Laboratory in Chemistry 2nd semester/Spring 2021

Gabor SAMJESKÉ/Quan PHUNG/Yoshiaki SHUKU

Reactions and Equilibria of Ions in Aqueous Solutions

Laboratory in Chemistry 2nd semester/Spring 2021

General Information

Teacher:	Gabor SAMJESKÉ/Quan PHUNG/Yoshiaki SHUKU
Room:	B219
Email:	gsamjeske@chem.nagoya-u.ac.jp
Tel:	052-789-5041

Prerequisite: Fundamentals of Chemistry I and II

Reactions of Inorganic Ions and Ionic Equilibria

What topics have you learned last semester that relate to these experiments?

Do You know...have heard about...?

- 1. The Periodic Table
- 2. Atoms, Molecules, Ions...Complex (ion)
- 3. Mass Relationships in Chemical Reactions...mol, mol weight....
- 4. Reactions in Aqueous Solutions...reaction equilibrium...
- 5. Ionic bonds...
- 6. Liquids and solutions...concentrations....precipitation....

The Periodic System of the Elements

s-block elements d-block elements									p-b	lock	elem	ents	
Group 1 2	3 4	56	7	8 9	9 10) 11	12	∎ 13	14	15	16	17	18
IUPAC Periodic Table of the Elements													
1 H hydrogen													2 He hetum
	Кеу							13	14	15	16	17	4.0026
3 4 Li Be baryilum 5.54 30.60, 6697 80122	atomic number Symbol name torestorial stants weight							5 B baron (10.001, 10.021)	6 C carbon (2011 (12.019, 12.012)	7 N nitrogen Hotor (14.000, 14.000)	8 0 0xyygen 15 859 [15.966, 16.000]	9 F fluorine 10.993	10 Ne neon 20100
11 12 Na Mg sodum somesum	4 5	6 7	8	9	10	11	12	13 Al aluminium	14 Si slicon	15 P phosphorus	16 S sultur XIM	17 CI chlonine 34.6	18 Ar argon
22,990 [24,304, 24,307] 3 19 20 21	22 23	24 25	28	27	28	29	30	36.962	32	30,874	(32.059, 32.076) 34	(35.446, 35.457) 35	39.945
K Ca Sc potassium calcium scandium	TI V titanium vanacium	Cr Mn chromium manganes	12010/26325	Co	Ni	Cu	Zn	Ga	Ge	As arsenic	Se	Br bromine 79894	Kr krypton
39068 40.073(4) 44.958 37 38 39	47.887 50.942	51,995 54,008 42 43	55.545(2)	55.923 45	55.893 46	63.545(3) 47	68.38(2) 48	69.723 49	72,630(6)	74.922	78.971(8) 52	[79.901, 79.907] 53	83.798(2) 54
Rb Sr Y rubidum strontium yttrium	Zr Nb zirconium niobium	Mo Tc melybdenum tochnetur	Ru	Rh	Pd	Ag	Cd	In Indium	Sn	Sb	Te	Î Iodine	Xe
85.468 87.62 88.956	81.224(2) 92.906	95.95	101.07(2)	102,91	106.42	107.87	112,41	114.87	116,71	121.76	127.60(3)	126.90	121.29
65 66 57-71 Cs Ba barian barian	72 73 Hf Ta hefnium tentsium	W Re tungsten	76 Os	77 Ir iridum	78 Pt platinum	79 Au gold	B0 Hg mercury	81 TI thellium	Pb lead	83 Bi bismuth	Po potenium	85 At astatine	86 Rn radon
132.91 137.25	1/8.40(2) 180.05	163.84 186.21	190.23(3)	192.22	195.08	198.97	200.69	[204.38, 204.39]	257.2	206.98			
87 88 89-103 Fr Ra tranclum radium actinoids	104 105 Rf Db rutherfordium	106 107 Sg Bh seatorgium bohnum	108 Hs hassium	109 Mt metherium	110 DS darmstadtium	111 Rg roentgenium	Cn copernicium	113 Nh nhonium	114 FI fierovlum	115 Mc moscovium	116 Lv Ivemorium	117 Ts tennessine	0g oganesson
	57 58	59 60	61	62	63	54	65	66	67	68	69	70	71
	La Ce Ianthanum cerlum	Pr Nd praseodymlum neodymlur	Pm	Sm	Eu europium	Gd gedolinium	Tb terblum	Dy dysprosium	Ho	Er erblum	Tm	Yb ytterblum	Lu
	138.91 140.12 89 90	91 92	93	150.36(2) 94	151.95	157.25(3) 96	158.93	162.50	154.93 99	167.25	168.50	173.05	103
INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY	Ac Th scinum thorium	Pa U protectinium 231.04 258.03	Np	Pu	Am	Cm	Bk berkeitum	Cf	Es	Fm	Md mendelevium	No	Lr

For notes and updates to this table, see www.iupac.org. This version is dated 28 November 2015. Copyright © 2016 UPAC, the International Union of Pare and Applied Chemistry.

