
Answers to Practice
Problems

Chapter 1

1.1 Let the Lagrange function of f0 be

L0 (a,u,v0)

= f0 (u) + LS (a,u,v0)

= f0 (u)− v0 · (K (a)u− p)

=
(
0 u2

)( 0
u2

)
−
(
v01 v02

)(eY
l

(
a1 + a2 −a2
−a2 a2

)(
u1

u2

)
−
(
p1
p2

))
,

where v0 ∈ R2 is an adjoint variable (Lagrange multiplier). The stationary
condition of L0 with respect to an arbitrary variation v̂0 ∈ U of v0,

L0v0 (a,u,v0) [v̂0] = LS (a,u, v̂0) = 0

holds when u satisfies the state equation. The stationary condition of L0

with respect to an arbitrary variation û ∈ U of u:

L0u (a,u,v0) [û] = f0u (u) [û]− LSu (a,u,v0) [û]

= 2
(
0 u2

)(û1

û2

)
− v0 · (K (a) û)

= −û ·
(
K⊤ (a)v0 −

(
0

2u2

))
= 0

holds when v0 satisfies

eY
l

(
a1 + a2 −a2
−a2 a2

)(
v01
v02

)
=

(
0

2u2

)
. (P.1.1)

Equation (P.1.1) is an adjoint equation with respect to f0. Moreover,
when u satisfies the state equation and v0 is the solution of Eq. (P.1.1),
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the following, which is the same as Eq. (1.1.36), can be obtained:

L0a (a,u,v0) [b] = f ′
0 (u (a)) [b]

= −
{
v0 ·

(
∂K (a)

∂a1
u

∂K (a)

∂a2
u

)}
b

= l
(
−σ (u1) ε(v01) −σ (u2 − u1) ε (v02 − v01)

)(b1
b2

)
= g0 · b.

1.2 If u satisfies minu∈R2 π (a,u),

πu (a,u) [û] = û · (K (a)u− p) = 0

holds with respect to an arbitrary û ∈ R2. In other words, it is satisfied
if u is the solution of the state determination problem (Problem 1.1.3).
Moreover, there exists α > 0 such that

πuu (a,u) [û, û] = û · (K (a) û) > α ∥û∥2R2 .

Hence, it can be confirmed that the solution u of the state determination
problem (Problem 1.1.3) is a minimizer of π (a,u). On the other hand, the
maximum point of π (a,u) with respect to a becomes the minimum point
of −π (a,u). When u is the solution to a state determination problem,

−πa (a,u) [b] = −1

2

{
u ·
(
∂K (a)

∂a1
u

∂K (a)

∂a2
u

)}
b

= −1

2

eY
l

(
u1u1 (u2 − u1) (u2 − u1)

)(b1
b2

)
=

1

2
g0 · b

holds with respect to an arbitrary b ∈ R2. Here, g0 expresses the vector
of Eq. (1.1.36).

1.3 Since u is obtained by Eq. (1.1.20),

f0 (u (a)) =

(
2

a1
+

1

a2

)2

.

As per Exercise 1.1.7, let

f̃0 (a1) = f0 (u (a1, 1− a1)) =

(
2

a1
+

1

1− a1

)2

.

Here, the values of a1 that satisfy

df̃0
da1

= 2

(
2

a1
+

1

1− a1

){
− 2

a21
+

1

(1− a1)
2

}
= 0
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are 2, 2−
√
2 and 2 +

√
2. The values of a2 with respect to these are −1,√

2− 1 and −
√
2− 1, respectively. Of these, the one satisfying a ≥ 0R2 is

determined when a =
(
2−

√
2,
√
2− 1

)⊤
. Moreover, due to the convexity

of f̃0 and f1, this a, which satisfies the KKT conditions, is the minimizer
of Practice 1.1.

1.4 The side constraint with respect to the cross-sectional area a1 in the
definition of admissible set D in Eq. (1.1.16) of design variable a becomes
active. Hence, in addition to f1 (a) ≤ 0, the second inequality constraint
is set to be

f2 (a) = a01 − a1 ≤ 0.

Here, the cross-sectional derivative of f2 is

f2a =

(
−1
0

)
= g2. (P.1.2)

If the Lagrange multiplier with respect to f2 ≤ 0 is set to be λ2, the KKT
conditions are given by

La (a, λ1, λ2) = g0 + λ1g1 + λ2g2 = 0R2 , (P.1.3)

Lλ1
(a, λ1, λ2) = f1 (a) = l (a1 + a2)− c1 ≤ 0,

Lλ2
(a, λ1, λ2) = f2 (a) = a01 − a1 ≤ 0,

λ1f1 (a) = 0,

λ2f2 (a) = 0,

λ1 ≥ 0,

λ2 ≥ 0.

With an optimal solution, f1 = 0, f2 = 0, λ1 > 0 and λ2 > 0. Here, if g0,
g1 and g2 of Eq. (1.1.28), Eq. (1.1.17) and Eq. (P.1.2), respectively, are
substituted into Eq. (P.1.3),

l

(
−σ (u1) ε (u1)

−σ (u2 − u1) ε (u2 − u1)

)
+ λ1

(
l
l

)
+ λ2

(
−1
0

)
=

(
0
0

)
.

Here, if the simultaneous linear equations with respect to λ1 and λ2 are
solved, we obtain(

λ1

λ2

)
=

(
σ (u2 − u1) ε (u2 − u1)

−lσ (u1) ε (u1) + lσ (u2 − u1) ε (u2 − u1)

)
= σ (u2 − u1) ε (u2 − u1)

(
1
l

)
.

1.5 Let us use the adjoint variable method. Equation (1.1.36) becomes

L0a (a,u,v0) [b]
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= −
{
v0 ·

(
∂K(a)

∂a1
u

∂K(a)

∂a2
u

)}
b

= −eY
l

(
v01 v02

)((2a1 0
0 0

)(
u1

u2

) (
2a2 −2a2
−2a2 2a2

)(
u1

u2

))
b

= −eY
l

(
2a1u1v01 2a2 (u2 − u1) (v02 − v01)

)
b

= g0 · b.

