STUDIUM GENERALE LECTURE - G30 PROGRAMS NAGOYA UNIVERSITY

Fossil Coral Reefs as a Window into the History of Sea-level and Climate Change

Marc Humblet, Assoc. Prof.

Department of Earth and Planetary Sciences, Nagoya University

Outline

> Today's global warming & sea level rise

- Case study: the Great Barrier Reef of Australia and the history of sea-level and climate change since 30,000 years ago
- The scientific method and the communication of scientific results

Global warming & sea level rise

°C

• The Earth is warming

Evidence from direct measurements of

Surface air temperature

Sea surface temperature

Surface air temperature

* Relative to average temperature over the period 1981-2010

Sea level is rising

Evidence from direct measurements using

Image credit: adapted from https://oceanservice.noaa.gov/facts/tide-gauge.html, https://www.cmar.csiro.au/sealevel/sl meas sat alt.html

Data source: Commonwealth Scientific and Industrial Research Organization (CSIRO)

- Why is it important to study sea level change?
 - 190 million people in the World living in coastal areas are directly exposed to sea level rise
 - Most at risk are developing countries in Asia
 - 20% of Japan population live in cities at elevations <10 m

Data from Kulp & Strauss (2019), Nature Communications Image credit: Hironobu Kan

©Wikipedia

Impacts of sea level rise

- Higher and more frequent coastal flooding
- Increased erosion of the coast

Image credit: Terry Chea/Associated Press (https://<u>www.eenews.net/special_reports/california_crumbling_coast/)</u>

- What are the causes of sea level rise?
 - Melting of ice on land(polar ice sheets, glaciers)

Increasing volume of ocean water as it warms

Image credit: http://www.bbc.com/earth/story/20160408-this-is-how-far-seas-could-rise-thanks-to-climate-change, Pixabay

RATES OF SEA LEVEL (SL) RISE SEPARATED BY SOURCE FOR THE PERIOD 1993-2003

Source of SL rise	Rate of SL rise (mm/year)	Potential SL rise
Thermal expansion	1.6 ± 0.5	0.3 m (+ 3°C)
Glaciers and ice caps	0.77 ± 0.2	0.4 m
Greenland ice sheet	0.21 ± 0.07	7 m
Antarctic ice sheet	0.21 ± 0.35	57 m
Observed total SL rise	3.1 ± 0.7	

Ice cap: surface area < 50,000 km² Ice sheet: surface area > 50,000 km²

Data source: Bertler & Barrett (2014), Changing Climates, Earth Systems and Society

Melting of Greenland ice sheet

1.7 x 10⁶km²

Potential sea level rise = 7m

Melting of Antarctic ice sheet

14 x 10⁶km²

Potential sea level rise = 57m

<u>Global change in sea level</u> related to <u>variation in the</u> <u>volume of ocean water</u>

VS.

Local change in sea level related to up/down movements of the land

Influence of up & down land movements

Illustration of a relative sea level fall caused by upward land movement

2007 M8.1 Solomon Islands earthquake raised land by 1-3 m

Image credit: Albert et al. (2007), Coral Reef

• How fast can sea level rise?

Today sea level is rising at a rate of 3.5 mm/year

...but how fast will it rise in the future?

Predicted sea level rise

* Depend on how much greenhouse gases (mainly CO₂) humanity will emit

https://www.eea.europa.eu/data-and-maps/figures/projected-change-of-global-mean 2021/7/2 Data source: IPCC (2013)

Has sea level ever been changing that fast in the past? How does the current sea level rise compare with sea level change in the past?

Is sea level capable of rising even faster?

To answer these questions, we need to study the history of sea level change

Reconstructing past sea level change

What do we need?

Features of the landscape that can be linked to sea level (sea level indicators) and that can resist the passing of time to be studied by geologists

Examples: marine notches, coral reefs

marine notches as sea level indicator

Image credit: Pirazolli & Evelpidou (2013)

Coral reefs as sea level indicator

Image credit: <u>http://www.coralsoftheworld.org/</u>

The position of coral reefs change with sea level

Method to reconstruct past sea level change

Fossil coral reefs - Okinawa

100,000-200,000 years old

Fossil coral reefs - Okinawa

Image credit: Marc Humblet (left); <u>http://www.coralsoftheworld.org/(</u>right)

Fossil coral reefs - The Seychelles Isl.

