being employed at the wage rate w is $W(w) = w + \beta \{\lambda U + (1 \lambda)W(w)\}$
- Evaluate it at w_R to obtain $W(w_R) = w_R + \beta \{ \lambda U + (1 \lambda) W(w_R) \}$
- λ is the separation rate. From the two equations, $W(w) U = W(w) W(w_R) = \frac{w w_R}{1 \beta(1 \lambda)}$
- Thus,

$$w_R = b + \frac{\alpha\beta}{1 - \beta(1 - \lambda)} \int_{w_R}^{w} [w - w_R] dF(w)$$

Optimal Stopping

Using_integration by parts, we obtain

$$\int_{W_R}^{\overline{w}} [w - w_R] dF(w) = \int_{W_R}^{\overline{w}} [1 - F(w)] dw$$

Review of integration by parts:

$$(xy)' = x'y + xy' \Longrightarrow [xy]_a^b = \int_a^b y dx + \int_a^b x dy$$

Thus,

$$w_R = b + \frac{\alpha\beta}{1 - \beta(1 - \lambda)} \int_{w_R}^{\overline{w}} [1 - F(w)] dw$$

Finding a solution

The equilibrium reservation wage rate is the solution to

$$w_R = b + \frac{\alpha\beta}{1 - \beta(1 - \lambda)} \int_{w_R}^{w} [1 - F(w)] dw$$

- If we set $\alpha=1$ and $\lambda=0$, then this reduces to (5) in RSW.
- Left-hand side is increasing.
- Right-hand side is decreasing.
- Diagram.

Comparative Statics

- An increase in b on w_R and u.
- An increase in α .
- An increase in β .
- An increase in λ .

Numerical Solution

- To obtain an explicit solution, we need to specify:
 - The functional form of *F* .
 - All parameter values.

Continuous Time

- The value of being employed at the wage rate w is $W(w) = w + \beta \{\lambda U + (1 \lambda)W(w)\}$
- In continuous time,

$$W(w) = w\Delta + \frac{1}{1 + r\Delta} \{ \lambda \Delta U + (1 - \lambda \Delta) W(w) \}$$

• Let $\Delta \to 0$ to obtain

$$rW(w) = w + \lambda [U - W(w)]$$

Continuous Time

• In discrete time, the value of job search is

$$U = b + \alpha \beta \int_0^{\overline{w}} \max\{W(w), U\} dF(w) + (1 - \alpha)\beta U$$

• In continuous time,

$$U = b\Delta + \alpha\Delta \frac{1}{1 + r\Delta} \int_0^{\overline{w}} \max\{W(w), U\} dF(w)$$
$$+ (1 - \alpha\Delta) \frac{1}{1 + r\Delta} U$$

• Let $\Delta \rightarrow 0$ to obtain

$$rU = b + \alpha \int_0^{\overline{w}} \max\{W(w) - U, 0\} dF(w)$$

Review Questions

Submission of Your Work

- All homework assignments must be obtained from and submitted to NUCT.
 - I will accept PDF files only.
- For some assignments (such as calculations), your answers must be <u>hand-written</u>.
 - Many scanner applications for iPhone/android are available for free.
 - You can also use a pen tablet such as iPad.
 - <u>I strongly suggest that you test each method to see if</u> you can create a PDF of your hand-written letter.

If you have absolutely no idea...

- Try one of the following:
- 1. My favorite is Microsoft OneNote, which is free and available under many environments.
 - I find it particularly useful on iPad with Apple Pencil.
- 2. My favorite scanner app is Scannable (by Evernote), but there are many apps.
- 3. Bring your hand-written notes to a convenience store to manually create a PDF file using a multipurpose printer there. Costly, not recommended.

Reading Assignment

Reading Material

- Christopher A.
 Pissarides, Equilibrium
 Unemployment Theory,
 second edition, MIT
 Press, 2000.
 - Kindle version available.
- Chapter 1 of the book is made available at NUCT.
 - https://ct.nagoyau.ac.jp/x/dLy0e1

Assignment

- Read Section 1.1 (Trade in the Labor Market).
- Due is 4/21.
- 4/21 Class will focus on this section.