Here, if the self-adjoint relationship (Eq. (1.1.35)) is used, we get

g0 = −eY
l

(
2a1u

2
1

2a2 (u2 − u1)
2

)
.

The Hesse matrix is calculated as shown below. The second-order
derivative of the Lagrange function L0 with respect to arbitrary variations
(b1, û1) and (b2, û2) of the design variable (a,u) becomes Eq. (1.1.38).
Here, u and v0 are the solutions of the state determination problem
(Problem 1.1.3) and adjoint problem (Problem 1.1.5) with respect to the
design variable a. Furthermore, û1 and û2 are taken to be the variations
of u given that the state determination problem is satisfied with respect
to arbitrary variations b1 and b2 of a, respectively. That is,

û(a) [bi] =
∂u

∂a⊤ bi =

∂u1

∂a1

∂u1

∂a2
∂u2

∂a1

∂u2

∂a2

(bi1bi2
)

=

(
−2u1/a1 0
−2u1/a1 −2(u2 − u1)/a2

)(
bi1
bi2

)
.

Here, the second-order derivative of Lagrange function L0 is

(L0a (a,u,v0) [b1] + L0u (a,u,v0) [û(a) [b1]])a [b2]

+ (L0a (a,u,v0) [b1] + L0u (a,u,v0) [û(a) [b1]])u [û(a) [b2]]

= LSaa (a,u,v0) [u1,u2] + 2LSau (a,u,v0) [b1, û (a) [b2]]

= b1 ·
((

∂g0

∂a1

∂g0

∂a2

)
b2

)
− 2b1 ·

((
v⊤
0 Ka1

v⊤
0 Ka2

)(
−2u1/a1 0
−2u1/a1 −2(u2 − u1)/a2

)
b2

)
= −eY

l
b1 ·

((
2u1v01 0

0 2 (u2 − u1) (v02 − v01)

)
b2

)
− 2b1 ·

(
eY
l

(
2a1v01 0

−2a2 (v02 − v01) 2a2 (v02 − v01)

)
×
(
−2u1/a1 0
−2u1/a1 −2(u2 − u1)/a2

)
b2

)
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= −eY
l
b1 ·

((
2u1v01 0

0 2 (u2 − u1) (v02 − v01)

)
b2

)
− 2eY

l
b1 ·

((
−4u1v01 0

0 −4(u2 − u1)(v02 − v01)

)
b2

)
=

6eY
l

b1 ·
((

u1v01 0
0 (u2 − u1) (v02 − v01)

)
b2

)
.

Hence, if the self-adjoint relationship (Eq. (1.1.35)) is used, we get

H0 =
6eY
l

(
u2
1 0

0 (u2 − u1)
2

)
.

1.6 The cost function becomes

f (a) =
1

6
a1a2.

Hence,

g (a) =
1

6

(
a2
a1

)
, H =

1

6

(
0 1
1 0

)
.

Here, notice that the Hesse matrix H is not positive definite.

1.7 The potential energy of Problem 1.2.1 is given by extending Eq. (1.1.9) as

π (u) =

∫ l

0

1

2
σ (u) ε (u) a1 dx+ · · ·+

∫ nl

(n−1)l

1

2
σ (u) ε (u) an dx

− p · u

=
1

2

eY
l
a1u

2
1 + · · ·+ 1

2

eY
l
an (un − un−1)

2 − p1u1 − · · · − pnun.

The stationary conditions of π which correspond to Eq. (1.2.1) can be
written as

eY
l


a1 + a2 −a2 · · · 0 0
−a2 a2 + a3 · · · 0 0
...

...
. . .

...
...

0 0 · · · an−1 + an −an−1

0 0 · · · −an−1 an




u1

u2

...
un−1

un



=


p1
p2
...

pn−1

pn

 .

K (a) is the coefficient matrix of the left-hand side of this equation.
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1.8 We use p such that maxp∈R2 π (a,p) satisfies

− πp (a,p) [p̂] = p̂ · (A (a)p+ u) = 0

with respect to an arbitrary p̂ ∈ R2. Here, if p is the solution of the state
determination problem (Problem 1.3.1), then it is satisfied. Moreover,
there exists α > 0 which satisfies

− πpp (a,p) [p̂, p̂] = p̂ · (A (a) p̂) > α ∥p̂∥2R2 .

Hence, p which satisfies the state determination problem can be confirmed
to be the maximizer of π (a,p). On the other hand, when p is a solution
of the state determination problem,

πa (a,p) [b] = −1

2

{
p ·
(
∂A (a)

∂a1
p

∂A (a)

∂a2
p

)}
b

= − 1

(a20 + a21 + a22)
2

(
a1
{
a20p1 + a22 (p1 − p2)

}2
a2
{
a20p2 + a21 (p2 − p1)

}2
)

·
(
b1
b2

)

= −

u2
1

a1
u2
2

a2

 ·
(
b1
b2

)

=
1

2
g0 · b

holds with respect to an arbitrary b ∈ R2. Here, g0 represents the vector
of Eq. (1.3.19).

1.9 As in Fig. 1.5.2, let l = (l0, l1, l2)
⊤ ∈ R3 be the three lengths of a cylinder.

Here, the value dividing the sum of the three cylinder volumes by π is
given by

f (l0, l1, l2) = r20l0 + r21l1 + r22l2.

On the other hand, the geometric relationship leads to

h1 = l1 sin θ1 − α2 = 0,

h2 = l0 − α1 + l1 cos θ1 = 0,

h3 = l2 sin θ2 − β2 = 0,

h4 = l0 − β1 + l2 cos θ2 = 0.

Using these relationships, we can write

f (l0) = r20l0 + r21

√
α2
2 + (α1 − l0)

2
+ r22

√
β2
2 + (β1 − l0)

2
.

