Lecture 3: Energy of Electromagnetic Waves and Spectra, Rate of Chemical Reaction and Energy

Gabor SAMJESKÉ/Quan PHUNG/Yoshiaki SHUKU

Week 11; 30th June: Experiment 7

Determination of concentration by absorption photometry (Lambert – Beer law)

Week 12; 7th July: Experiment 8

Absorption spectra of bromothymol blue (BTB) at different pH

Week 13; 14th July: Experiment 9

Chemical oscillation reactions (online only)

Chapter 5: Energy of Electromagnetic Radiation And Spectra

Spectra of Various Light Sources (skip)

Main theme: In this experiment, you will study the relation between color, wavelength and energy of light.

https://en.wikipedia.org/wiki/Electromagnetic_spectrum

 $egin{aligned} ext{Wavelength} imes ext{Frequency} &= ext{Speed} \ \lambda(ext{m}) imes
u\left(ext{s}^{-1}
ight) &= c(ext{m} ext{s}^{-1}) \end{aligned}$

c: the rate of travel of all electromagnetic energy in a vacuum and is a **constant exact** value—speed of light.

 $c = 2.997 924 58 \times 10^8 \text{ m s}^{-1}$, usually rounded off to $3.00 \times 10^8 \text{ m s}^{-1}$

A beam of light behaves as if it were a stream of small particles, called photons, whose energy (*E*) is related to their frequency, v (or wavelength, λ)

$$E=h
u=rac{hc}{\lambda}$$

 $h = 6.626 \times 10^{-34} \text{ J s}$ Planck's constant

Unit:

 $J s \times s^{-1} = J$ Sometimes in kJ mol⁻¹ (Energy of 1 photon) (Energy of N_A photons) **Line Spectrum**: A series of discrete lines on an otherwise dark background as a result of light emitted by an excited atom

Line Spectra and the Bohr Model. (2021, November 8). https://chem.libretexts.org/@go/page/21730

The "visible" H emission spectrum lines in the Balmer series.

The Hydrogen Atomic Spectrum. (2021, October 3). https://chem.libretexts.org/@go/page/210778

Rydberg formula (1888)

$$rac{1}{\lambda}=R_{
m H}\left(rac{1}{n_1^2}-rac{1}{n_2^2}
ight)$$

Rydberg constant for hydrogen 109677 cm⁻¹

principal quantum number

Emission spectrum of atomic sodium

each element has its own unique spectral "signature"

The Bohr Atom. (2015, September 24). https://chem.libretexts.org/@go/page/37017

Absorption vs. emission spectra

http://faculty.sdmiramar.edu/fgarces/labmatters/instruments/aa/AAS_Theory/AASTheory.htm

Absorption spectra and structure of molecules

Main theme: In this experiment, you will

- measure molecular absorption spectrum.
- learn how absorption spectrum relates to molecular structure.

Light absorption

When a molecule interacts with light and energy is absorbed \rightarrow the molecule is excited.

Molecular orbital (MO) picture: promotion of an electron from an occupied MO to an unoccupied MO.

Color

Our perception of color is determined by the wavelengths of radiation reaching our eyes and the sensitivity of the receptors in our eyes.

Chromophores convert light into electrical impulse.

Rods work under low intensity conditions → black, grey, and white.

Human eye is the most sensitive to green color

Cones work under high intensity conditions → colors.

https://www.unm.edu/~toolson/human_cone_response.htm https://commons.wikimedia.org/wiki/File:Eyesensitivity.png https://www.flickr.com/photos/veisto/8389740249

Complementary Colors

If wavelengths of light from a certain region of the spectrum are absorbed by a material, then the material will appear to be the complementary color.

Theopold, P. F., Klaus, & Richard Langley et al. (2021, May 21). Color and the Colors of Complexes. OpenStax CNX. https://chem.libretexts.org/@go/page/24356

UV-Vis spectrophotometer

https://en.wikibooks.org/wiki/Methods_and_Concepts_in_the_Life_Sciences/Spectroscopy

Lambert-Beer law

Transmittance

$$T=rac{I}{I_0}$$

 ε depends on wavelength of the light λ , solvent, and temperature ε can be evaluated by plotting A with [J] (linear)

Absorption spectra of conjugated systems

Antibonding (3 nodes)

(2 nodes)

(1 node)

Bonding (0 nodes)

The longer the conjugated system, the smaller the gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO).

Short conjugated systems exhibit absorption in UV.

