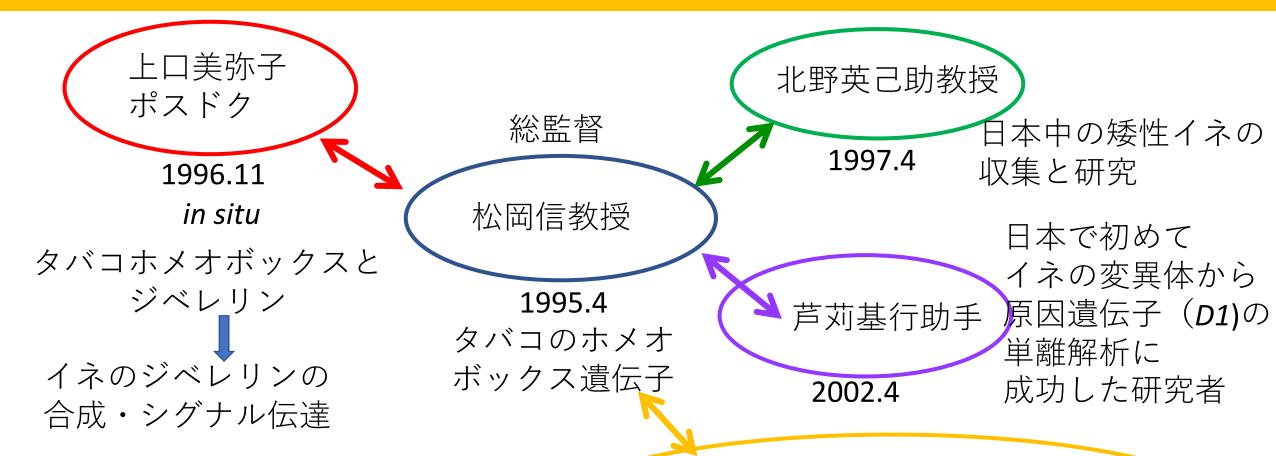
定年退職記念講演会 2023.02.17 16:05~16:55

ジベレリンの研究と出会えて

植物生産科学専攻 生物産業創出研究室 上口(田中)美弥子


gid1-1 変異体 (ジベレリン核内受容体)

上口美弥子 略歴

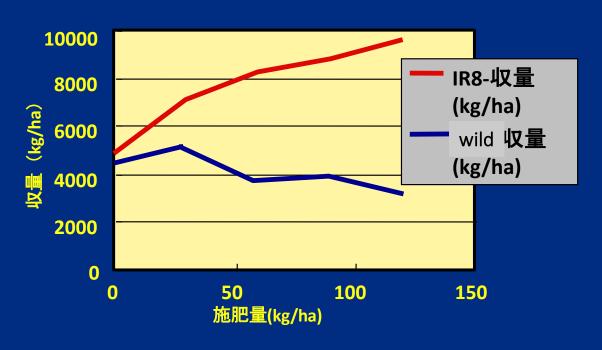
- 1976.4 京都大学農学部農芸化学科入学 卒論「タバコプロトプラストの電気融合の解析」
- 1980.4 京都大学大学院農学研究科博士前期課程農芸化学専攻
- 1982.4 **京都大学大学院農学研究科博士後期課程農芸化学専攻 発酵及び醸造学研究室** 故山田秀明先生に師事。修論、博士論文テーマ 「ビオチン(ビタミンH)の微生物生産と代謝経 路の研究」
- 1986.4 大阪府立公衆衛生研究所 食品化学課研究員
 - ビタミンB1(チアミン)の生合成/業務;食品添加物、農薬の食品中の混入の定量
 - シロイヌナズナにおけるビタミンB1合成遺伝子からの花成遺伝子ウオーキング (米田好文教授・荒木崇氏との共同研究)
- 1992.4 **名古屋大学大学院農学研究科生化学制御専攻 大学院研究生** 渡辺昭教授、森仁志教授 植物の老化に関する研究・頂芽優勢に関する研究
- 1996.11 名古屋大学生物応答研究センター(現センター前身)ポスドク (松岡教授)
 - タバコにおけるホメオボックス遺伝子とジベレリン生合成
- 2008.08 名古屋大学生物機能開発利用研究センター 農業形質保存分野 准教授
- 2020.05 名古屋大学生物機能開発利用研究センター 生物産業創出研究室 教授

名古屋大学生物機能開発利用研究センターは、 イネ研究の一大メッカとなっていった

シロイヌナズナでしかできなかった 分子生物学をイネでも行う! 国際イネゲノム塩基配列解読プロジェクト (International Rice Genome Sequencing Project, IRGSP) 1998~2005

半矮性形質により高収量を達成できる

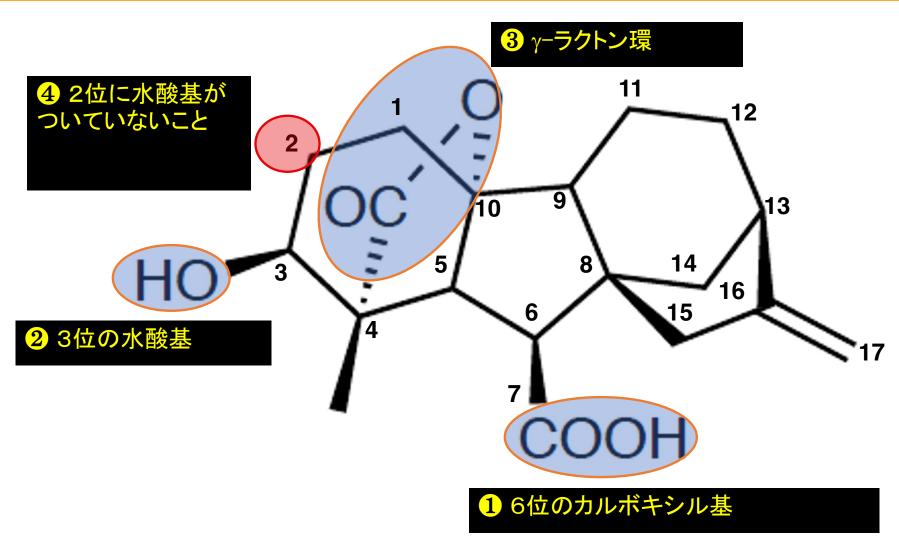
(イネのIR8は緑の革命に用いられた)



佐々木章江さん

wild IR8

施肥量と収量の関係



イネにおいては、*sd 1* が 半矮性遺伝子として利用された

吉苅基行教授SD1は、GA生合成酵素 OsGA20ox2 をコードしていた

Sasaki, A. (2002) Nature 416, 701-702.

ジベレリンの構造

上記構造は、GA₄を示している。

● ● の条件を満たしているものが活性型ジベレリン

ジベレリン(GA)は発芽、葉茎の伸長、花や果実の形成などを促進させる

応用研究との結びつき

花芽誘導

著作権の 都合により 画像を 削除しました

著作権の 都合により 画像を

削除しました

茎葉伸長

著作権の 都合により 画像を 削除しました

種子発芽

大麦アミラーゼの発現誘導は、 ビールやウイスキーの製造と 密接な関係

https://www.maff.go.jp/j/pr/aff/1905_06/spe1_05.html 2023.3.3

着果 果実の成長促進 種無し葡萄 の生産

ジベレリン研究の歴史

1926年 (大正15年) 台湾総督府農事試験場の黒沢英一により、馬鹿苗病による イネの徒長の原因が、Gibberella fujikuroi の代謝産物によると報告。

化学物質が植物に作用していることを証明

1935年

東京大学 農芸化学教室の薮田貞治郎が、この物質を馬鹿苗病菌の学名に因んでジベレリン(gibberellin)と呼ぶことを提唱。

馬鹿苗病菌が作るだけでなく、植物自身も 作っている植物ホルモンであることがわかる

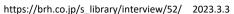
日本人が唯一命名した植物ホルモン

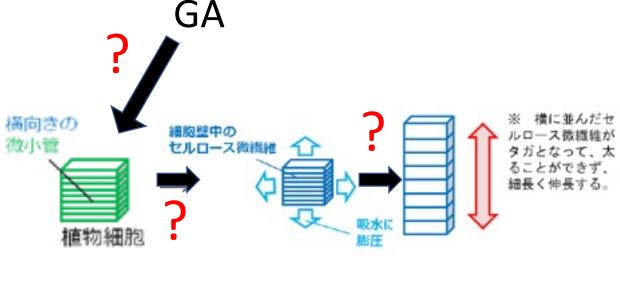
1938年

薮田貞治郎、住木論介により、ジベレリンが結晶化される。

日本農芸化学会誌第14巻に速報として発表

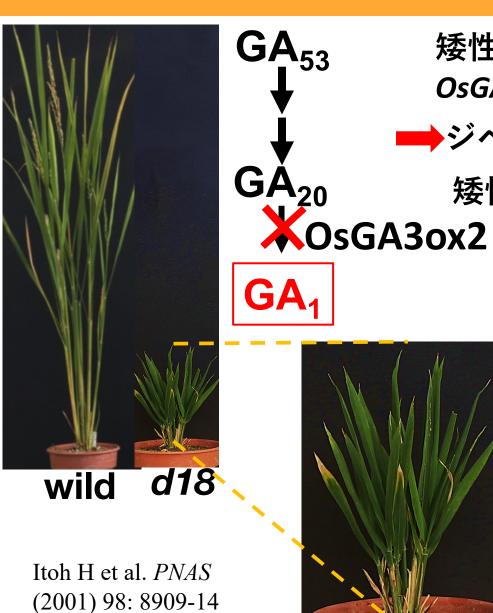
1959年


アメリカ・イギリスのグループによりジベレリンの構造が決定される。


現在、130種以上のジベレリンが報告されている。

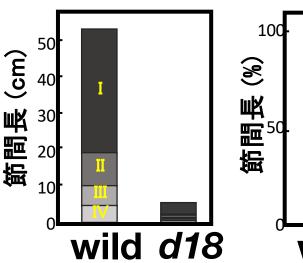
故柴山弘郎先生との出会い

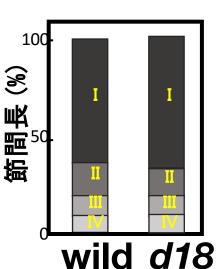
植物ホルモンのジベレリンが、微小管の配向を 調節することを介して、セルロース繊維の方向を 制御し、これにより細胞の成長方向を縦に限定 することにより、茎を細長くする