Here, the following can be obtained:

df

dl0
= r20 −

r21 (α1 − l0)√
α2
2 + (α1 − l0)

2
− r22 (α2 − l0)√

β2
2 + (β1 − l0)

2
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= r20 −
r21 (α1 − l0)

l1
− r22 (α2 − l0)

l2

= r20 − r21 cos θ1 − r22 cos θ2 = 0.

Chapter 2

2.1 The eigenvalues and eigenvectors of A are written as λ1 ≤ · · · ≤ λd ∈ R
and x1, . . . , xd ∈ Rd respectively. Here, the eigenvectors are mutually
orthogonal, hence the arbitrary vector x ∈ Rd can be written as

x =
∑

i∈{1,...,d}

xiξi

by using ξ = (ξ1, . . . , ξd)
⊤ ∈ Rd. Here, let ∥x1∥Rd = · · · = ∥xd∥Rd = 1.

Even with this, with respect to an arbitrary ξ ∈ Rd, arbitrary x ∈ Rd can
be obtained. Here, if A is positive definite, from Theorem A.2.1, λd ≥,
. . . , ≥ λ1 > 0. Hence, we get

x ·Ax =
∑

i∈{1,...,d}

λiξ
2
i ≥ λ1 ∥ξ∥2Rd = λ1 ∥x∥2Rd > 0

with respect to an arbitrary x ∈ Rd \ {0Rd}. Moreover, if A is a negative
definite, λd ≤, . . . , ≤ λ1 < 0. Hence,

x ·Ax =
∑

i∈{1,...,d}

λiξ
2
i ≥ λ1 ∥ξ∥2Rd = λ1 ∥x∥2Rd < 0

is obtained with respect to an arbitrary x ∈ Rd \ {0Rd}.

2.2 From Theorem 2.5.2, the required conditions for f to take a minimum
value are

∂f

∂x1
= ax1 + bx2 + d = 0,

∂f

∂x2
= bx1 + cx2 + e = 0.

These equations can be written as

g =

(
∂f/∂x1

∂f/∂x2

)
=

(
a b
b c

)(
x1

x2

)
+

(
d
e

)
=

(
0
0

)
.

The sufficient condition is shown by confirming that f is a convex function
based on Theorem 2.5.6. In order to do so, the Hesse matrix needs to be
shown to be positive semi-definite using Theorem 2.4.6. From

∂2f

∂x1∂x1
= a,

∂2f

∂x1∂x2
= b,

∂f

∂x2∂x2
= c,
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the Hesse matrix becomes

H =

(
a b
b c

)
.

If the positive definiteness of this matrix is shown by Sylvester’s criterion
(Theorem A.2.2), we get

a > 0,

∣∣∣∣a b
b c

∣∣∣∣ = ac− b2 > 0.

This relationship holds regardless of x ∈ R2. Furthermore, if b = (d, c)
⊤

is used, f (x1, x2) of this problem can be written as

f (x1, x2) =
1

2

(
x1 x2

)(a b
b c

)(
x1

x2

)
+
(
d c

)(x1

x2

)
=

1

2
x · (Hx) + b · x.

2.3 The problem can be written as

min
x∈R2

{f0 (x) = −x1x2| f1 (x) = 2 (x1 + x2)− c1 ≤ 0} .

Let λ1 ∈ R be a Lagrange multiplier with respect to the constraint of
the length of the sides of the rectangle, and the Lagrange function of this
problem be

L (x1, x2, λ1) = f0 (x) + λ1f1 (x) = −x1x2 + λ1 {2 (x1 + x2)− c1} .

The KKT conditions become

Lx1
= −x2 + 2λ1 = 0,

Lx2
= −x1 + 2λ1 = 0,

Lλ = f1 (x) = 2 (x1 + x2)− c1 ≤ 0,

λ1f1 (x) = λ1 {2 (x1 + x2)− c1} = 0,

λ1 ≥ 0.

From these, the KKT conditions are satisfied when

λ1 =
x1

2
=

x2

2
=

c1
8
.

This result indicates a square. The fact that the solution satisfying the
KKT conditions is a minimizer is shown below. f0 is not a convex function
(Exercise 2.4.9). However, f̃0 (x1) = f0 (x1,−x1 + c1/2) is a convex
function. Here, if it is viewed as an unconstrained minimization problem
of f̃0 (x1), it can be shown that (x1, x2) satisfying the KKT conditions is
a minimizer. Figure P.1 shows the status when c1 = 2.



Answers to Practice Problems 9

Fig. P.1: Function f0 (x) = −x1x2.

Chpter 3

3.1 If Eq. (3.5.7) showing the Newton–Raphson method is rewritten for f ,

xk+1 = xk − f (xk)

g (xk)
.

Moreover, if g (xk) is replaced by the difference,

xk+1 = xk − xk − xk−1

f (xk)− f (xk−1)
f (xk)

is obtained.

3.2 Let f
(
xk + ϵ̄gȳg

)
be f̄ (ϵ̄g), and furthermore

df̄

dϵ̄g
(ϵ̄g) = ḡ (ϵ̄g) = g

(
xk + ϵ̄gȳg

)
· ȳg.