Rows are across and called Periods. Columns down are called Groups

The Periodic	c Sy	vster	n o	fthe	e Ele	eme	ents											
s-block eleme	ents			d-block elements								p-block elements						
_				I							·							
H hydrogen noe 11.0078, 1.00521 2 3 4		group Key	ar	J	UPAC	Period	dic Tal	ole of t	the Ele	ement	13 5	14	15 7	roups	17 9	18 He helum 43020 10		
Li Be thium (54)	3	Symbo name standard start w	wight.	trans	sition 7	n met	als.	10	11	12	B baron 1080 13 Al aluminium 26.662	C carbon (2011 (12.003, 12.012) 14 Si silicon (26.05), 26.006 (26.05), 26.006	N ntrogen w.or pt4.cot, 14.coty 15 P phosphorus 30.874	0 covygen 15 89 p15.666, 16.000 16 S sulfur 32.068, 32.076	F Ruothe 10.933 17 Cl chothe 29.46 13.446, 13.457	Ne neon 20.100 18 Ar argon 20.945		
19 20 Ca potassium saces 4curra;4)	21 Sc scandium 44,958	22 Ti titanium 47,887	23 V vanadium 50.942	24 Cr chromium	25 Mn manganese 54.008	28 Fe iron 55.645(2)	27 Co cobalt	28 Ni nickel 53.833	29 Cu copper 63.546(3)	30 Zn 200 8538(2)	31 Ga gallum 65,723	32 Ge germanium 72.630(8)	33 As arsenic 74.922	34 Se selenium 78.971(8)	35 Br bromine 70064 (70.907, 70.907)	36 Kr krypton 83.798(2)		
37 38 Rb Sr rubidum stromfum	39 Y yttrium	40 Zr zirconium	41 Nb nicblum	42 Mo melybdenum	43 TC technetium	44 Ru ruthonium	45 Rh modlum	46 Pd palladum	47 Ag silver	48 Cd cadmium	49 In Indium	50 Sn 80	51 Sb antimony	52 Te tellurium	53 lodine	S4 Xe xonon		
caesium banum	57-71 landhanoida	72 Hf hefnium	73 Ta tantalum	74 W tungsten	75 Re therium	101.07(2) 76 OS comum	102,91 77 Ir indum	78 Pt platinum	107 67 79 Au gold	80 Hg mentury	81 TI thallium 32638	82 Pb lead	83 Bi bismuth	84 Po polonium	85 At astatice	86 Rn radan		
87 88 Fr Ra trancium radium	89-103 actinoida	17849(2) 104 Rf rutherfordium	105 Db dubnium	106 Sg seatorglum	107 Bh bohrtum	108 HS hassium	109 Mt meitnerium	110 DS darmstadium	196.97 111 Rg roentgenium	112 Cn copernicium	113 113 Nh nihonium	114 FI ferovlum	115 MC moscovium	116 Lv Ilvermorium	117 Ts tennessine	118 Og oganesson		
		57	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Fu	64 Gd	65 Th	66 Dv	67 Ho	68 Er	e9 Tm	70 Yh	71 1 11		

57 La Ianthanum 138.91	58 Ce certum 140.12	59 Pr praseodymlum 140.91	60 Nd neodymlum 144.24	61 Pm promethium	62 Sm samarium 150.36(2)	63 Eu europium 151.96	64 Gd gadolinium 157.25(3)	65 Tb terblum 158,90	66 Dy dysprosium 162.50	67 Ho holmlum 154,93	68 Er erblum 167.25	69 Tm thulum 189.90	70 Yb ytterblum 173.05	71 Lu sutetium
89 Ac actinum	90 Th thorium	91 Pa protactinium 20104	92 U uranium 236/03	93 Np reptunium	94 Pu plutonium	95 Am ameridum	96 Cm aunum	97 Bk berkeitum	98 Cf californium	99 Es einsteinium	100 Fm Sermium	101 Md mendelevium	102 No nobelium	103 Lr tewrenctur

For notes and updates to this table, see www.iupac.org. This version is dated 28 November 2016. Copyright © 2016 UPAC, the International Union of Pure and Applied Chemistry.

lanthanides and actinides

	several oxidation states.										8						
+1	+2	2 d-block elements -3 -2 -1															
+1	+2		+3 -3 -2 -1														
+1	+2	+3	+2 +3 +4	+2 +3 +5	+2 +3 +4 +6	+2 +3 +4 +7	+2 +3	+2 +3	+1 +2	+1 +2	+2	+3	+4	-3	-2	-1	
+1	+2	+3	+4	+3 +5	+3 +6	+4 +6 +7	+3 +4	+3	+2 +4	+1	+2	+3	+4	+5	-2	-1	
+1	+2	+3	+4	+5	+6	+4 +6 +7	+3 +4	+3 +4	+2 +4	+1 +3	+1 +2	+3	+4	+5	+6	-1	
+1	+2	+3	+4									+3	+4	+5	+6		

+3 +4	+3	+3	+3	+2 +3	+2 +3	+3	+3	+3	+3	+3	+3	+2 +3	+3
+4	+4 +5	+3 +4 +5 +6	+3 +4 +5 +6	+3 +4 +5 +6	+3 +4 +5 +6	+3 +4	+3 +4	+3 +4	+3	+3	+2 +3	+2 +3	+3

[§] also called "transition metals"