植物がジベレリンによって、どのように伸びるのか、非常に興味を抱いたイネを用いて、ジベレリンのシグナル伝達を明らかにしたいと強く思った

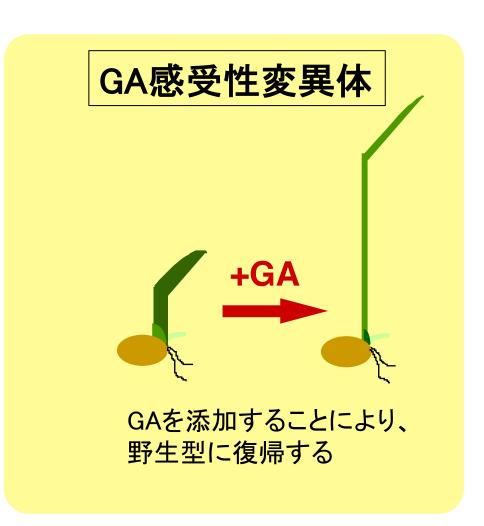
ジベレリン生合成変異体*d18* 矮性変異体の形質


矮性形質がGA₁で回復。GA₂₀では戻らない OsGA3ox2遺伝子が壊れていることが分かった


──ジベレリンの生合成が壊れた初めての極矮性変異体イネ

矮性/幅広の葉/濃緑色/葉鞘葉身比・節間長比が正常

これがジベレリン的変異形質


伊藤博紀さん

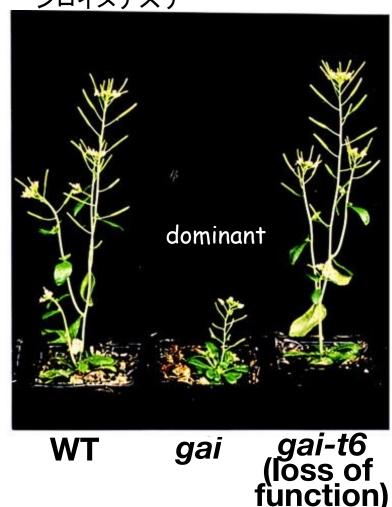
Suzuki, H. (2022) Master's thesis.

変異体スクリーニング

- ① GA関連変異体と考えられる矮性変異体をスクリーニング
- ② 幼苗に対して、活性ジベレリンを添加、無添加で育てる。

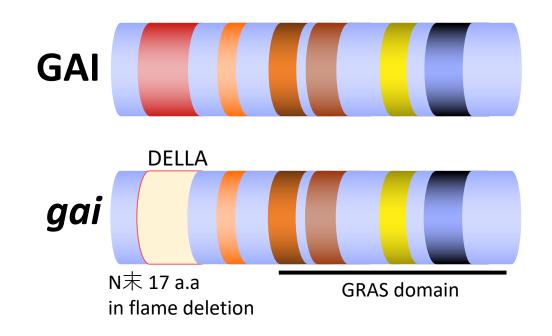
Sakamoto T. et al. Plant Physiol, 134 (2004) 1642–1653.

GA非感受性変異体



ジベレリンを添加しても、 復帰しない

GA signaling


シロイヌナズナのgai 矮性(優性)変異体

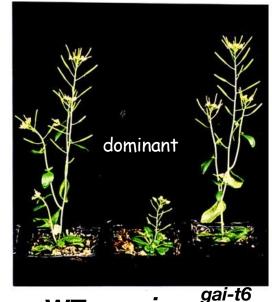
シロイヌナズナ

function)

Peng J. et al. (Nicholas P. Harberd Lab.) (1997) Genes Dev. 11, 3194-3205.

one of the GRAS (GAI, RGA, SCR) family proteins

この内、N末にDELLA domainを持つものを DELLA タンパク質という

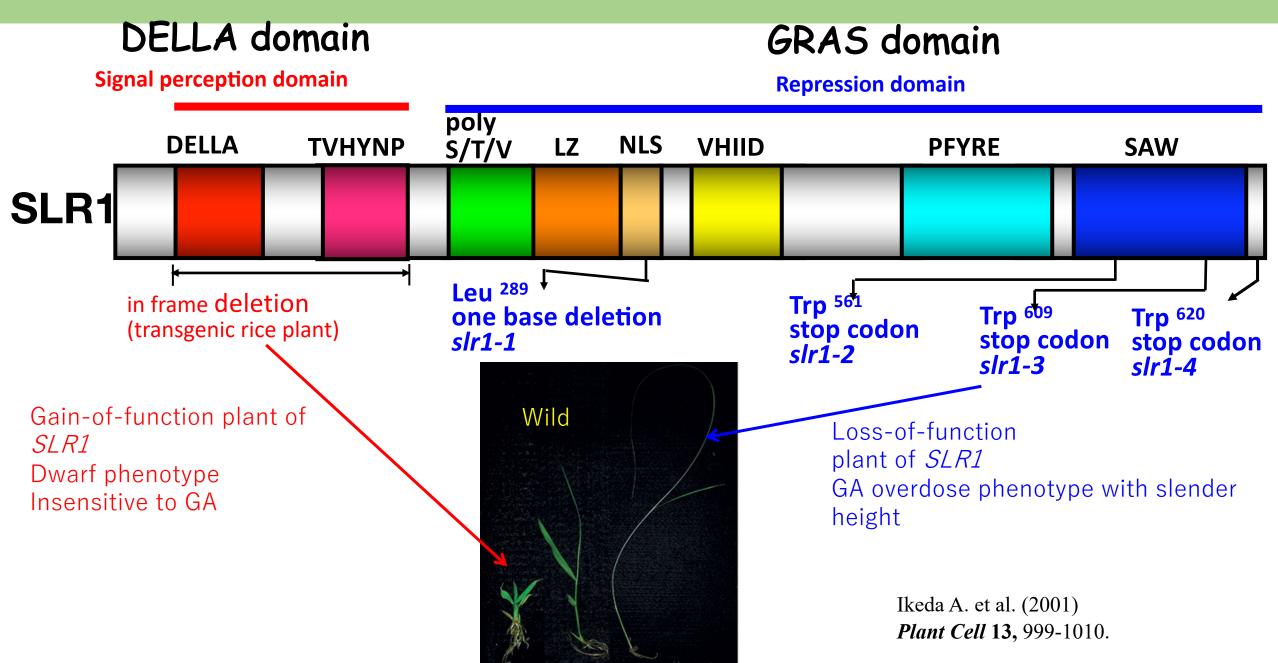

slender1(slr1)変異体

イネ

WT slr1-1

Ikeda A. Ueguchi-Tanaka et al. (2001) Plant Cell 13, 999-1010. シロイヌナズナ

WT gai (loss of function)


Peng J. et al. (1997) Genes Dev. 11, 3194-3205

one of the GRAS (GAI, RGA,

SCR) family proteins.

SLR1のDELLAドメインを欠損させると矮性になった

「緑の革命」は収量の高い品種と背丈の低い(矮性)品種を掛け合わせる ことにより成功した

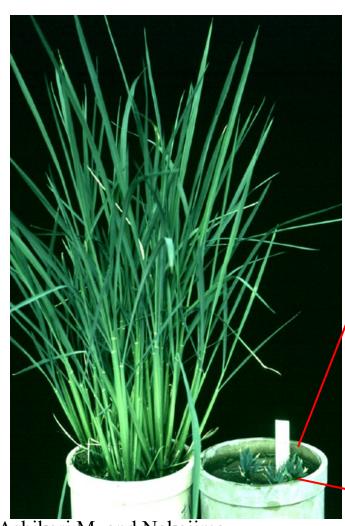

緑の革命は、収量性は高いがへが高く倒れやすいコムギと背が低いコムギ(reduced height, *Rht* と名付けられた)を交配させることにより、作り出された背が低く収量性が高いコムギにより達成された。この新しく開発された品種は従来の2倍の収量を得ることに成功した。

Rht遺伝子 = DELLA遺伝子

- 人類の食糧難を救った緑の革命が、 イネ、小麦においてジベレリンを利用していた。
 - ・ イネでは、ジベレリンの生合成酵素遺伝子 SD1が劣性変異形質としてつかわれ、小麦では、シグナル伝達因子遺伝子 DELLAが 優性変異形質として使われた。