In the strict line search method (Problem 3.4.1), ϵ̄g is determined so that

ḡ (ϵ̄g) = 0

is satisfied. When obtaining the solution of this non-linear equation using
the Newton–Raphson method, ϵ̄g l+1 = ϵ̄gl − ḡ (ϵ̄gl) /h (ϵ̄gl) should be
sought so that

ḡ (ϵ̄g l+1) = ḡ (ϵ̄gl) + h (ϵ̄gl) (ϵ̄g l+1 − ϵ̄gl) = 0

is satisfied. Here, h (ϵ̄gl) is a second-order derivative function of f̄ . When
using the secant method, we would set

h (ϵ̄gl) =
ḡ (ϵ̄gl)− ḡ (ϵ̄g l−1)

ϵ̄gl − ϵ̄g l−1

and use

ϵ̄g l+1 = ϵ̄gl −
ϵ̄gl − ϵ̄g l−1

ḡ (ϵ̄gl)− ḡ (ϵ̄g l−1)
ḡ (ϵ̄gl)

in order to obtain ϵ̄g l+1.
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3.3 In the conjugate gradient method, set x0 = 0X and ȳg0 = −g0 =
−g (x0) = −b, and calculate ϵ̄gk using Eq. (3.4.8) with respect to
k ∈ N∪{0}, and xk, gk, βk and ȳgk using from Eq. (3.4.9) to Eq. (3.4.12)
with respect to k ∈ N. Therefore, the following holds:

ȳk+1 ·
(
Bȳgk

)
=
(
−gk+1 + βk+1ȳgk

)
·
(
Bȳgk

)
=

(
−gk+1 +

gk+1 · gk+1

gk · gk

ȳgk

)
·
(
Bȳgk

)
=

{
−gk − ϵ̄gkBȳgk +

(
gk + ϵ̄gkBȳgk

)
·
(
gk + ϵ̄gkBȳgk

)
gk · gk

ȳgk

}
·
(
Bȳgk

)
=

{
−gk − ϵ̄gkBȳgk

+
gk · gk + 2ϵ̄gkgk ·

(
Bȳgk

)
+ ϵ̄2gk

(
Bȳgk

)
·
(
Bȳgk

)
gk · gk

ȳgk

}
·
(
Bȳgk

)
=

{
−gk − gk · gk

ȳgk ·
(
Bȳgk

) (Bȳgk

)}
·
(
Bȳgk

)
+ ȳgk ·

(
Bȳgk

)
+ 2gk ·

(
Bȳgk

)
+

(
Bȳgk

)
·
(
Bȳgk

)
ȳgk ·

(
Bȳgk

) gk · gk

=
(
gk + ȳgk

)
·
(
Bȳgk

)
= βkȳk−1 ·

(
Bȳgk

)
.

Here, ȳgk−1 ·gk = 0 was used because we use the strict line search. When

k = 0, from ȳg0 = −g0,
(
g0 + ȳg0

)
·
(
Bȳg0

)
= 0 is established. Therefore,

with respect to k ∈ N, ȳg k+1 ·
(
Bȳgk

)
= 0 holds.

3.4 The gradient g (a) and Hessian H of f (a) with respect to a variation
of a obtained in Practice 1.6 are used. The Newton method uses Hb =
−g (a0), that is,

1

6

(
0 1
1 0

)(
b1
b2

)
= −1

6

(
a02
a01

)
to obtain the search vector b. When solving this equation, we get(

b1
b2

)
= −

(
a01
a02

)
.

Here, the point updated using the first Newton method:(
a11
a12

)
=

(
a01
a02

)
+

(
b1
b2

)
=

(
a01 − a01
a02 − a02

)
=

(
0
0

)
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becomes the minimum point of f . The reason that the minimum point
could be obtained after using Newton method just once is because the
Taylor expansion of f is fully described by the gradient and the Hesse
matrix. In that case, it can be confirmed that the positive definiteness of
the Hesse matrix is not required.

Chapter 4

4.1 Let U and V be

U =
{
u ∈ H1 ((0, l)× (0, tT) ;R)

∣∣
u (0, t) = 0 for t ∈ (0, tT) , u (x, 0) = α (x) for x ∈ (0, l)

}
,

V =
{
v ∈ H1 ((0, l)× (0, tT) ;R)

∣∣
v (0, t) = 0 for t ∈ (0, tT) , v (x, 0) = 0 for x ∈ (0, l)

}
.

Select and fix an element u0 ofH
1 ((0, l)× (0, tT) ;R) satisfying u0 (x, 0) =

α (x). The first variation of f (u) with respect to an arbitrary v ∈ V
becomes

f ′ (u) [v]

=

∫ tT

0

{∫ l

0

(ρu̇v̇ − e∇u∇v + bv) aS dx+ pNv (l, t) aS (l, t)

}
dt

−
∫ l

0

ρβv (x, tT) aS dx

=

∫ tT

0

{∫ l

0

(−ρü+∇ (e∇u) + b) vaS dx

− (e∇u (l, t)− pN) v (l, t) aS (l)

}
dt

+

∫ l

0

ρ (u̇ (x, tT)− β) v (x, tT) aS dx.

Hence, the stationary condition of f (u) with respect to an arbitrary v ∈ V
is given by the condition such that f ′ (u) [v] = 0 with respect to u−u0 ∈ V .
In other words, we get

ρü−∇ (e∇u) = ρü−∇σ(u) = b for (x, t) ∈ (0, l)× (0, tT) ,

e∇u (l, t) = σ (u (l, t)) = pN for t ∈ (0, tT) ,

u̇ (x, tT) = β for x ∈ (0, l) .

At that time, for f (u) and f ′ (u) [v] to have meaning, we need the following
to hold:

ρ ∈ L∞ ((0, l) ;R) , α ∈ H1 ((0, l) ;R) , β ∈ L2 ((0, l) ;R) ,
b ∈ L2 ((0, l)× (0, tT) ;R) , pN ∈ L2 ((0, tT) ;R) .
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4.2 The first variation of the action integral f (u) with respect to an arbitrary
variation v ∈ V of u ∈ U becomes

f ′ (u, u̇) [v, v̇]

=

∫ tT

0

(
∂l

∂u
· v +

∂l

∂u̇
· v̇
)
dt

=

∫ tT

0

(
∂l

∂u
− d

dt

∂l

∂u̇

)
· v dt+

∂l

∂u̇
(tT) · v (tT)−

∂l

∂u̇
(0) · v (0)

=

∫ tT

0

(
∂l

∂u
− d

dt

∂l

∂u̇

)
· v dt.