Characteristic Properties of d-block Elements

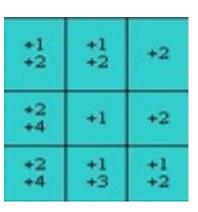
d-block elements have properties, which result from the **partially filled d shell** b Not observed in s-, p-block (main group) elements

	Fe ^{ll}	Fe ^{III}	Coll	Cull	AI	Cr ^{III}
Hydrated Ion	[Fe(H ₂ O) ₆] ²⁺ Pale green Soln	[Fe(H ₂ O) ₆] ³⁺ Yellow/brown Soln	[Co(H ₂ O) ₆] ²⁺ Pink Soln	[Cu(H ₂ O) ₆] ²⁺ Blue Soln	Colourless	[Cr(H ₂ O) ₆] ³⁺ Green Soln
OH [−] , dilute	[Fe(H ₂ O) ₄ (OH) ₂] Dark green Ppt	[Fe(H ₂ O) ₃ (OH) ₃] Brown Ppt	[Co(H ₂ O) ₄ (OH) ₂] Blue/green Ppt		White	[Cr(H ₂ O) ₃ (OH) ₃] Green Ppt
OH [−] , concentrated		[Fe(H ₂ O) ₃ (OH) ₃] Brown Ppt	[Co(H ₂ O) ₄ (OH) ₂] Blue/green Ppt		[Al(OH)₄] [−] Colourless Soln	[Cr(OH) ₆] ^{3–} Green Soln
NH ₃ , dilute	[Fe(H ₂ O) ₄ (OH) ₂] Dark green Ppt	[Fe(H ₂ O) ₃ (OH) ₃] Brown Ppt	[Co(H ₂ O) ₄ (OH) ₂] Blue/green Ppt	[Cu(H ₂ O) ₄ (OH) ₂] Blue Ppt	White	[Cr(H ₂ O) ₃ (OH) ₃] Green Ppt
NH ₃ , concentrated	[Fe(H ₂ O) ₄ (OH) ₂] Dark green Ppt	[Fe(H ₂ O) ₃ (OH) ₃] Brown Ppt	[Co(NH ₃) ₆] ²⁺ Straw coloured Soln	Deep blue	White	[Cr(NH ₃) ₆] ³⁺ Green Soln
CO3 ²⁻	FeCO ₃ Dark green Ppt	[Fe(H ₂ O) ₃ (OH) ₃] Brown Ppt + bubbles	CoCO ₃ Pink Ppt	CuCO ₃ Blue/green Ppt	-	precipitate solution

Colours of Various Example Coordination Complexes

Color due to d - d electronic transitions

Characteristic Properties of d-block elements



https://courses.lumenlearning.com/trident-boundless-chemistry/chapter/properties-of-transition-metals/ 2022.4.6

From left to right, aqueous solutions of: cobalt(II) nitrate, $Co(NO_3)_2$ (red); potassium dichromate, $K_2Cr_2O_7$ (orange); potassium chromate, K_2CrO_4 (yellow); nickel(II) chloride, NiCl₂ (green); copper(II) sulfate, CuSO₄ (blue); potassium permanganate, KMnO₄ (violet).

Why

10	11	12
28 Ni stat	29 Cu copper 81.54(2)	30 Zn 200 85.70(2)
46 Pd periadum	47 Ag	48 Cd cadmium
78 Pt phinese 19500	29 Au gold TBLAY	an Hg Hereitary

- Pd Palladium Pt Platinum
- Ag Silver (Argentum) Au Gold (Aurum)
 Cd Cadmium Hg Mercury (hydrargyram) "liquid silver"
- Most transition metals have several oxidation states.
- Mn exists in 11 oxidation states -3 up to +7
- Transition metals and their compounds are usually brightly colored.

Metal Complexes

Metal complexes are coordination compounds

When metals are dissolved in water they react with water and form hydrated compounds:

 $Na(H_2O)_6^+$ or $Cu(H_2O)_6^+$

- These are called metal complexes or coordination compounds
- The neutral molecules H₂O, NH₃ or anions CN⁻, SCN⁻, CH₃COO⁻ are called **ligands**

 $CuSO_4 + 6 H_2O \rightarrow Cu(H_2O)_6^{2+} + SO_4^{2-}$

 $Cu(H_2O)_6^{2+} + 4 NH_3 \rightarrow Cu(NH_3)_2(H_2O)_4^{2+} + 4 H_2O$

Ligand exchange

From left to right, aqueous solutions of: cobalt(II) nitrate, $Co(NO_3)_2$ (red); potassium dichromate, $K_2Cr_2O_7$ (orange); potassium chromate, K_2CrO_4 (yellow); nickel(II) chloride, NiCl₂ (green); copper(II) sulfate, CuSO₄ (blue); potassium permanganate, KMnO₄ (violet).

Coordination chemistry

Alfred Werner and the historical development of the ideas of coordination chemistry

Alfred Werner – in the late 1800's the father of coordination chemistry.

- Studied in Switzerland at the University of Zurich.
- He lectured in both organic and inorganic chemistry.
- He developed the theory of coordination chemistry.
- He prepared and studied coordination compounds and discovered optically active forms of 6coordinate octahedral complexes.
- His coordination chemistry extended through a whole range of systematic inorganic chemistry and into organic chemistry and he was awarded the Nobel Prize in Chemistry in 1913.
- He was the first inorganic chemist to win the Nobel prize, and the only one prior to 1973.