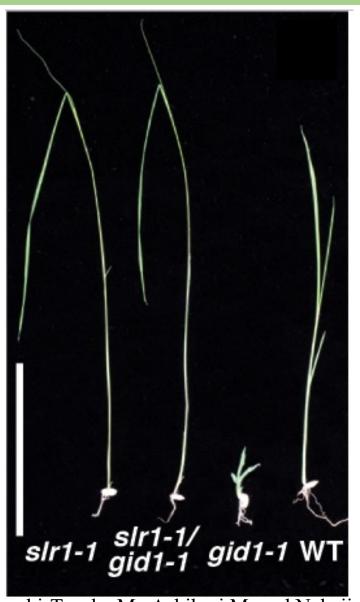
変異体スクリーニング

- ① GA関連変異体と考えられる矮性変異体をスクリーニング
- ② 幼苗に対して、活性ジベレリンを添加、無添加で育てる。


GA非感受性変異体

ジベレリンを添加しても、 復帰しない

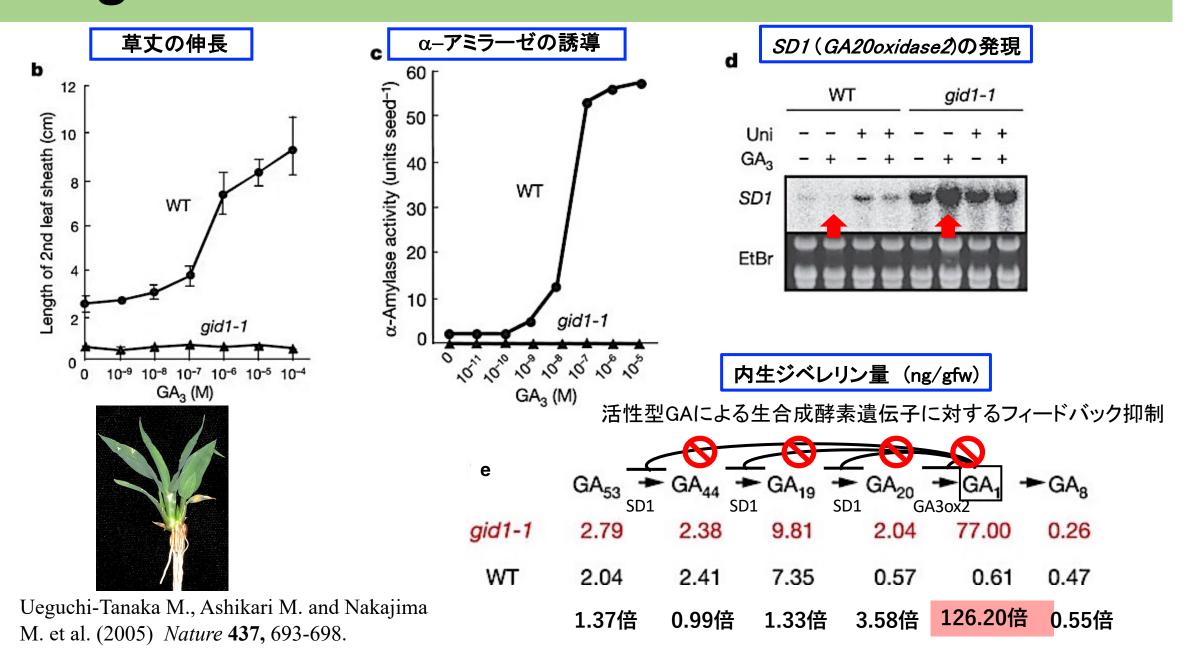
gid1 変異体イネは、極矮性の表現型を示し 劣性分離した



Ueguchi-Tanaka M., Ashikari M. and Nakajima M. et al. (2005) *Nature* **437**, 693-698.

gid1; gibberellin insensitive dwarf1

GID1 とSLR1の関係

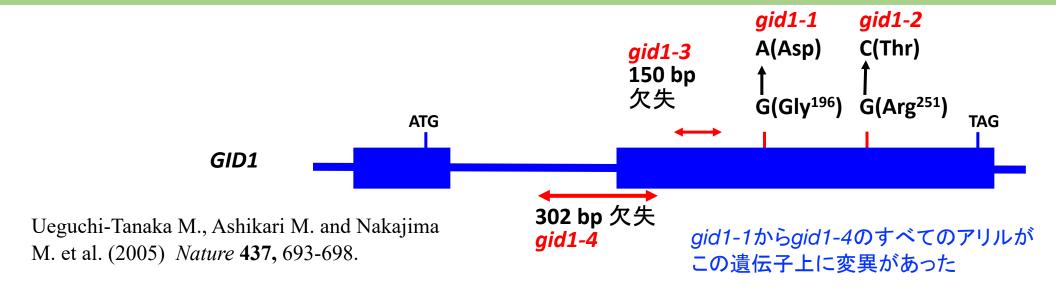

Ueguchi-Tanaka M., Ashikari M. and Nakajima M. et al. (2005) *Nature* **437**, 693-698.

slr1-1/gid1-1 の 2 重劣性変異体は、slr1-1 の表現型となった。 ↑

GID1は、SLR1と同じシグナル伝達上で働いている。

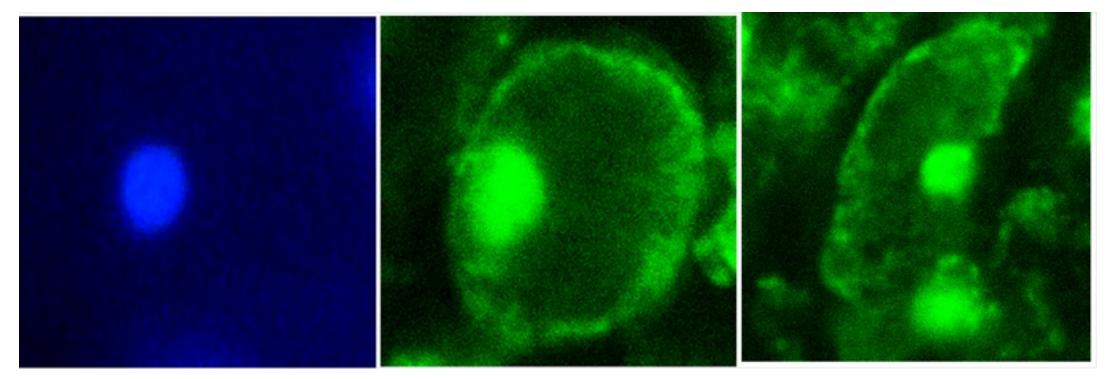
SLR1の方が、GID1に対し、遺伝的に上位である。 = GID1は、SLR1の上流で 働いている。

gid1変異体は、ジベレリンに反応しない



gid1-1 変異体ではSLR1タンパク質は 分解されない

WT においてGFP シグナルはGA 処理により消滅するがgid1-1では消えない

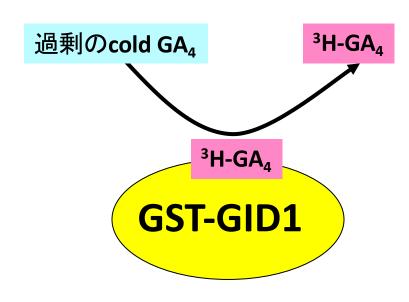

GID1 遺伝子は、エステラーゼとよく似たタンパク質を コードしていた

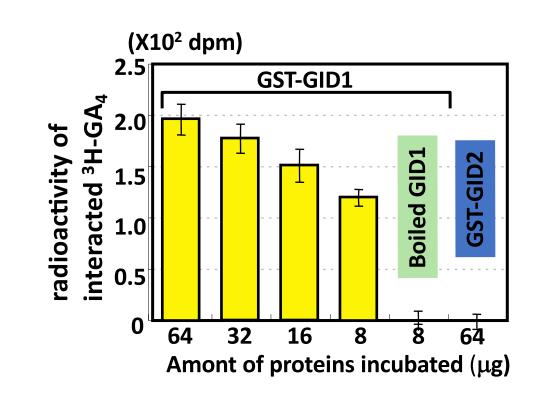
GID1タンパク質は、主に核に局在する

DAPI

内生のGAの量を 減らした場合 植物にGAを 与えた場合

Ueguchi-Tanaka M., Ashikari M. and Nakajima M. et al. (2005) *Nature* **437**, 693-698.

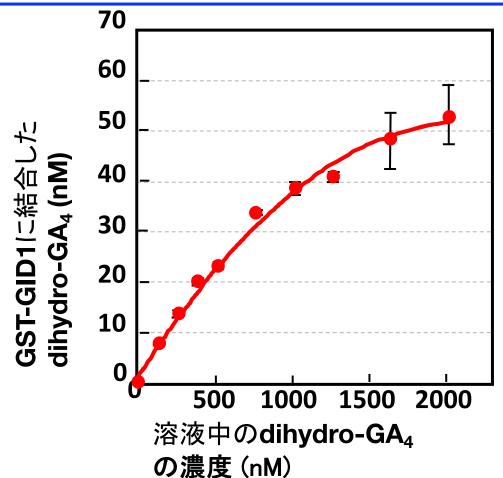

pAct1::GID1-GFP


GID1タンパク質は in vitro で GA4と結合した

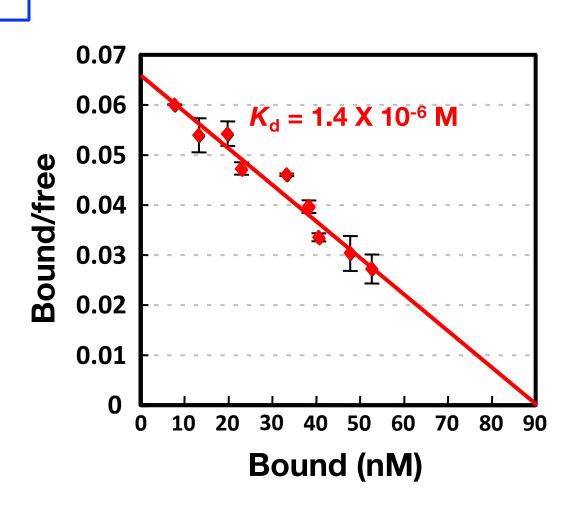
東京大学 農芸化学教室の薮田貞治郎先生一門の山口五十麿先生と、国際植物調節物質学会(オーストラリア)で出会い、 山口研の中嶋正敏先生に、GID1とトリチウムラベルのGAとの結合活性を調べてもらう、という共同研究が可能となった。

リガンド; ³H₄-16,17-dihydro-GA₄

non-equilibrium gelpermeation technique


過剰のcold GA4 により置き換えられたGST-GID1 と結合した3H-GA4 の放射活性を測定した

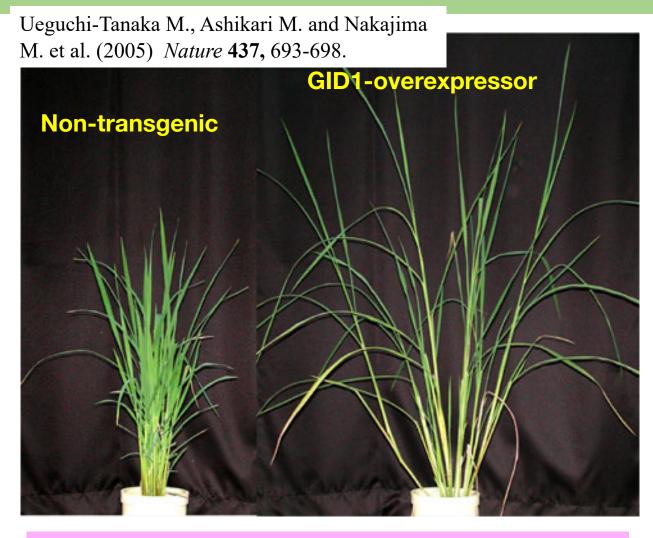
Ueguchi-Tanaka M., Ashikari M. and Nakajima M. et al. (2005) *Nature* **437,** 693-698.