With respect to an arbitrary v ∈ V , for f ′ (u, u̇) [v, v̇] = 0 to hold, the
Lagrange equation of motion needs to hold.

4.3 The first variation of the action integral f (u, q) with respect to an
arbitrary variation v ∈ V of u ∈ U and an arbitrary variation r ∈ Q
of q ∈ Q becomes

f ′ (u, q) [v, r]

=

∫ tT

0

(
−q̇ · v − ∂H

∂u
· v − ṙ · u− ∂H

∂q
· r
)
dt

=

∫ tT

0

{
−
(
q̇ +

∂H

∂u

)
· v +

(
u̇− ∂H

∂q

)
· r
}
dt.

With respect to an arbitrary v ∈ V and an arbitrary r ∈ Q, for
f ′ (u, q) [v, r] = 0 to hold, the Hamilton equation of motion needs to
hold. Moreover, when the Hamilton equation of motion holds,

˙H (u, q) =
∂H

∂u
· u̇+

∂H

∂q
· q̇ =

∂H

∂u
· ∂H

∂q
− ∂H

∂q
· ∂H

∂u
= 0

holds. Furthermore, with respect to a spring mass system of Fig. 4.1.1,
when the external force p = 0, since the momentum is given by q = mu̇,
we get

H (u, q) = −l (u, q) + qu̇ = −1

2
mu̇2 +

1

2
ku2 + qu̇ =

1

2
mu̇2 +

1

2
ku2.

In other words, it shows that when there are no external forces in play, the
sum of kinetic energy and potential energy becomes a Hamilton function
and that it is conserved.

4.4 If Y ⋐ Z, there exists some positive constant c and with respect to an
arbitrary x ∈ Y ,

∥x∥Z ≤ c ∥x∥Y
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holds. Here, if the definitions of norms (Definition 4.4.5) with respect to
Y ′ and Z ′ are used,

1

c
∥ϕ∥Y ′ = sup

x∈Y \{0Y }

|⟨ϕ,x⟩|
c ∥x∥Y

≤ sup
x∈Z\{0Z}

|⟨ϕ,x⟩|
∥x∥Z

= ∥ϕ∥Z′

is established with respect to an arbitrary ϕ ∈ Z ′. Therefore, from
∥ϕ∥Y ′ ≤ c ∥ϕ∥Z′ , Z ′ ⋐ Y ′ is obtained.

Chapter 5

5.1 From the fact that Dirichlet condition is given over the whole boundary,
U = H1

0 (Ω;R). In this case,∫
Ω

(−∆u+ u) v dx =

∫
Ω

(−∇ ·∇u+ u) v dx

= −
∫
∂Ω

v∇u · ν dγ +

∫
Ω

(∇u ·∇v + uv) dx

=

∫
Ω

(∇u ·∇v + uv) dx =

∫
Ω

bv dx

holds with respect to an arbitrary v ∈ U . Here, the weak form of this
problem becomes a problem seeking ũ = u− uD ∈ U satisfying

a (u, v) = l (v)

with respect to an arbitrary v ∈ U , where

a (u, v) =

∫
Ω

(∇u ·∇v + uv) dx, l (v) =

∫
Ω

bv dx.

For this weak-form solution to exist uniquely, the assumptions for the
Lax–Milgram theorem need to hold. U = H1

0 (Ω;R) is a Hilbert space.
Moreover, from the fact that

a (v, v) = ∥v∥2H1(Ω;R)

holds with respect to an arbitrary v ∈ H1
0 (Ω;R), a is coercive and

bounded. Hence, just l̂ ∈ U ′ needs to hold. With respect to l̂,∣∣∣l̂ (v)∣∣∣ ≤ ∫
Ω

|bv| dx+

∫
Ω

(|∇uD ·∇v|+ |uDv|) dx

≤ ∥b∥L2(Ω;R) ∥v∥L2(Ω;R) + ∥∇uD∥L2(Ω;Rd) ∥∇v∥L2(Ω;Rd)

+ ∥uD∥L2(Ω;R) ∥v∥L2(Ω;R)

≤
(
∥b∥L2(Ω;R) + ∥uD∥H1(Ω;R)

)
∥v∥H1(Ω;R)

holds. Therefore, we need b ∈ L2 (Ω;R) and uD ∈ H1 (Ω;R).
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5.2 The point xA is a boundary between a homogeneous Dirichlet and
homogeneous Neumann boundaries at which the opening angle is α =
π/2. From Theorem 5.3.2 (2), getting u ∈ H2

(
BA;R2

)
around the

neighborhood BA of the point xA, the point xA is not a singular point.
On the other hand, the point xB is a boundary between homogeneous
Neumann and non-homogeneous Neumann boundaries at which the
opening angle α is π/2. There is no singularity in the solution at this
angle from Theorem 5.3.2 (1). However, pN changes as a step function

around the neighborhood BB of xB as (0, 0)
⊤

and (0,−1)
⊤

across the
boundary Γp. From this, if we view it as pN ∈ L∞ (BB;R2

)
, we have

u ∈ C0,1
(
BB;R2

)
which is not included in H2

(
BB;R2

)
.

5.3 The function space with respect to this problem is set as

U =
{
u ∈ H1

(
(0, tT) ;H

1
(
Ω;Rd

)) ∣∣ u = 0Rd on ΓD × (0, tT) ,

u = 0Rd on Ω× {0, tT}
}
.

Assume uD0, uD⊤ ∈ H1
(
Ω;Rd

)
and uD ∈ H1

(
(0, tT) ;H

1
(
Ω;Rd

))
.

Furthermore, assume b ∈ L2
(
(0, tT) ;L

2
(
Ω;Rd

))
, pN ∈

L2
(
(0, tT) ;L

2
(
ΓN;Rd

))
. Here, the weak form of this problem can

be obtained by multiplying an arbitrary v ∈ U to the first equation,
integrating with Ω × (0, tT) and using the fundamental boundary
conditions as follows. “Obtain ũ = u− uD ∈ U which satisfy∫ tT

0

(b (u̇, v̇)− a (u,v) + l (v)) dt = 0

with respect to an arbitrary v ∈ U , where let

b (u,v) =

∫
Ω

ρu · v dx,

a (u,v) =

∫
Ω

S(u) ·E(v) dx,

l (v) =

∫
Ω

b · v dx+

∫
ΓN

pN · v dγ.”