Nobel Lecture

http://nobelprize.org/chemistry/laureates/1913/wern er-lecture.html 10

Alfred Werner: Coordination Chemistry

Werner's Conclusions:

Coordination complexes are neutral and counter ions are not bonded to the central metal ion but balance the charge.

For example:

+3 0 -3 [Co(NH₃)₆]Cl₃ **ℂ** counter ions

- 1. The ligands directly **coordinated to the metal** are contained within the square bracket.
- 2. Six NH_3 ammine groups are bonded to Co.
- **3. 3 chloride ions are not bonded to the Co**; these are **counter ions**, they balance the charge (Co³⁺) they are "free" to react with AgNO₃ to give 3 moles of precipating AgCl.

Reactions of Inorganic Ions

2.1 Reactions of inorganic ions (page 24-45 in manual, Experiment 1-3)

Main theme: *"Inorganic compounds are prepared, separated, and purified by relatively simple methods in aqueous solutions".* [Chemistry in aqueous solutions]

You will learn basic procedures in the experiments providing better understanding of

- ionic equilibria in aqueous solutions and
- elementary concepts of ion complexes.

This chapter is divided into **3 parts**:

- 1. Isolation of a target cation from the sample solution containing metal ions by precipitation of the corresponding salt that forms upon the addition of an appropriate reagent to the sample solution. In this step, the insoluble salt is precipitated by the appropriately chosen combination of a metal cation and an anion species or by adjusting the conditions, such as the pH or temperature of the solution.
- 2. The resulting precipitate is re-dissolved in water to obtain a solution containing the target metal ion. The solution is then subjected to a reaction in which the target ion forms a precipitate or gives color to the solution due to the formation of a metal-ion complex.
- Analysis of an unknown sample containing multiple metal ions using the experimental approaches (e.g., reactions to detect specific metal ions and separation of the precipitate) learned in this chapter.

Reactions of Inorganic Ions

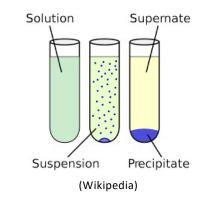
- 2.1.2 Dissolving salts (page 26 in manual)
- Many inorganic compounds are ionic compounds (mainly salts) that are composed of metal-element cations and nonmetal-element anions. (Product of acid-base neutralization)
- The ions in these compounds are attracted to each other by electrostatic forces and form ionic crystals (simple example: rock salt NaCl is Na⁺ Cl⁻)
- When ionic crystals are put in water, the positively charged Cations and negatively charged Anions exposed on its surface interact with water molecules. (dissolution)
- Water molecules are always electrically attracted to dissolved ions and combine with them (hydrate them).
- In general, solubility of salts in water varies, depending on the balance of two forces: the attractive force between the two types of ions in the ionic crystal (lattice energy) and the attractive force between each ion and water molecules (hydration energy).
- Salts can be classified into two categories: those that are soluble in water and those that are insoluble in water.

The following salts are **classified as soluble**:

- metal nitrates;
- metal halides (chlorides, bromides, and iodides), except silver(I) halides and mercury(I) halides;
- metal sulfates, except calcium(II), strontium(II), barium(II), silver(I), mercury(I), and lead(II) salts;
- sodium salts;
- potassium salts;
- ammonium salts.

The following salts are **classified as insoluble**:

- metal hydroxides, except sodium hydroxide, potassium hydroxide, and ammonium hydroxide (although these compounds are not salts (why?), they are included here for your convenience; also, please, note that barium hydroxide is soluble);
- metal carbonates;
- metal phosphates;
- metal sulfides, except salts of calcium(II), strontium(II) and barium(II)}.


However, solubility of these compounds sometimes varies drastically depending on the pH or temperature.

Approximate solubilities of salts in water and acids are listed in Table 2.1. (page 29 in the nanual)

Solubility

2.1.3 Water-soluble salts and solubility (page 28 in manual)

"The definition of solubility is the maximum quantity of solute (the compound to be dissolved) that can dissolve in a certain quantity of solvent or quantity of solution at a specified temperature or pressure (in the case of gaseous solutes)"

- Solutions of around 10⁻² M in concentration (0.02 M) are usually used in this class for experiments on inorganic ions (e.g. AgNO₃ 0.05 M (molar concentration, molarity (mol/L)).
- Substances with solubilities exceeding 10⁻² M are classified as soluble.
- Sparingly soluble substances have solubilities below 10⁻⁵ M (< 0.00001 M).
- When the concentration of a specific ion in the supernatant (supernate) decreases to around 10⁻⁵ M (0.00001 M) after precipitation, the ion remaining in the supernatant cannot be detected in reactions with common reagents.
- Salts with solubilities between 10⁻² and 10⁻⁵ M are considered to lie in the intermediate range between soluble and sparingly soluble.
- Water solubility of most salts increases with increasing the temperature.
- Salts with low solubility for example, those with solubility around 10⁻⁸ M at room temperature even if the solubility increases 100-fold upon heating, its dissolution still cannot be visually observed because the solubility remains 10⁻⁶ M.