置換された GA_4 量は GID1タンパク質量に比例した。変性GID1 やGST-GID2 は GA_4 と結合しなかった

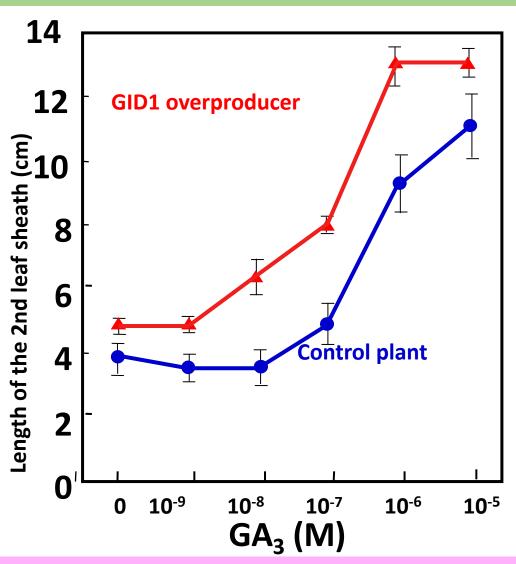
GID1タンパク質のdihydro- GA_4 に対する解離定数は、 生物学的にも十分低い(=強く結合する)

リガンド; ³H₄-16,17-dihydro-GA₄

Ueguchi-Tanaka M., Ashikari M. and Nakajima M. et al. (2005) *Nature* **437,** 693-698.

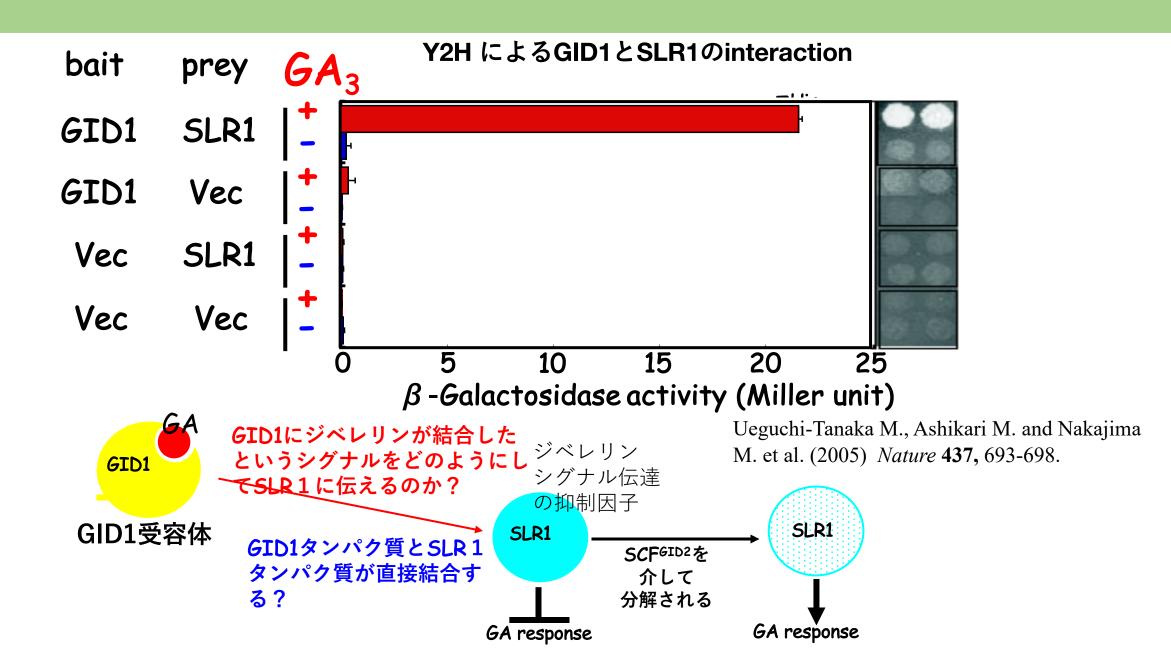


GID1タンパク質は、活性型GAとだけ結合する


GAs	IC ₅₀	(相対活性 %)
生物検定により強い活性の認められたジベレリン類		
GA ₄	2 X 10 ⁻⁷ M	(100)
H ₂ -GA ₄	1 X 10 ⁻⁶ M	(20)
GA ₁	4 X 10 ⁻⁶ M	(5)
GA ₃	4 X 10 ⁻⁶ M	(5)
生物検定により弱い活性の認められたジベレリン類		
GA ₃₅	1 X 10 ⁻⁵ M	(2)
GA ₃₇	2 X 10 ⁻⁵ M	(1)
生物検定により活性の認められなかったジベレリン類		
GA ₄₋ Me	3 X 10 ⁻⁵ M	(0.6)
GA ₉	2 X 10 ⁻⁴ M	(0.1)
GA ₅₁	>2 X 10 ⁻⁴ M	(<0.1)
3-epi-GA ₄	>2 X 10 ⁻⁴ M	(<0.1)

IC50; 50% 阻害するのに必要な濃度、この値が小さい程、GID1とそのジベレリン類との結合がしやすい Ueguchi-Tanaka M., Ashikari M. and Nakajima M. et al. (2005) Nature 437, 693-698.

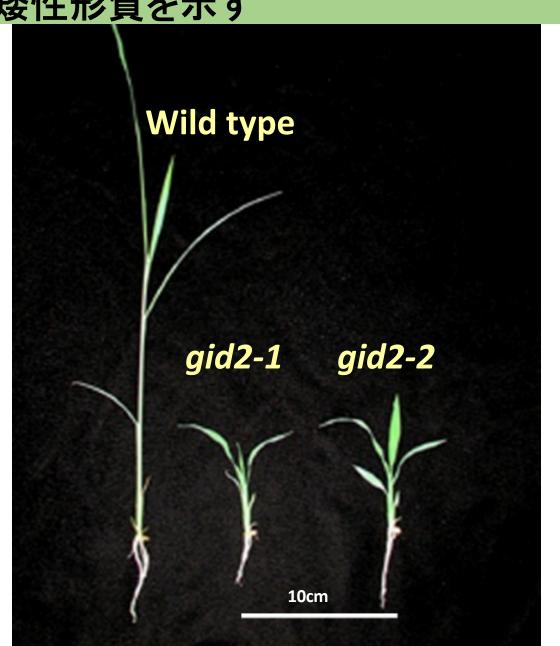
GID1過剰発現体は、GAに対しより高い反応性を示した


GID1過剰発現体は背が高く、葉の色が薄く、 分けつが減少する。 このような形質はGA過 剰の植物とよく類似している。

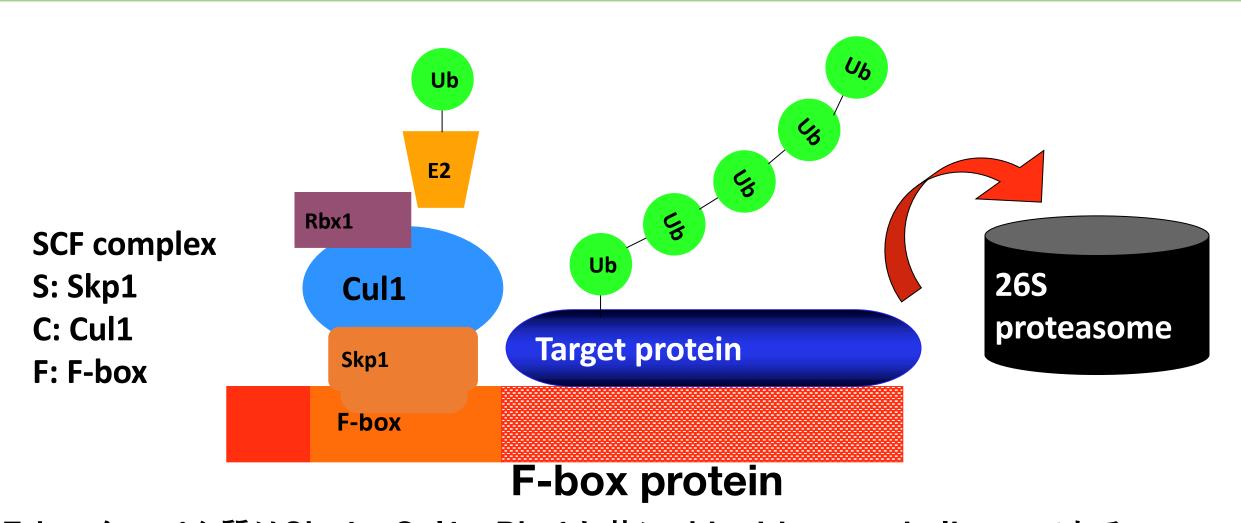
GID1過剰発現体は野生型イネに比べ、GAに対する反応性が約10程度高まっている。

GID1は、ジベレリンの核内受容体である!