In molecules with extended pi systems, the HOMO-LUMO energy gap becomes so small that absorption occurs in the visible rather then the UV region of the electromagnetic spectrum.

Experiment O: UV-Vis spectrum of Phenolphthalein (skip)

Can you see the difference in the length of the conjugated pi-electron system? Where are the two form absorption peaks located in the electromagnetic spectrum?

Moore, Justin Shorb, Xavier Prat-Resina, Tim Wendorff, E. V., John W., & Hahn, A. (2020, November 6). Indicators. Chemical Education Digital Library (ChemEd DL). https://chem.libretexts.org/@go/page/49692

Experiment 1: UV-Vis spectra of Cu²⁺ and [Cu(NH₃)₄]²⁺

Experiment 1: Determine the concentration of Cu²⁺

Technical Details

Results are sensitive with respect to impurities:

- Highly purified solvents and chemicals are necessary.
- Clean glassware.
 - Avoid contact with clear sides of cuvettes with any hard surface.
 - Avoid spillage of the solution on the outer side of the cuvettes.
 - Hold the cuvettes such that transparent sides are not being touched.
 - Ensure that transparent sides of the cuvettes are in the optical path.

Technical Details

The absorption of solvent must be taken into account by measuring the absorption spectrum of a reference solution (containing the same volume of solvent—2.4 M aqueous NH_3).

Absorbance of the reference solution is set to 0

Absorbance of the sample solution is 0.3–0.6 (optimal range)

Experiment 2: Absorption spectrum of bromothymol blue (BTB) at different pH

Can you see the difference in the length of the conjugated pi-electron system?

Shimada, T., Hasegawa, T. (2017). Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 185, 104-110.

$$\begin{split} K_{\mathrm{a}} &= \frac{[\mathrm{H}^{+}][\mathrm{L}^{-}]}{[\mathrm{HL}]} & \frac{[\mathrm{L}^{-}]}{[\mathrm{HL}]} = 10^{(\mathrm{pH}-\mathrm{p}K_{\mathrm{a}})} & \text{Total concentration of BTB (HL and L^{-})} \\ A &= \varepsilon_{\mathrm{HL}}[\mathrm{HL}] + \varepsilon_{\mathrm{L}}[\mathrm{L}^{-}] & A = \varepsilon_{\mathrm{HL}}C = A_{1} \\ (\text{Ignore sample length}) & s_{O_{U_{I}}} & A = \varepsilon_{\mathrm{L}}C = A_{2} \end{split}$$

$$\log_{10}rac{A-A_1}{A_2-A}=\mathrm{pH}-\mathrm{p}K_\mathrm{a}$$

$$\log_{10}rac{A-A_1}{A_2-A}=\mathrm{pH}-\mathrm{p}K\mathrm{a}$$
Intercept

pН

Chapter 6: Rate of Chemical Reactions and Energy

Main theme: In this experiment, you will learn

The Arrhenius equation (the relationship between temperature and the reaction rate) and the Belousov-Zhabotinsky reaction (chemical oscillation reactions).
Rate of reaction

The rate of a chemical reaction or **reaction rate**

- speed at which a chemical reaction takes place
- how quickly amounts (moles) of reactants are converted into amounts (moles) of products

Rusting - slow $4\mathrm{Fe} + 3\mathrm{O}_2 + 2x\mathrm{H}_2\mathrm{O} \longrightarrow 2\mathrm{Fe}_2\mathrm{O}_3\cdot x\mathrm{H}_2\mathrm{O}$

https://en.wikipedia.org/wiki/Iron_oxide

Sodium in water - fast $2Na + 2H_2O \longrightarrow 2NaOH + H_2(g)$

https://www.youtube.com/watch?v=dmcfsEEogxs

http://staff.um.edu.mt/jgri1/teaching/che2372 /notes/06/01/intro_kinetics.html

$$aA + bB \rightarrow cC + dD$$

$$egin{aligned} ext{rate} &= v = -rac{1}{a} \cdot rac{ ext{d}[ext{A}]}{ ext{d}t} = -rac{1}{b} \cdot rac{ ext{d}[ext{B}]}{ ext{d}t} \ &= rac{1}{c} \cdot rac{ ext{d}[ext{C}]}{ ext{d}t} = -rac{1}{b} \cdot rac{ ext{d}[ext{B}]}{ ext{d}t} \end{aligned}$$

Unit: mol dm⁻³ s⁻¹ (liquid reactions) molecule cm⁻³ s⁻¹ (gas phase reaction) **Rate law**

Generally, there is **no** connection between the order of the reaction and the stoichiometry coefficients!

```
The overall order = m + n + ...
```

Order	Unit of <i>k</i> _r
0	mol·L ⁻¹ ·s ⁻¹
1	s ⁻¹
2	L·mol ⁻¹ ·s ⁻¹
3	L ² ⋅mol ⁻² ⋅s ⁻¹

Arrhenius Equation

Most reaction rates increase with T: in solution, by about a factor of 2 to 4 with an increase of 10 °C.