100,000-200,000 years old

Fossil coral reefs - The Seychelles Isl.

image credit: Nadine Hallmann

Past sea level change

Photo: Dr. Ron Blakey, Paleogeography and Geologic History of North America

Data source: https://www.dur.ac.uk/, Lisiecky & Raimo (2005)

Case study: The Great Barrier Reef of Australia and the history of sea-level and climate over the past 30,000 years

• Study case: Great Barrier Reef of Australia

OBJECTIVES:

Reconstruct sea level change since last Ice Age

Reconstruct the history of the Great Barrier Reef

The Great Barrier Reef of Australia

Data source: https://www.dur.ac.uk/, Lisiecky & Raimo (2005)

Were there coral reefs during the Last Ice Age?

If they were present, where should we look for their fossil remains today?

10,000 years ago -40 m

20,000 years ago -120 m

image credit : Google Earth

©Google Earth

Cairns

Townsville

submerged reef?

image credit : DOI: 10.1016/j.margeo.2007.08.001

Data source: Hinestrosa et al. (2016); JAMSTEC

How do we take samples?

IODP (Integrated Ocean Drilling Program) Expedition 325

Image credit: IODP

1 kyr = 1000 years

Image credit: IODP

Results

Data source: Yokoyama et al. (2018)

Data source: Deschamps et al. (2012)

What do we learn from these results?

- Models predicting future sea-level rise produce rates of 2.5
 2.51 to 10 mm/year by the end of the century.
- Study of fossil reefs show that sea level can change at rates several times higher than those predicted (up to 40 mm/year for sea level rise).

Is sea level capable of rising that fast in the future?
We need to investigate mechanisms that generate such fast sea level ize

Data source: IPCC (2013)

The scientific method and the communication of scientific results

Outline of the scientific method

- Define a problem to solve
 - Collect data to solve the problem (observations, experiments)
 - Analyze data (to extract useful information)
 - Formulate a hypothesis (tentative explanation)

image credit : https://www.irasutoya.com/

- Test your hypothesis against new data
- Reject / modify / keep as it is (depending on the new results obtained)

When scientists work on something, they want to share the results of their work with others.

Publication in a scientific journal

Scientific journals

Figure removed due to copyright restrictions.

Generalist

nature

Specialized

Economics

ECONOMETaRICA

Medicine

THE LANCET

Popular science magazines

SCIENTIFIC AMERICAN

Sience

PNAS

PLOS ONE

Open access Free online

Proceedings of the National Academy of Sciences of the United States of America

Experimental biology

Cell

Paleontology

Lethaia

Biology

American Journal of Potato Research

Current Biology

NewScientist

physicstoday

SCIENCE.fr

The peer review process

- The article is published if it meets editorial and peer standards
- 4. Reviewers read and provide feedback to editor

http://undsci.berkeley.edu/article/howscienceworks_16

Rapid glaciation and a two-step sea level plunge into the Last Glacial Maximum

Yusuke Yokoyama^{1,2,3}*, Tezer M. Esat^{4,5}, William G. Thompson⁶, Alexander L. Thomas⁷, Jody M. Webster⁸, Yosuke Miyairi¹, Chikako Sawada¹, Takahiro Aze¹, Hiroyuki Matsuzaki⁹, Jun'ichi Okuno¹⁰, Stewart Fallon⁴, Juan–Carlos Braga¹¹, Marc Humblet¹², Yasufumi Iryu¹³, Donald C. Potts¹⁴, Kazuhiko Fujita¹⁵, Atsushi Suzuki¹⁶ & Hironobu Kan¹⁷

The approximately 10,000-year-long Last Glacial Maximum, before the termination of the last ice age, was the coldest period in Earth's recent climate history¹. Relative to the Holocene epoch, atmospheric carbon dioxide was about 100 parts per million lower and tropical sea surface temperatures were about 3 to 5 degrees Celsius lower23. The Last Glacial Maximum began when global mean sea level (GMSL) abruptly dropped by about 40 metres around 31,000 years ago⁴ and was followed by about 10,000 years of rapid deglaciation into the Holocene¹. The masses of the melting polar ice sheets and the change in ocean volume, and hence in GMSL, are primary constraints for climate models constructed to describe the transition between the Last Glacial Maximum and the Holocene, and future changes; but the rate, timing and magnitude of this transition remain uncertain. Here we show that sea level at the shelf edge of the Great Barrier Reef dropped by around 20 metres between 21,900 and 20,500 years ago, to -118 metres relative to the modern level. Our findings are based

Figure removed due to copyright restrictions.

Information flow

Figure removed due to copyright restrictions. Images : The Asahi Shinbun, CNN, The Yomiuri Shinbun

Information flow

In the Internet Age, in which we are confronted to a flood of information on a regular basis, it is necessary to analyze information carefully and verify its source in order to take correct decisions

Thank you for your attention!

- HE