Solubility

Example

- The solubility of PbCl₂ is 9.9 g/L at 20°C and 33.4 g/L at 100°C, respectively. In the units of M, the solubility of PbCl₂ at 20°C is 3.6 x 10⁻² M, since the formula weight (g/mol) of PbCl₂ is 278.1, and the solution density can be approximated as 1.0 g/mL. (Can you calculate it?)^{*}
- When precipitate of PbCl₂ is formed from a 0.05 M Pb(NO₃)₂ solution at 20 °C, the amount of precipitate is estimated as 0.014 mol (3.9 g), as shown below:

 $0.05 \text{ M} - 3.6 \times 10^{-2} \text{ M} = 1.4 \times 10^{-2} \text{ M}$

(Solubility of $PbCl_2 \Rightarrow 3.6 \times 10^{-2} \text{ M} \Rightarrow Pb^{2+}$ remains in solution in presence of Cl^-)

If this suspension is heated from 20 °C to 100 °C, the precipitate dissolves completely because the solubility at 100 °C is 33.4 g/L. This corresponds to a concentration of 0.12 M, which is larger than 0.05 M of the sample. (The solution becomes undersaturated)

You will learn about the relationship between temperature dependency of solubility and solubility product using PbCl₂, which is between soluble and sparingly soluble. You will also learn how to analyze inorganic ions by separating Class I metals (Ag⁺, Pb²⁺), which form sparingly soluble chlorides.

*
$$C\left[\frac{mol}{L}\right] = \frac{m[g]}{V[L]} \times \frac{1}{mw\left[\frac{g}{mol}\right]}$$

Solubility Equilibria

The Solubility-Product Constant, K_{sp}

- We just mentioned those solubility rules that state a substance is insoluble or soluble. Substances with solubilities exceeding 10⁻² M are classified as soluble. Substances that have solubilities below 10⁻⁵ M are insoluble (But actually they are all a bit soluble!)
- Soluble is also sometimes practically defined as "greater than 3 grams dissolving in 100 mL of water". So, there is a lot of wiggle room for solubility up to 3 grams! This type of equilibrium deals with that wiggle room.
- If you can actually see that a salt is insoluble, then the solution is actually saturated. Saturated solutions of salts present yet another type of chemical equilibria.
- Sparingly soluble salts establish a dynamic equilibrium with the hydrated cations and anions in solution
- When the solid is first added to water, no ions are initially present.
- As dissolution proceeds, the concentration of ions increases until equilibrium is established. This occurs when the solution is saturated.

The equilibrium constant, the K_{sp}, is no more than the product of the ion concentrations at this equilibrium in solution. (!Remember, solids do not appear in equilibrium expressions!)

Solubility Equilibria

• For a saturated solution of AgCl, the equation would be:

 $AgCl(s) \rightleftharpoons Ag^+(aq) + Cl^-(aq)$

• The solubility product expression would be:

$$K_{sp} = [Ag^+][CI^-]$$

Conventionally for concentrations and activities, square brackets [] are used around the chemical molecular formula: here mol/L

• The AgCl(s) does not appear in the equilibrium expression since solids are left out. Why? The concentration of the solid remains relatively constant.

A table of K_{sp} values is on page 30 in the manual.

In practice, K_{sp} values are determined by careful laboratory measurements using various spectroscopic methods.

Relative solubilities can be deduced by comparing values of $K_{sp.}$. BUT, BE CAREFUL! These comparisons can only be made for salts having the same ION:ION ratio. Please don't forget: Solubility changes with temperature! Some substances become less soluble in cold water while other increase in solubility! Aragonite CaCO₃ is an example₁₈

The Common Ion Effect

Experiments show that the solubility of any salt is always less in the presence of a "common ion" e.g., excess Cl⁻ in the case of AgCl precipitation.

 $\stackrel{\text{t}}{\to}$ "The solubility products K_{sp} 's are equilibrium constants in heterogeneous equilibria (i.e., between two different phases). If several salts are present in a system, they all ionize in the solution. If the salts contain a common cation or anion, all these salts contribute to the concentration of the common ion. \Rightarrow Contributions from all salts must be included in the calculation of concentration of the common ion." https://chem.libretexts.org/Core/Physical_and_Theoreti cal_Chemistry/Equilibria/Solubilty/Common_lon_Effect

$$NaCl \Leftrightarrow [Na^{+}]_{1} + [Cl^{-}]_{1} \implies [Cl^{-}]_{total} = [Cl^{-}]_{1} + [Cl^{-}]_{2}$$
$$KCl \Leftrightarrow [K^{+}]_{2} + [Cl^{-}]_{2}$$

The common ion concentration is the sum of all concentrations of the common ion

Saturated solution: $PbCl_2(s) \rightleftharpoons Pb^{2+}(aq) + 2Cl^{-}(aq)$

What happens if "extra" chloride is added to the solution? (e.g. by adding KCl) \bigvee PbCl₂ will precipitate!

Why? *Le Chatelier's Principle*! According to the law of mass action, the addition of a salt containing the ion common to the precipitate (common ion) shifts the equilibrium of the whole system to the direction of the precipitate (in our case to the left) by increasing solid lead (II) chloride. In fact, the solubility of PbCl₂ decreases by adding the common ion!