Milk turns sour much more rapidly if stored at room temperature.

https://en.wikipedia.org/wiki/Soured_milk

Less collisions

More collisions

https://igcseandialchemistry.com/factorsaffecting-the-rate-of-reaction/

The activation energy is the **minimum** energy reactants must have in order to form products.

Potential Energy Diagrams. (2021, July 10). https://chem.libretexts.org/@go/page/53890

Oscillating reactions

Normal reactions:

the concentration of species displays a single maximum during the course of the reaction. http://staff.um.edu.mt/jgri1/teaching/che2372 /notes/09/04/catalysis.html

Oscillating reactions:

the concentration of species oscillates with time. Is it possible?

Lotka-Volterra Model

autocatalytic reaction [X] and [Y] accelerates its own production

Assumption:

[A] = constant, A is continuously replaced from an external source as it is consumed in the reactionB plays no part in the reactionX: activation speciesY: inhibitor species

Experiment 3: Belousov-Zhabotinsky (BZ) reaction (online)

Oxidation of malonic acid $(CH_2(COOH)_2)$ with bromate ion (BrO_3^{-}) in an acidic solution with the presence of cerium ions (catalyst)

 $3 \text{ BrO}_3^- + 5 \text{ CH}_2(\text{COOH})_2 + 3 \text{ H}^+ \rightarrow 3 \text{ BrCH}(\text{COOH})_2 + 2 \text{ HCOOH} + 4 \text{ CO}_2 + 5 \text{ H}_2\text{O}$

https://en.wikipedia.org/wiki/Ammonium_cerium(IV)_sulfate

FNK (Field, Körös and Noyes) mechanism

```
(R1) Br^- + BrO_3^- + 2H^+ \leftrightarrow HOBr + HBrO_2
(R2) Br^- + HBrO_2 + H^+ \leftrightarrow 2HOBr
(R3) Br^- + HOBr + H^+ \leftrightarrow Br_2 + H_2O
(R4) 2HBrO_2 \leftrightarrow HOBr + BrO_3^- + H^+
(R5) HBrO<sub>2</sub> + BrO<sub>3</sub><sup>-</sup> + H<sup>+</sup> \leftrightarrow 2 · BrO<sub>2</sub> + H<sub>2</sub>O
(R6) \cdot BrO<sub>2</sub> + Ce<sup>3+</sup> + H<sup>+</sup> \leftrightarrow HBrO<sub>2</sub> + Ce<sup>4+</sup>
(R7) \cdot BrO<sub>2</sub> + Ce<sup>4+</sup> + H<sub>2</sub>O \leftrightarrow BrO<sub>3</sub><sup>-</sup> + Ce<sup>3+</sup> + 2H<sup>+</sup>
(R8) Br_2 + CH_2(COOH)_2 \rightarrow BrCH(COOH)_2 + Br^- + H^+
(R9) 6Ce^{4+} + CH_2(COOH)_2 + 2H_2O \rightarrow 6Ce^{3+} + HCOOH + 2CO_2 + 6H^+
(R10) 4Ce^{4+} + BrCH(COOH)_2 + 2H_2O \rightarrow 4Ce^{3+} + HCOOH + Br^- + 2CO_2 + 5H^+
```

Miyazaki, J. (2013). Belousov–Zhabotinsky Reaction. In *Pattern Formations and Oscillatory Phenomena* (pp. 61-83). Elsevier.

Br⁻ is not presented at the beginning of the reaction \rightarrow induction period

Task: measure P_{osc} and P_{ind} at different temperatures - Activation energy Induction period (s) $P_{\rm ind}(T)$ Period of oscillation (s) $P_{\rm osc}(T)$ $[\mathrm{Ce}^{4+}]$ $[Ce^{3+}]$ Yellow log -Colorless $\log[\mathrm{Br}^{-1}]$

0

https://www.youtube.com/watch?v=LL3kVtc-4vY