GID1核内受容体は、GAがある時にのみSLR1と結合する

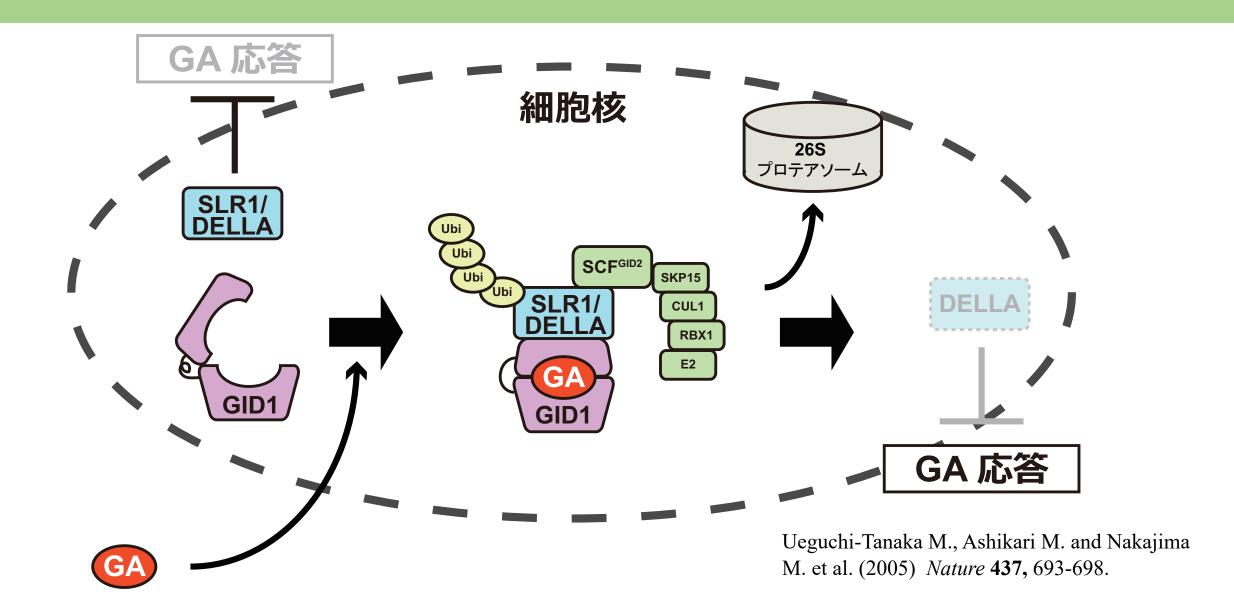


gid2 変異体(<u>GA insensitive dwarf2</u>) は劣性(潜性)の変異体であり、GA非感受の矮性形質を示す



佐々木章江さん

Sasaki A. et al. (2003) Science 299,1896-1898.



GID2は、ユビキチン依存的タンパク分解に 関わるF-boxタンパク質をコードしていた

F-boxタンパク質はSkp1、Cul1、Rbx1と共にubiquitin-protein ligaseである、 SCFコンプレックスを構成し、ターゲットタンパク質の分解に関わる

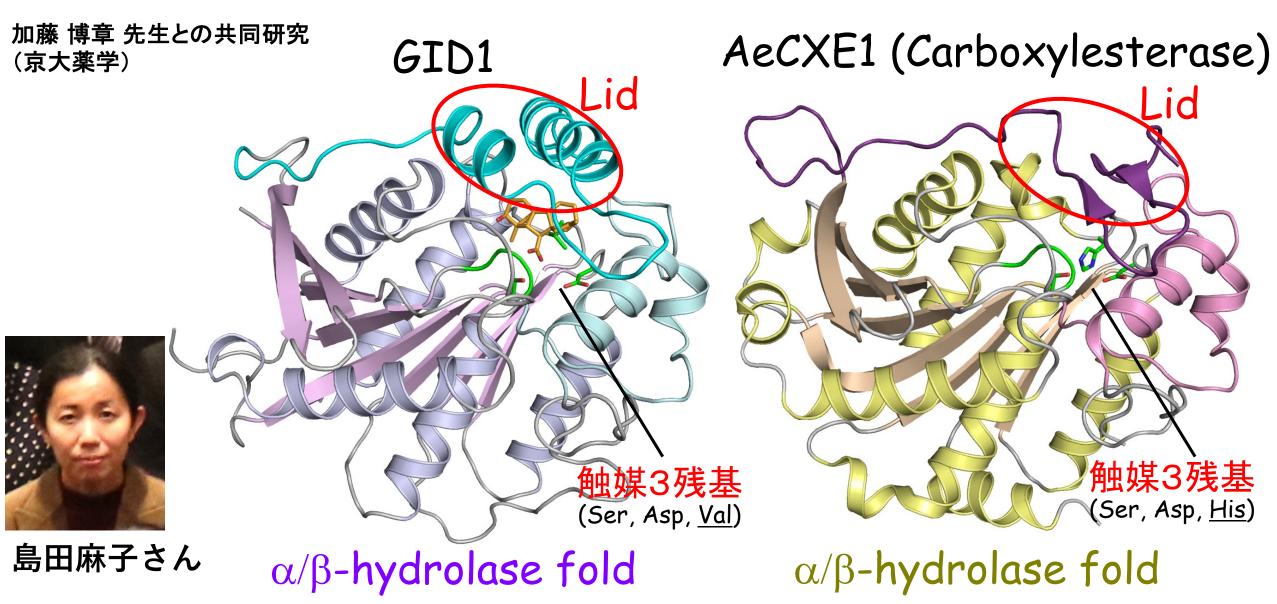
GAシグナル伝達

GID1は、ジベレリンの核内受容体である!

Vol 437 29 September 2005 doi:10.1038/nature04028

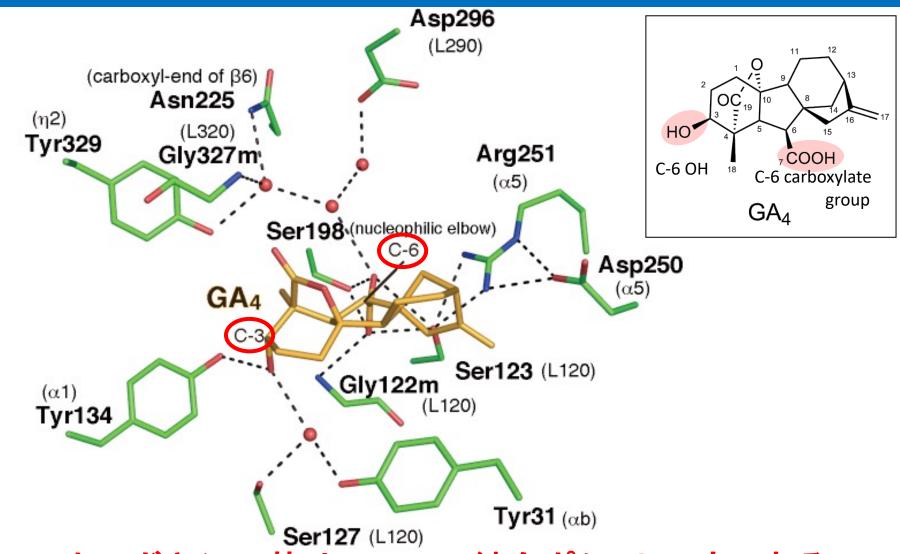
nature

ARTICLES


GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin

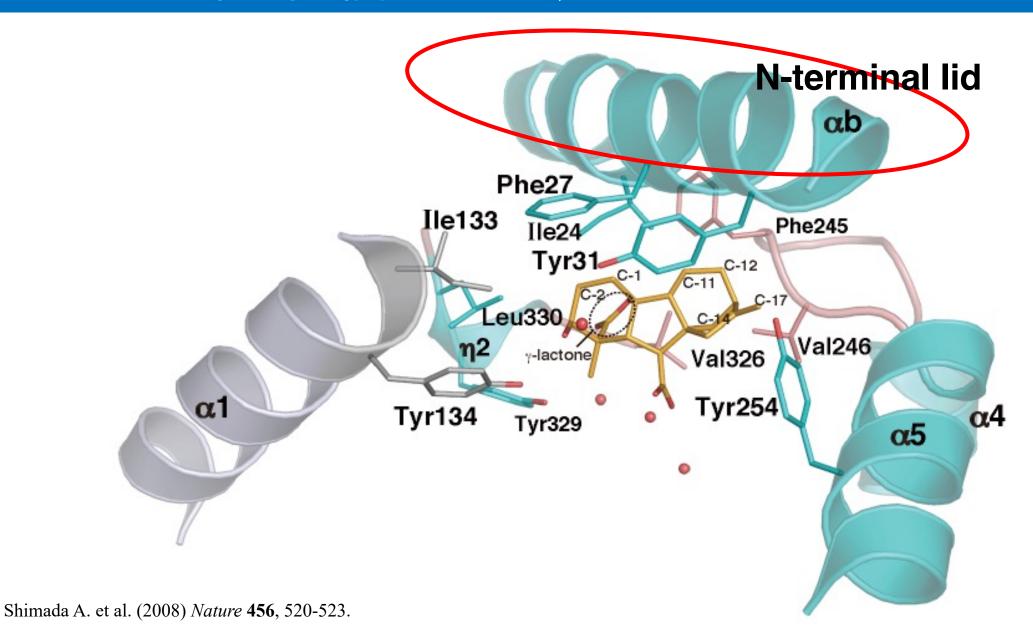
Miyako Ueguchi-Tanaka¹*, Motoyuki Ashikari¹*, Masatoshi Nakajima²*, Hironori Itoh¹, Etsuko Katoh³, Masatomo Kobayashi⁴, Teh-yuan Chow⁵†, Yue-ie C. Hsing⁵, Hidemi Kitano¹, Isomaro Yamaguchi^{2,6} & Makoto Matsuoka¹