5.4 Let the function space with respect to ϕ be

U =
{
ϕ ∈ H1

(
Ω;Rd

) ∣∣ ϕ = 0Rd on ΓD

}
.

In this case, substituting u (x, t) = ϕ (x) eλt with respect to ϕ ∈ U into
ρü⊤ − ∇⊤S (u) = 0⊤

Rd , integrating this equation over Ω after having
an arbitrary v ∈ U multiplied by it, and considering the fundamental
boundary condition u = uD on ΓD × (0, tT), the weak form of the natural
frequency problem can be obtained as below. “Obtain (ϕ, λ) ∈ U × C
satisfying

λ2b (ϕ,v) + a (ϕ,v) = 0
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with respect to an arbitrary v ∈ U .”

Commentary This problem is an eigenvalue problem (the equation
is an eigen equation) on a function space U . In this problem, if a
non-negative definiteness (coerciveness including 0) of a (·, ·) and positive
definiteness (coverciveness) of b (·, ·) are considered, eigenpairs (ϕi, λi)i∈N
of the number of dimensions of U , which is the same as a countably infinite
number, exist. In this case, λ2

i ≤ 0, in other words, λi = ±iωi (i is
the imaginary unit) is derived. From this result, ϕi (x)

(
eiωit + e−iωit

)
=

ϕi cosωit becomes a solution of the eigen value problem and ωi and ϕi

are called eigenfrequencies and eigenmodes.

5.5 Let the function space with respect to u and p be as follows respectively:

U =
{
u ∈ H1

(
(0, tT) ;H

1
(
Ω;Rd

)) ∣∣
u = 0Rd on ∂Ω× (0, tT) ∪ Ω× {0}

}
,

V =
{
u ∈ H1

(
(0, tT) ;H

1
(
Ω;Rd

)) ∣∣
u = 0Rd on ∂Ω× (0, tT) ∪ Ω× {tT}

}
,

P =

{
p ∈ L2

(
(0, tT) ;L

2 (Ω;R)
) ∣∣∣∣ ∫

Ω

p dx = 0

}
.

Here, if an arbitrary v ∈ V is used to multiply the Navier–Stokes equation
and integrate it over (0, tT) × Ω, and a basic boundary condition u =
uD on ∂Ω × (0, tT) ∪ Ω × {0} is considered, a weak-form equation with
respect to the Navier–Stokes equation can be obtained. On the other
hand, if an arbitrary q ∈ P is used to multiply through the equation of
continuity and integrate it over (0, tT)×Ω, the weak form with respect to
the equation of continuity can be obtained. This can be written as below.
“Obtain (u− uD, p) ∈ U ×Q which satisfies∫ tT

0

(b(u̇,v) + c(u)(u,v) + a(u,v) + d(v, p)) dt =

∫ tT

0

l (v) dt,∫ tT

0

d(u, q) dt = 0

with respect to an arbitrary (v, q) ∈ U ×Q, where we let

a (u,v) =

∫
Ω

µ
(
∇u⊤) · (∇v⊤) dx,

b (u,v) =

∫
Ω

ρu · v dx,

c(u)(w,v) =

∫
Ω

ρ ((u ·∇)w) · v dx,

d (v, q) = −
∫
Ω

q∇ · v dx,

l (v) =

∫
Ω

b · v dx+

∫
ΓN

pN · v dγ.”
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(a) Compression and tension (b) Coordinate system rotated
in anti-clockwise direction by π/4

Fig. P.1: Deformation with shearing stress

5.6 When a stress such as that in Fig. P.1 (a) occurs, the linear strain becomes

ε11 = −ε22 =
1 + νP
eY

σ0. (P.5.1)

On the other hand, in a coordinate system which is just one π/4 rotation
in the anti-clockwise direction such as in Fig. P.1 (b),

ε11 =
γ′
12/

√
2√

2
=

γ′
12

2
= ε′12 =

σ0

2µL
(P.5.2)

holds. From Eq. (P.5.1) and Eq. (P.5.2), eY = 2µL (1 + νP) holds.

Chapter 6

6.1 The weak form of this problem can be written as

a (u, v) + c (u, v) = l1 (v) (P.6.1)

with respect to an arbitrary v : (0, 1) → R satisfying v (0) = v (1) = 0,
where a ( · , · ) and l1 ( · ) use the definitions in Exercise 6.1.5. Moreover,
let

c (u, v) =

∫ 1

0

uv dx.

The result when approximate functions uh and vh are substituted in
a (u, v) and l1 (v) is as per Exercise 6.1.5. Here, if uh and vh are substituted
in c (u, v), we get

c (uh, vh) =

∫ 1

0

 ∑
i∈{1,...,m}

αi sin(iπx)


 ∑

j∈{1,...,m}

βj sin(jπx)

 dx

= β⊤Cα.
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Here, C = (c (sin(iπx), sin(jπx)))ij and

c (sin(iπx), sin(jπx))

=

∫ 1

0

sin(iπx) sin(jπx) dx

= −1

2

∫ 1

0

[cos {(i+ j)πx} − cos {(i− j)πx}] dx =
1

2
δij .

From the answer to Exercise 6.1.5 and the result above, Eq. (P.6.1)
becomes

(A+C)α = f .

In other words,
π2

2


1 0 0 · · · 0
0 4 0 · · · 0
0 0 9 · · · 0
...

...
...

. . .
...

0 0 0 · · · m2

+
1

2


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1






α1

α2

α3

...
αm



=
1

π


2
0
2/3
...{

(−1)m+1 + 1
}
/m

 ,

or

i2π2 + 1

2
αi =

(−1)i+1 + 1

iπ
.