Le Chatelier Principle

In chemistry, Le Chatelier's principle (1884) can be used to predict the effect of a change in conditions on a chemical equilibrium. The principle is named after Henry Louis Le Chatelier and sometimes Karl Ferdinand Braun who discovered it independently. It can be summarized as:

If a chemical system at equilibrium experiences a change in concentration, temperature, volume, or partial pressure, then the equilibrium shifts to counteract the imposed change and a new equilibrium is established.

This principle has a variety of names, depending upon the discipline using it. It is common to take Le Chatelier's principle to be a more general observation, roughly stated:

Any change in status quo prompts an opposing reaction in the responding system.

In chemistry, the principle is used to manipulate the outcomes of reversible reactions, often to increase the yield of reactions.

Solubility and Complex Ions

- > The formation of complex ions can often dissolve otherwise insoluble salts.
- Often as the complex ion forms, the solubility equilibrium shifts to the right (away from the solid) and causes the insoluble salt to become more soluble.
- Example: If sufficient aqueous ammonia is added to silver chloride, the latter can be dissolved as [Ag(NH₃)₂]⁺ forms.

AgCl (s)
$$\implies$$
 Ag⁺(aq) + Cl⁻(aq) $K_{sp} = 1.8 \times 10^{-10}$

$$Ag^{+}(aq) + 2 NH_{3}(aq) \rightleftharpoons [Ag(NH_{3})_{2}]^{+}(aq)$$
 $K_{formation} = 1.6 \times 10^{7}$

Add these two equations together and determine the new K value.

SUM: AgCl (s) + 2 NH₃ (aq)
$$\rightleftharpoons$$
 Ag(NH₃)₂]⁺(aq) + Cl⁻ (aq)
 $K = K_{sp} \times K_{formation} = 2.9 \times 10^{-3} = \{ [Ag(NH_3)_2^+ \} [Cl^-] \}$

That is a significant improvement regarding the solubility of AgCl(s). The equilibrium constant for dissolving silver chloride in ammonia is not large. If the concentration of ammonia is sufficiently high; the complex ion will form:

Systematic Analysis of Cations

- **2.2 Systematic analysis of cations** (page 34 in manual; Experiment 2)
- By using the information on solubility of salts and properties of complex ions described before, a systematic analysis of cations is possible.
- In this course, metal ions are broadly grouped into four classes (Class I to Class IV) based on solubility (see Table 2.1, page 29).
- Salts that belong to the same class are separated into the respective individual ions through reactions with appropriate reagents.
- The presence of a specific ion can be confirmed by using a **REAGENT THAT SPECIFICALLY REACTS WITH THAT ION**.
- In this section you will learn about conditions under which sulfides and hydroxides of metal ions form and about confirmatory reactions for each ion.

Metal Sulfides

2.2.1 Reactions of metal ions with hydrogen sulfide and the formation and decomposition of sulfides

- Hydrogen sulfide (H₂S) is often used for the precipitation of sulfides.
- In this experiment, hydrogen sulfide is generated by the decomposition of thioacetamide in water because of the high toxicity of hydrogen sulfide (H₂S) gas. Thioacetamide is hydrolyzed to generate hydrogen sulfide (H₂S).

 $CH_3CSNH_2 + 2 H_2O \rightarrow CH_3COO^-NH_4^+ + H_2S$

- This reaction is catalyzed by an acid (H+) or a base (OH–) and initiated on heating. Thus, the general method for preparation of metal sulfides, the reaction of a metal ion with hydrogen sulfide, can be substituted by adding an acid or a base to a mixed solution of a metal ion and thioacetamide while heating it.
- **Decomposition of thioacetamide** must be **carried out under a fume hood**, because a part of the hydrogen sulfide generated during the reaction is released from the reaction vessel in the form of gas.

Metal Sulfides

- Because the solubility of sulfides varies with the pH of the solution, sulfides of some metallic ions do not precipitate from an acidic solution. Thus, the catalyst (acid or base) for the decomposition of thioacetamide should be selected carefully.
- The fact that the solubility of sulfides is pH dependent can be explained by the chemical equilibrium that establishes between S²⁻, and H⁺ in solution.

 $H_2S \rightleftharpoons H^+ + HS^-$

 $HS^{-} \rightleftharpoons H^{+} + S^{2-}$

(check details on equilibrium constants in the manual!)

The result is:

 $[H^+]^2 [S^{2-}] = 1.2 \times 10^{-23} M^3$ (saturated solution of H₂S (0.1 M at 25 °C))

- According to above Equation, under strongly acidic conditions, when pH = 0 and [H⁺] = 1 M, [S²⁻] is equal to 1.2 x 10⁻²³ M.
- Given that the concentration of a metal ion is 0.05 M, the product of ion concentrations in the solution is calculated as 6 x 10⁻²⁵ M².
- Thus, for example, Zn²⁺ does not form a precipitate of ZnS under these conditions because K_{sp}(ZnS) is 1 x 10⁻²³ M² (Table 2.2; page 30), whereas Cu²⁺ does form a precipitate of CuS under the same conditions because K_{sp}(CuS) is 6 x 10⁻³⁶ M².