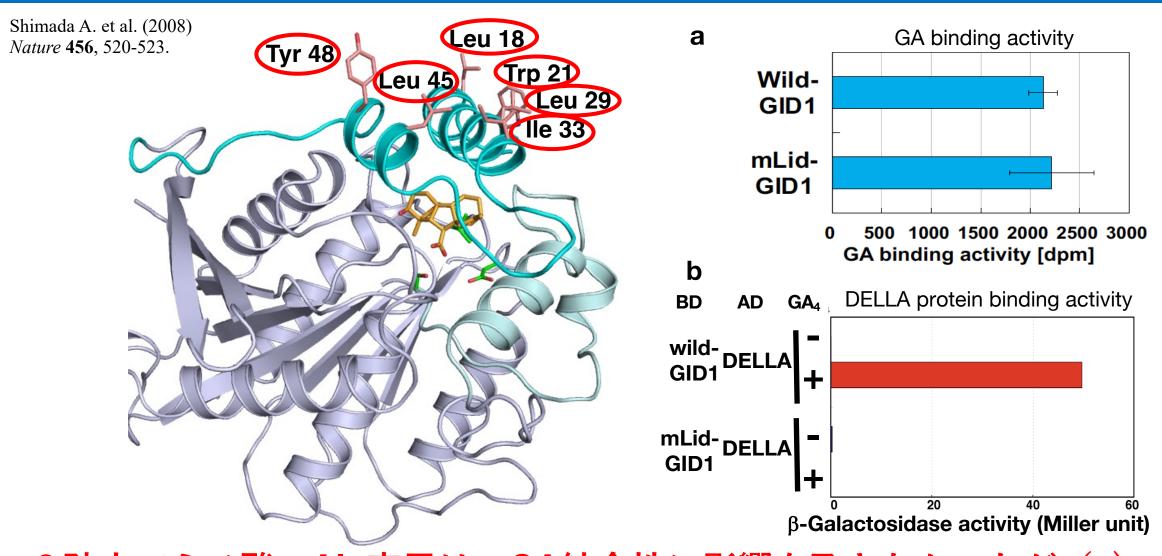
Gibberellins (GAs) are phytohormones that are essential for many developmental processes in plants. It has been postulated that plants have both membrane-bound and soluble GA receptors; however, no GA receptors have yet been identified. Here we report the isolation and characterization of a new GA-insensitive dwarf mutant of rice, *gid1*. The *GID1* gene encodes an unknown protein with similarity to the hormone-sensitive lipases, and we observed preferential localization of a GID1-green fluorescent protein (GFP) signal in nuclei. Recombinant glutathione *S*-transferase (GST)-GID1 had a high affinity only for biologically active GAs, whereas mutated GST-GID1 corresponding to three *gid1* alleles had no GA-binding affinity. The dissociation constant for GA₄ was estimated to be around 10⁻⁷ M, enough to account for the GA dependency of shoot elongation. Moreover, GID1 bound to SLR1, a rice DELLA protein, in a GA-dependent manner in yeast cells. GID1 overexpression resulted in a GA-hypersensitive phenotype. Together, our results indicate that GID1 is a soluble receptor mediating GA signalling in rice.


イネGID1のX線結晶構造解析

GID1受容体はエステラーゼとよく似た構造をとっていた

Shimada A. et al. (2008) *Nature* **456**, 520-523.


GA の結合様式 (親水性)


Shimada A. et al. (2008) *Nature* **456**, 520-523.

GAのC-6 カルボキシル基は、GID1の結合ポケットの底にある 多くの親水性のアミノ酸と、直接もしくは水を介して強く結合する。

ポケットに結合したGAの*ent*-gibberellane骨格とGID1のN末リッドとの間の 疎水的な結合力により、リッドがGAの上に蓋をする

リッドが蓋をされると、リッドの上に疎水的アミノ酸が呈示され、 その疎水的なアミノ酸にSLR1のDELLAドメインが結合する

6疎水アミノ酸のAla変異は、GA結合性に影響を及さなかったが(a)、SLR1のDELLAドメインとの結合を出来なくさせた(b)。

X線結晶構造解析

ージベレリンの受容と合成・代謝、 その共進化一

GID1-GA-DELLAシステムは、シダになって誕生した

裸子

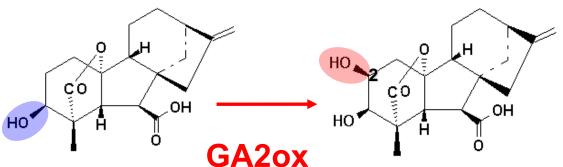
コケ

シダ

植物

被子植物

GA合成酵素

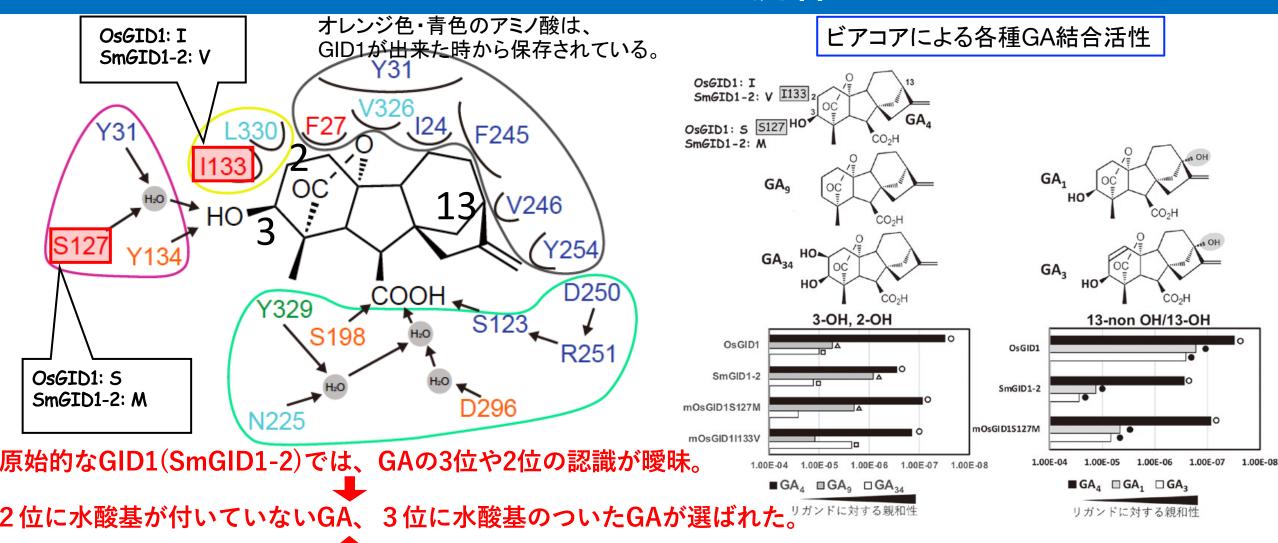

GA不活化酵素

GID1受容体

		P.patens	S. moellendorffii	L.japonicum	P.abies	Amborella	Spirodela polyrhiza	rice	Aquilegia	Vitis vinifera	Arabidopsis
	GA20ox	0	1	1	1	1+(1)	1+(1)	4	2	5	5
	GA3ox	0	1	2	2	1	2	2	4+(3)	3	4
	GA2ox(C19)	0	0	0	1	2	3	6	4	5	5
	GA2ox(C20)	0	0	0	0	2	2	3	2	3	2
	GID1	0	2	2	1	1	1	1	1	2	3

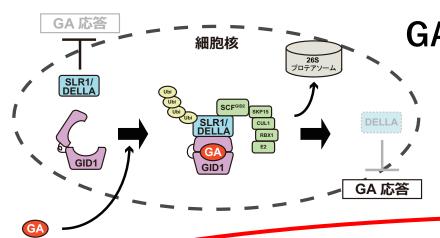
・ シダの時代に、GA合成経路とGID1受容システムが確立した(不活化酵素はまだ無かった)。

• 裸子・被子初期にGA不活化酵素が出現した。



Takehara S. (2020) *Nat. Commun.* 11,

doi:10.1038/s41467-020-16068-0.


竹原清日研究員

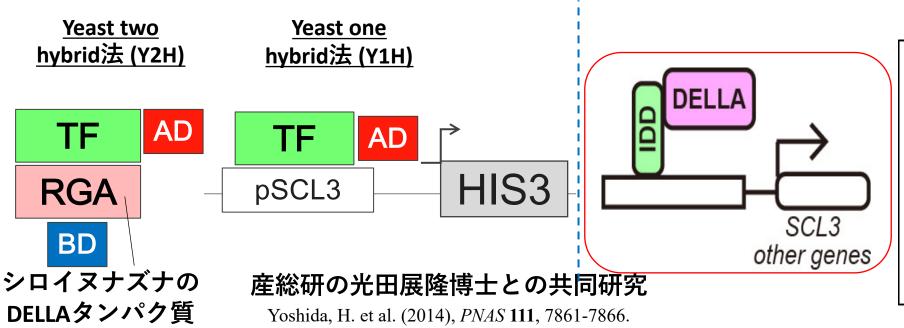
GID1受容体と生合成酵素・不活化酵素は共進化をして、今のGID1-GA-DELLAシステムをより洗練されたものにした

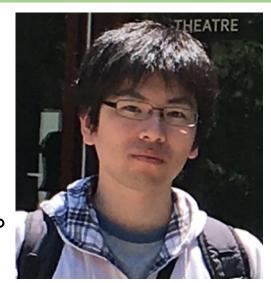
GAの2位に水酸基つけてGID1に結合できなくさせるGA2oxが裸子、原始被子植物で誕生 _{上口(田中)美弥子、} GAの3位に水酸基とGID1への結合強化が<mark>13位水酸化GAを誕生させたのかもしれない</mark>。 *植物の生長調節*、**56**(2021)