If this simultaneous linear equation is solved,

αi =
2
{
(−1)i+1 + 1

}
iπ (i2π2 + 1)

is obtained. Therefore, the approximate function becomes

uh =
∑

i∈{1,...,m}

2
{
(−1)i+1 + 1

}
iπ (i2π2 + 1)

sin (iπx) .

6.2 The weak form of this problem is given by Eq. (P.6.1). a (u, v) and l1 (v)
with approximate functions uh and vh substituted in are as shown in
Exercise 6.2.1. Here, if uh and vh are substituted in c (u, v), we get

c (uh, vh) =
∑

i∈{1,...,m}

∫ xi

xi−1

uhvh dx =
∑

i∈{1,...,m}

ci (uh, vh) ,
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ci (uh, vh)

=
(
vi(1) vi(2)

)
∫ xi

xi−1

φi(1)φi(1) dx

∫ xi

xi−1

φi(1)φi(2) dx∫ xi

xi−1

φi(2)φi(1) dx

∫ xi

xi−1

φi(2)φi(2) dx

(ui(1)

ui(2)

)

= v̄i · C̄iūi = v̄ ·Z⊤
i C̄iZiū = v̄ · C̃iū.

Here, C̄i = (c̄iαβ)α,β ∈ R2 becomes

c̄i11 =

∫ xi

xi−1

φi(1)φi(1) dx =
1

(xi − xi−1)
2

∫ xi

xi−1

(xi − x)
2
dx

=
xi − xi−1

3
,

c̄i12 = c̄i21 =

∫ xi

xi−1

φi(1)φi(2) dx

=
1

(xi − xi−1)
2

∫ xi

xi−1

(xi − x) (x− xi−1) dx =
xi − xi−1

6
,

c̄i22 =

∫ xi

xi−1

φi(2)φi(2) dx =
1

(xi − xi−1)
2

∫ xi

xi−1

(x− xi−1)
2
dx

=
xi − xi−1

3
.

In other words,

C̄i =
xi − xi−1

6

(
2 1
1 2

)
.

Matrix C̄, which is the sum of all elements, becomes

C̄ =
h

6


2 1 0 0 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1
0 0 0 1 2

 .

Therefore, the approximate equation becomes 1

h

 2 −1 0
−1 2 −1
0 −1 2

+
h

6

4 1 0
1 4 1
0 1 4

u1

u2

u3

 = h

1
1
1

 .

Supplementary The integrals on the finite element are simplified
if the domain is changed to a standard domain. Let the mapping
ξ : (xi−1, xi) → (0, 1) be

ξ =
x− xi−1

h
,
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where h = xi − xi−1. Here, the Jacobian becomes

dξ

dx
= h.

The base function becomes

φi(1)(x) =
xi − x

h
= 1− ξ = φ̂i(1)(ξ),

φi(2)(x) =
x− xi−1

h
= ξ = φ̂i(2)(ξ).

This time, C̄i can be calculated as

c̄i11 =

∫ 1

0

φ̂i(1)φ̂i(1)h dξ = h

∫ 1

0

(1− ξ)2 dξ = h

∫ 1

0

η2 dη =
h

3
,

c̄i12 = c̄i21 =

∫ 1

0

φ̂i(1)φ̂i(2)h dξ = h

∫ 1

0

(1− ξ)ξ dξ =
h

6
,

c̄i22 =

∫ 1

0

φ̂i(2)φ̂i(2)h dξ = h

∫ 1

0

ξ2 dξ =
h

3
.

6.3 Let us think about a domain Ωi of a triangular finite element such as in
Fig. P.1. Here, with respect to the cross product of two vectors xi(2)−xi(1)

and xi(3) − xi(1),

2 |Ωi| e3

=

xi(2)1 − xi(1)1

xi(2)2 − xi(1)2

0

×

xi(3)1 − xi(1)1

xi(3)2 − xi(1)2

0


=

∣∣∣∣∣∣
e1 e2 e3

xi(2)1 − xi(1)1 xi(2)2 − xi(1)2 0
xi(3)1 − xi(1)1 xi(3)2 − xi(1)2 0

∣∣∣∣∣∣
=

∣∣∣∣∣∣
0 0 1

xi(2)1 − xi(1)1 xi(2)2 − xi(1)2 0
xi(3)1 − xi(1)1 xi(3)2 − xi(1)2 0

∣∣∣∣∣∣ e3
=

∣∣∣∣∣∣
0 0 1

xi(2)1 − xi(1)1 xi(2)2 − xi(1)2 0
xi(3)1 − xi(1)1 xi(3)2 − xi(1)2 0

∣∣∣∣∣∣+
∣∣∣∣∣∣
xi(1)1 xi(1)2 0
xi(1)1 xi(1)2 1
xi(1)1 xi(1)2 1

∣∣∣∣∣∣
 e3

=

∣∣∣∣∣∣
xi(1)1 xi(1)2 1
xi(2)1 xi(2)2 1
xi(3)1 xi(3)2 1

∣∣∣∣∣∣ e3 = γe3

holds, where e1, e2 and e3 are unit orthogonal vectors of x1, x2 and x3

coordinate systems. Hence, γ = 2 |Ωi| is obtained.

6.4 Let the finite elements with finite element numbers {3, 5}, {4, 6}, {1, 7}
and {2, 8} be called Type 1, Type 2, Type 3 and Type 4, respectively.
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Fig. P.1: Triangular Ωi and points xi(1), xi(2) and xi(3).

The result from Exercise 6.3.2 is used with respect to Type 1 and Type 2.
With respect to Type 3, γ = h2, |Ωi| = h2/2 and

η1
η2
η3

 =
1

γ

xi(2)2 − xi(3)2

xi(3)2 − xi(1)2

xi(1)2 − xi(2)2

 =
1

h2

−h
h
0

 ,

θ1
θ2
θ3

 =
1

γ

xi(3)1 − xi(2)1

xi(1)1 − xi(3)1

xi(2)1 − xi(1)1

 =
1

h2

−h
0
h

 .