Metal Sulfides

- Assuming that pH = 9 ([H⁺] = 10⁻⁹ M) in a basic aqueous solution, [S²⁻] is estimated as 1.2 x 10⁻⁵ M according to the Equation equilibrium of [H⁺]² [S²⁻] = 1.2 x10⁻²³ M³
- As a result, both Zn²⁺ and Ni²⁺ (K_{sp}(NiS) = 3 x 10⁻¹⁹ M²) do form precipitates of ZnS and NiS, respectively. ([Zn²⁺], [Ni²⁺] 0.05 M)

 $[Zn^{2+}][S^{2-}] = 6 \times 10^{-7} M^2 > K_{sp}(ZnS) > K_{sp}(NiS)$

- Because the aqueous solution of sodium sulfide (Na₂S)_{aq} is basic, metal ions that form sparingly soluble salts react with Na₂S to form sulfides on the basis of similar principle.
- Based on the pH dependence of [S²⁻], metal sulfides that do not form a precipitate in an acidic solution may dissolve upon addition of a strong acid, which generates hydrogen sulfide.
- In actual experiments, dissolution of metal sulfides with an acid is not always consistent with the prediction based on the solubility product. For example, the dense precipitate of NiS that forms when exposed to heat does not dissolve in 1 M HCl or in acids of similar strength. Some sulfides that can precipitate in a strongly acidic solution dissolve in a HNO₃ solution, in which S²⁻ is oxidized.

You will learn about the properties and reactions of sulfides .

Metal Hydroxides

2.2.2 Metal hydroxides (page 38 in manual; Experiment 2)

- Solubility of hydroxides that form a sparingly soluble precipitate with cations is affected by the hydrogen ion concentration [H⁺] in the solution.
- For example, $Fe(OH)_3$ is in equilibrium with the component ions in the solution as shown in Equation below.

$$Fe^{3+} + 3 OH^{-} \Longrightarrow Fe(OH)_{3}(s)$$

The solubility constant is expressed as

 $K_{\rm sp} = [{\rm Fe}^{3+}][{\rm OH}^{-}]^3 = 1 \times 10^{-38} {\rm M}^4$

the dissociation constant of water (also called ionic product of water) is expressed as $[H^+][OH^-] = K_w = 1.0 \times 10^{-14} M^2$

 \clubsuit The concentration of Fe³⁺ can then be expressed as

$$[Fe^{3+}] = [H^+]^3 \times 10^4 \qquad [Fe^{3+}] = \frac{1 \times 10^{-38} M^4}{[OH^-]^3} = \frac{1 \times 10^{-38} M^4}{\left[\frac{1 \times 10^{-14}}{[H^+]}\right]^3} = [H^+]^3 \times 10^4$$

Thus, if the pH of a Fe³⁺ solution is 3 ([H⁺] = 1.0×10^{-3} M), [Fe³⁺] can be estimated to be 10^{-5} M. Therefore, almost all (99.98%) of Fe³⁺ precipitates from the 0.05 M Fe³⁺ solution (pH = 1.8) that we use. 26

Metal Hydroxides

- On the basis of the solubility product of metal hydroxides, Al³⁺ can be precipitated completely under weakly acidic conditions (pH = 6). (cf. calculation for Fe³⁺)
- However, Ni(OH)₂ with K_{sp} = 6.5 x 10⁻¹⁸ has [Ni²⁺] equal to 0.07 M (> 0.05 M) at this pH and no precipitate is formed. This indicates that a target metal ion can be separated as a precipitate of metal hydroxide by adjusting the pH of the solution appropriately. To maintain the pH of a solution at a constant level, a buffer may be used.
- It is expected that many metal ions can precipitate as hydroxides in a basic solution, assuming that the concentration of the hydrogen ion and the solubility product are the sole major factors.
- However, when pH increases gradually in a solution of amphoteric metal ions, (e.g. Al³⁺) the precipitate formed at the early-stage dissolves to form metal hydroxocomplex ions under strong basic conditions.
- This peculiar property of amphoteric metal ions can be used to separate specific metal ions from a mixture of metal hydroxides. For example, Fe³⁺ and Al³⁺ can be discriminated (separated) in a mixed solution containing both ions; one forms a hydroxide precipitate while the other forms a metal hydroxocomplex in solution.

You will learn about metal hydroxides and their properties and reactions.

2.3 Separation and confirmation of mixed inorganic ions (analysis of an unknown sample) (page 41 in manual; Experiment 3)

- Sections 2.1 and 2.2 introduced the formation and dissolution of a precipitate as a result of reactions between the metal ion and an anion, the formation of complex ions, and confirmatory reactions of metal ions.
- This knowledge allows for separating one metal ion from a mixture with another metal ion, as shown in Table 2.4. (page 42)
- An ion can be separated from the mixed solution from another ion (other ions) based on the difference in their properties as described in the corresponding column of Table 2.4.
- Since some precipitates of sulfides and hydroxides and complex metal ions exhibit characteristic color, reactions that form colored substrates are useful in identifying specific metal ions.
- **However,** in order to positively identify a metal ion from the result of a characteristic reaction, it is important to ascertain that the target metal ion is free from contamination by another metal that may form a precipitate of a similar color.
- You should not rely on a single reaction to identify the target metal ions. Rather several different reactions should be used to identify them with certainty.