GAシグナル伝達一DELLAの下流一

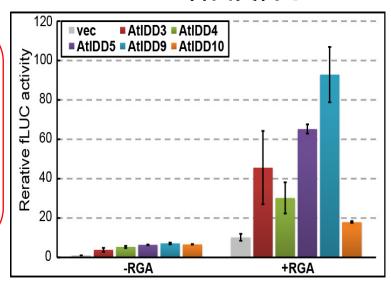
GA応答(GID1-GA-DELLAシステムの下流)

2つに大別される

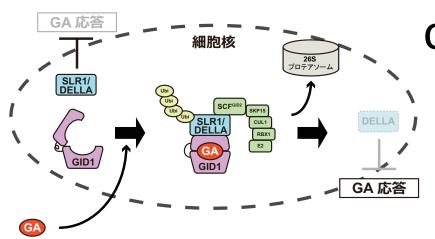

1 DELLAタンパク質がフィードバックを受ける遺伝子に対して、<u>コアクティベーター</u>として働く(DELLAタンパク質には強い転写活性化ドメインがある)。


ターゲット遺伝子;GA生合成遺伝子(SD1, GA3ox2)、GID1、<mark>SCL3</mark> (別なGRAS)など

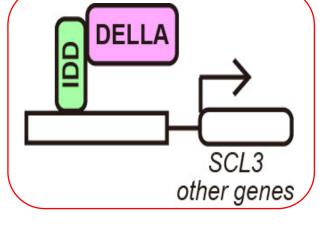
2. DELLAタンパク質が、伸長・花成(雄性器官の発達)・種子成熟に対して、 <u>抑制因子</u>として働く=GAによりDELLAタンパク質が無くなると抑制が解除。 ターゲット遺伝子わからない


DELLAの下流一DELLA-IDD複合体は GAシグナルのフィードバック調節を担う

- 1. DELLAタンパク質がコアクティベーターとして働くような パートナーの転写因子を探す。
- ターゲット遺伝子;GA生合成遺伝子(SD1, GA3ox2)、GID1、SCL3
- **→**Y2Hでスクリーニング。山ほどとれてきて解析できなかった。
- →産総研の光田博士がシロイヌナズナの転写因子ライブラリーを作成。
- ➡材料をシロイヌナズナに変えスクリーニング。



吉田英樹さん

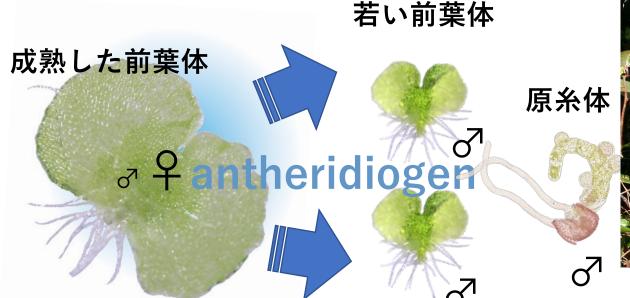


GAシグナル伝達一DELLAの下流一

GA応答(GID1-GA-DELLAシステムの下流)

2つに大別される

- 1. DELLAタンパク質がフィードバックを受ける遺伝子に対して、 コアクティベーターとして働く。
- ターゲット遺伝子;GA生合成遺伝子(*SD1, GA3ox2)、GID1、<mark>SCL3</mark> (*別な*GRAS)など* 転写因子IDDとともに、相乗的に転写を上げる。
- 2. DELLAタンパク質が、伸長、花成(雄性器官の発達)/性決定)種子成熟に対して、 <u>抑制因子</u>として働く=GAによりDELLAタンパク質が無くなると抑制が解除。 ターゲット遺伝子わからない

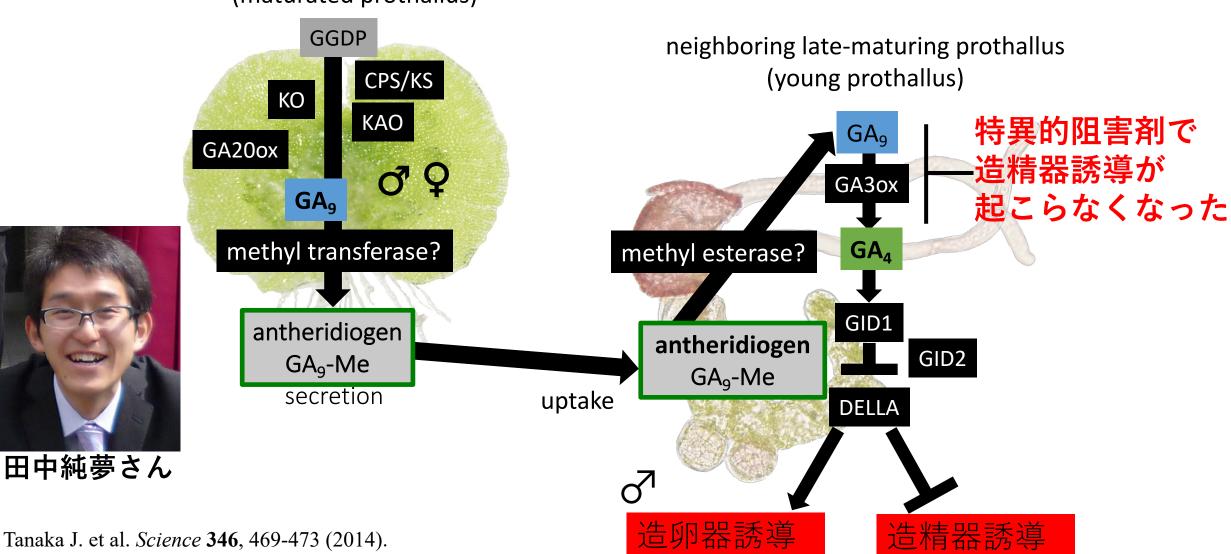

造精器誘導物質

(アンセリジオーゲン: Antheridiogen)

- <発見> 1950年:ワラビ(Pteridium aquilinum)
- <効果> 成熟した前葉体から分泌され、原糸体や未成熟な前葉体に造精器を誘導する。
- <役割> 他個体に造精器を作らせ、自身の造卵器との受精(他家受精)を促進する。

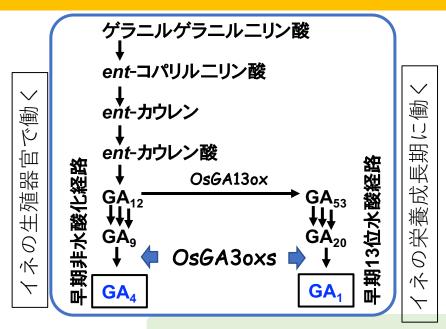
1990年代、東京大学の山根らは、カニクサのアンセリジオーゲンを単離し

ジベレリンとよく似た物質と報告。

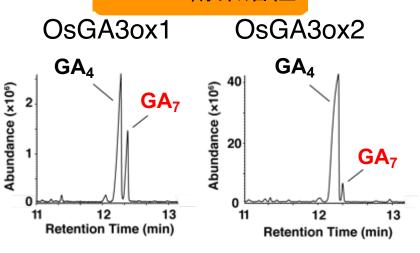

カニクサを 探すところ から!

安益公一郎さん

カニクサ Yaname, H.: **Fern antheridiogens.** (つる性のシダ) Int. Rev. Cytol., 184, 1-32 (1998)

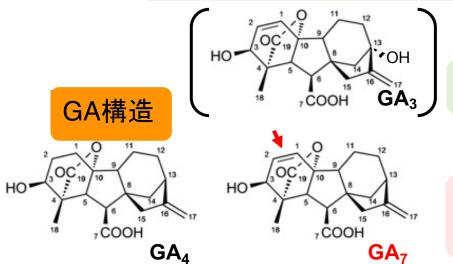

アンセリジオーゲンはジベレリンの生合成経路を時間的および 空間的に分けることによりシダの性を決定する

early-maturing prothallus (maturated prothallus)



Tanaka J. et al. *Science* **346**, 469-473 (2014).

OsGA3ox1は葯で多量のGA₄ + GA₇を合成する

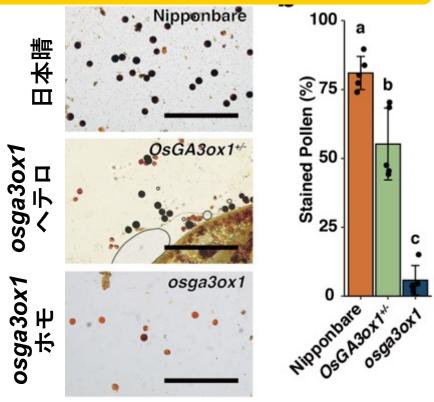


in vitro 酵素活性

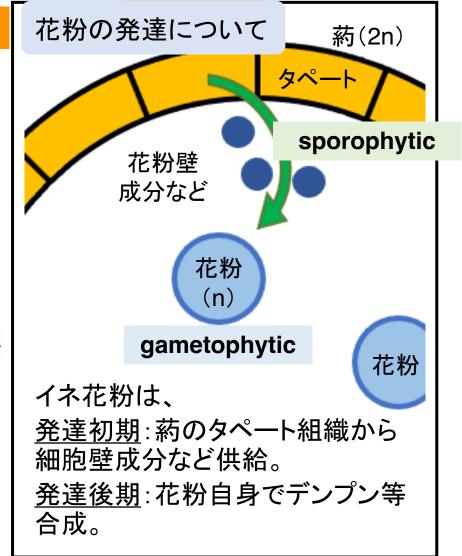
河合恭甫さん

葯において、OsGA3ox1が多量のGA4とGA7両方の合成を担う。

GA7は構造上、GA2oxにより不活化されない。



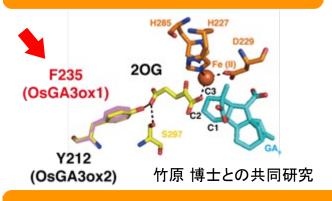
逆に、GA₇は、茎葉部に多量に存在すれば、 『馬鹿苗病菌が作ったGA₃でイネが枯死する ように』枯死してしまう危険性があるだろう。 榊原均先生との 共同研究