- In this section, your understanding of the principles learned in the previous sections of this chapter will be put to test in experiments that aim to identify an individual metal ion in an unknown sample that contains two or three metals selected from the seven metal ions in Table 2.4.
- Table 2.4 suggests that the following precipitation reactions make it possible to separate the target metal ions (see Figure 2.2; page 43):
- \succ (i) Ag⁺ can be separated as the sole precipitate (R_I) from others in a reaction with the Cl⁻ ion at high temperature. All the other ions remain in the supernatant (F_I).
- (ii) Pb²⁺ and Cu²⁺ can be separated as the next precipitates (R_{II}) in the reaction of the supernatant F₁ with H₂S under acidic conditions. Al³⁺, Fe³⁺, Zn²⁺, and Ni²⁺ remain in the supernatant F_{II}.
- (iii) Next, Al³⁺ and Fe³⁺ are separated as precipitates R_{III} of the corresponding hydroxide, while Zn²⁺ and Ni²⁺ remain in the supernatant F_{III}, when an excess of NH₃ is added to the supernatant F_{II} that makes it basic.
- Thus, according to this protocol, a mixed solution of seven metal ions is separated roughly to the following four groups:
- Precipitate of AgCl (R_I), a mixed precipitate of PbS and CuS (R_{II}), a mixture of Al³⁺ and Fe³⁺ (R_{III}), and a supernatant containing Zn²⁺ and Ni²⁺ ions (F_{III}).

- In the next stage, the metal ions are separated from each group (in actual experiments, sometimes one metal ion is the sole component of a specific group). Metal ions should be identified based on confirmatory reactions.
- These processes are summarized as a flow chart in Figure 2.2. In this systematic analysis, metal ions are divided into four groups:
- \succ Class I (Ag⁺ and Pb²⁺), which form sparingly soluble halides (R₁),
- > Class II (Pb²⁺, Cu²⁺, and Sn⁴⁺), whose sulfides precipitate in an acidic aqueous solution (R_{II}),
- Class III (Fe³⁺, Al³⁺, and Cr³⁺), whose hydroxides precipitate in a weakly acidic or neutral aqueous solution (R_{III}),
- > Class IV (Zn^{2+} , Ni^{2+} , and Co^{2+}), whose sulfides precipitate in a basic aqueous solution (R_{IV}).
- Although Pb²⁺ belongs to both Class I and Class II in this classification, the most effective capture of Pb²⁺ is to wash the precipitate R₁ with hot water to keep Pb²⁺ in solution F₁ and handle it as a Class II metal rather than a Class I metal.
- In addition, Ag⁺ in the sample solution should be excluded as precipitate of AgCl from F₁ as rigorously as possible. Otherwise, the remaining Ag⁺ will result in an incorrect identification of the sample because R₁₁ will be contaminated with Ag₂S.

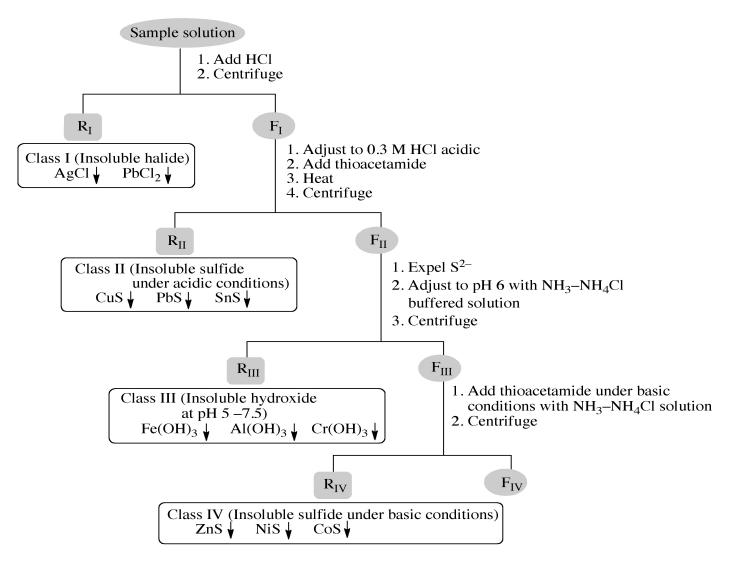


Figure 2.2 Systematic analyses of cations

Although "R" and "F" stand for the residue and filtrate "Residue" and "Filtrate", respectively, in this figure they mean the precipitate and supernatant in Figure 2.2.

31

"Chemistry Laboratory Manual", Shizuaki Murata, Fumi Urano, Masahiro Yoshimura, and Hideto Ito, 2018 Spring (fifth edition), Institute of Liberal Arts and Scieences, Nagoya University

1. Experiment in the Lab

- Bring your prepared laboratory notebook, saftey guide, writing utensils, pocket calculator, and textbook
- Safety glasses ("goggles")!! No sandals/heels!!
- Be in time (13:00) in front of the lab
- Store all of your belongings that are not required for your experiment in the lockers
- No beverages/food inside the lab!