Kawai, K. et al. (2022) Commun. Biol. 5, doi: 10.1038/s42003-022-03008-5.

osga3ox1変異体の花粉は不稔である

osga3ox1変異体の花粉ョウ素染色

- ・花粉のデンプン蓄積に異常。
- gametophyticな(配偶体に) 表現型が現れた。


osga3ox1は花粉の発達(デンプン蓄積)に異常があり、不稔であ

なぜOsGA3ox1は多量にGA7を合成するのか

構造解析によるGAz合成の原因アミノ酸残基の推定

OsGA3ox2 X線結晶構造

補基質の2-オキソグルタル酸(2OG)との結合残基が2つのOsGA3oxで異なる。

- →OsGA3ox1はフェニルアラニン(F)を持つ。
- →GA₇合成能が高い。

GA3ox,GA2ox,GA20oxはすべて、補基質として、2オキソグルタル酸と鉄が必要な2-Oxoglutarate-dependent dioxygenases (20DD) に属する。

20G結合アミノ酸残基の比較

OsGA3ox1 OsGA3ox2 OsGA2ox1 OsGA2ox2 OsGA2ox3 OsGA2ox4 OsGA2ox7 OsGA2ox8 OsGA2ox5 OsGA2ox6 OsGA2ox9 OsGA20ox1 OsGA20ox2 OsGA20ox3 OsGA20ox4 ACCO ANS

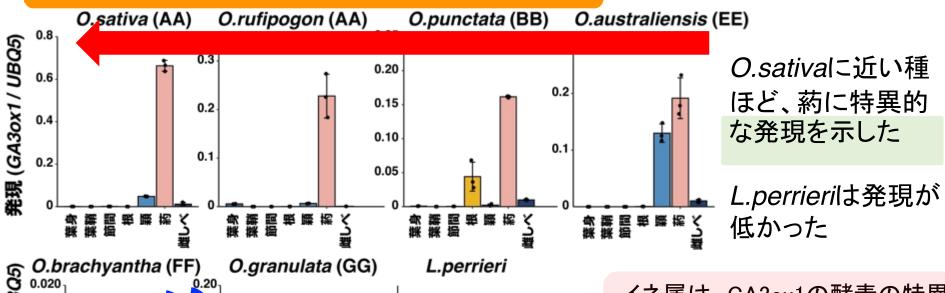
GA合成·代謝関連酵素:

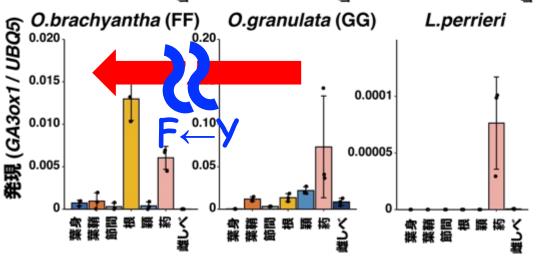
上記のフェニルアラニンはOsGA3ox1のみが持つ。

OsGA3ox1は他のGA合成酵素とは異なる進化 →GA₇合成が可能になったと考えられた。

進化の過程でどのように GA_7 合成能を獲得したのか不明。

竹原清日研究員


Kawai, K. et al. (2022) Commun. Biol. 5, doi: 10.1038/s42003-022-03008-5.


イネ属 GA3ox1遺伝子発現

イネのOsGA3ox1は葯に特異的に発現をする。

→遺伝子発現の進化を調べるため、イネ属植物のGA3ox1の発現を比較した。

イネ属植物 GA3ox1の遺伝子発現 (qRT-PCR)

イネ属は、GA3ox1の酵素の特異性と遺伝子発現 の両方を進化させ、不活化できないジベレリン(= GA₇)を<u>多量に</u> 花粉だけで</u>局在できるようになった。

茎葉部の伸長に影響を与えず、一方で、生殖に有利に。AAゲノムイネの世界的な繁栄とその後の人類の利用の1つの原因になったのかもしれない。

Kawai, K. et al. (2022) Commun. Biol. 5, doi: 10.1038/s42003-022-03008-5.

The Dual Function of OsSWEET3a as a Gibberellin and Glucose Transporter Is Important for Young Shoot Development in Rice

Minami Morii¹, Akihiko Sugihara¹, Sayaka Takehara¹, Yuri Kanno², Kyosuke Kawai¹, Tokunori Hobo¹, Masako Hattori¹, Hisako Yoshimura¹, Mitsunori Seo²,* and Miyako Ueguchi-Tanaka¹,*

¹Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan

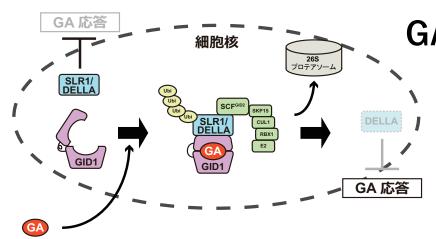
²RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan The first two authors contributed equally to this work.

*Corresponding authors: Mitsunori Seo, E-mail, mitsunoriseo@riken.jp; Fax, + 81-45-503-9665; Miyako Ueguchi-Tanaka, E-mail, mueguchi@nuagr1.agr.nagoya-u.ac.jp.

(Received 26 May 2020; Accepted 28 September 2020)

Translocation and long-distance transport of phytohormones are considered important processes for phytohormone responses, as well as their synthesis and signaling. Here, we report on the dual function of OsSWEET3a, a bidirectional sugar transporter from clade I of the rice SWEET family of proteins, as both a gibberellin (GA) and a glucose transporter. OsSWEET3a efficiently transports GAs in the C13-hydroxylation pathway of GA biosynthesis. Both knockout and overexpression lines of OsSWEET3a showed defects in germination and early shoot development, which were partially restored by GA. especially GA20. Quantitative re-

various G. et al. 2006 duced at t GA transl long-dista et al. 2018 logical me city. In lat GAs are p way and t


ka et t bioadeko et mem confil s to di tly on in the C13-hy vay. In

cursor GA.

杉原 諒彦さん

森井南美さん

GAシグナル伝達一DELLAの下流一

GA応答(GID1-GA-DELLAシステムの下流)

2つに大別される

1. DELLAタンパク質がフィードバックを受ける遺伝子に対して、 コアクティベーターとして働く。

ターゲット遺伝子;GA生合成遺伝子(*SD1, GA3ox2)、GID1*、<mark>SCL3</mark> (別な*GRAS)*など

2. DELLAタンパク質が、伸長・花成(雄性器官の発達)・種子成熟に対して、 <u>抑制因子</u>として働く=GAによりDELLAタンパク質が無くなると抑制が解除。 ターゲット遺伝子わからない

DELLAタンパク質が抑制している(=GAによりDELLAタンパク質が無く なると抑制が解除され発現が上がる)ターゲット遺伝子を探す

DELLA分解後のGA応答遺伝子を明らかにするための当研究室での試み

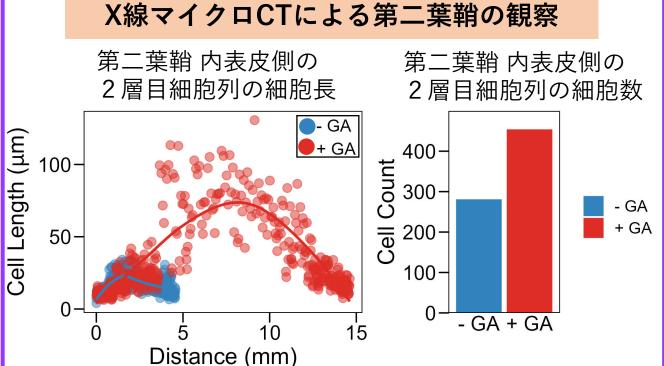
- 1. gid1 vs slr1変異体で発現遺伝子の比較
- 2. pAct1- △DELLA SLR1 VP16 GR / 日本晴 0, 1, 2, 4時間の比較(初期誘導遺伝子の探索) (岩見さん修論)
- 3. pAct1 3FLAG SLR1 VP16 / oscps1-1 GA処理 0, 1, 2, 4時間の比較(-GAから+GAで動く初期遺伝子の探索)

 - 葉全体でサンプリングを行ったため、分裂帯、伸長帯、成熟した細胞が混在していた。
 - → X線マイクロCTで細胞を観察するとともに、分裂帯、伸長帯、成熟した領域を分けて サンプリングすることにした(大井崇生先生との共同研究)

従来の方法: 第二葉鞘以下をすべてサンプリング

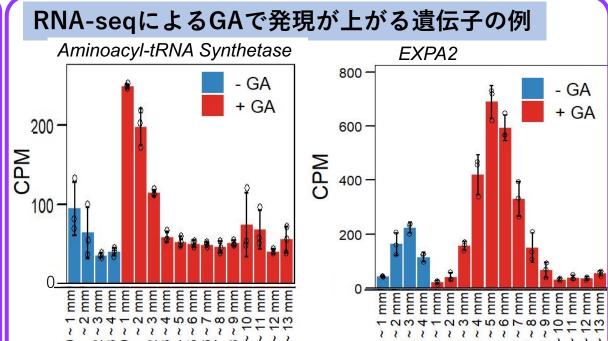
今回の方法(短銀坊主):第二葉のみを1mmずつサンプリング

- GA + GA


1 mm

杉原 諒彦さん

DELLAタンパク質が抑制している(=GAによりDELLAタンパク質が無くなると抑制が解除され発現が上がる)ターゲット遺伝子(直接+間接)



大井 崇生先生との共同研究

GAは、細胞分裂と細胞伸長を促進する。

杉原 諒彦さん

- 分裂帯において転写・翻訳等の遺伝子発現が、伸長帯において細胞伸長に関する遺伝子発現がGAにより上がっていた。
- -GAと+GAは、相似型を示す。
- -GA(DELLA存在下)では、転写因子がアクセスしにくく、+GA(DELLA非存在下)では、アクセスしやすくなっているのだろう。