Therefore,

Ā1 =
1

2

 2 −1 −1
−1 1 0
−1 0 1

 , b̄1 =
h2

6

1
1
1



is obtained. With respect to Type 4 too, in a similar way, γ = h2, |Ωi| =
h2/2 and

η1
η2
η3

 =
1

h2

 0
h
−h

 ,

θ1
θ2
θ3

 =
1

h2

−h
h
0

 ,

Ā2 =
1

2

 1 −1 0
−1 2 −1
0 −1 1

 , b̄2 =
h2

6

1
1
1



can be obtained. On the other hand, the local node number and total
node numbers can be made correspondent in the way shown in Table P.1.
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Table P.1: The relationship between the local nodes xi(1), xi(2), xi(3) and total
nodes xj .

i ∈ E 1 2 3 4 5 6 7 8
xi(1) x1 x4 x2 x2 x4 x4 x5 x8

xi(2) x4 x5 x5 x6 x7 x8 x8 x9

xi(3) x2 x2 x6 x3 x8 x5 x6 x6

Type 3 4 1 2 1 2 3 4

If a sum of all elements is taken, Ā and l̄ become

Ā =
1

2



2 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −2 0 0 0 0
0 −1 2 0 0 −1 0 0 0
−1 0 0 4 −2 0 −1 0 0
0 −2 0 −2 8 −2 0 −2 0
0 0 −1 0 −2 4 0 0 −1
0 0 0 −1 0 0 2 −1 0
0 0 0 0 −2 0 −1 4 −1
0 0 0 0 0 −1 0 −1 2


,

l̄ =
h2

6



1
4
1
4
4
4
1
4
1


.

Here, the fundamental boundary conditions u1 = u2 = u3 = u4 = u7 = 0
and v1 = v2 = v3 = v4 = v7 = 0 and h = 1/2 can be used to obtain

8 −2 −2 0
−2 4 0 −1
−2 0 4 −1
0 −1 −1 2



u5

u6

u8

u9

 =
1

12


4
4
4
1

 .

Solving this, we get
u5

u6

u8

u9

 =
1

16× 12


3 2 2 2
2 6 2 4
2 2 6 4
2 4 4 12



4
4
4
1

 =
1

96


15
22
22
26

 .

6.5 With respect to a finite element i ∈ E in Fig. 6.4.7, a standard domain is set
to be Ξi = (0, 1)

2
. The isoparametric representations of the approximate
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functions and coordimates become

ûh (ξ) =
∑

α∈{1,...,4}

φ̂α (ξ)uiα = φ̂ (ξ) · ūi,

v̂h (ξ) =
∑

α∈{1,...,4}

φ̂α (ξ) viα = φ̂ (ξ) · v̄i,

x̂h1 (ξ) =
∑

α∈{1,...,4}

φ̂α (ξ)xi1α = φ̂ (ξ) · x̄i1,

x̂h2 (ξ) =
∑

α∈{1,...,4}

φ̂α (ξ)xi2α = φ̂ (ξ) · x̄i2.

Here, let xi1(2) − xi1(1) = h1 and xi2(2) − xi2(1) = h2 and
λ11

λ12

λ21

λ22

 =


(
xi1(2) − x1

)
/h1(

x1 − xi1(1)

)
/h2(

xi2(2) − x2

)
/h1(

x2 − xi2(1)

)
/h2

 =


(1− ξ1)

ξ1
(1− ξ2)

ξ2

 ,

φ̂ =


φ̂1 (ξ)
φ̂2 (ξ)
φ̂3 (ξ)
φ̂4 (ξ)

 =


(1− ξ1)(1− ξ2)

ξ1(1− ξ2)
ξ1ξ2

(1− ξ1)ξ2

 .

In this case,

∂ξφ̂α (ξ) =

(
∂φ̂α/∂ξ1
∂φ̂α/∂ξ2

)
=

(
∂x̂1/∂ξ1 ∂x̂2/∂ξ1
∂x̂1/∂ξ2 ∂x̂2/∂ξ2

)(
∂φ̂α/∂x1

∂φ̂α/∂x2

)
=

(
h1 0
0 h2

)(
∂φ̂α/∂x1

∂φ̂α/∂x2

)
holds. Hence,(

∂φ̂α/∂x1

∂φ̂α/∂x2

)
=

1

ω (ξ)

(
∂x̂2/∂ξ2 −∂x̂2/∂ξ1
−∂x̂1/∂ξ2 ∂x̂1/∂ξ1

)(
∂φ̂α/∂ξ1
∂φ̂α/∂ξ2

)
=

1

h1h2

(
h2 0
0 h1

)(
∂φ̂α/∂ξ1
∂φ̂α/∂ξ2

)
can be obtained, where(

∂φ̂1/∂ξ1 ∂φ̂2/∂ξ1 ∂φ̂3/∂ξ1 ∂φ̂4/∂ξ1
∂φ̂1/∂ξ2 ∂φ̂2/∂ξ2 ∂φ̂3/∂ξ2 ∂φ̂4/∂ξ2

)
=

(
−(1− ξ2) (1− ξ2) ξ2 −ξ2
−(1− ξ1) −ξ1 ξ1 (1− ξ1)

)
.

Using this result, the element coefficient matrix Āi = (āiαβ)αβ ∈ R4×4

becomes

āiαβ =

∫
Ωi

(
∂φα/∂x1

∂φα/∂x2

)
·
(
∂φβ/∂x1

∂φβ/∂x2

)
dx
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=

∫
Ξi

(
∂φ̂α/∂x1

∂φ̂α/∂x2

)
·
(
∂φ̂β/∂x1

∂φ̂β/∂x2

)
ω (ξ) dξ

=
1

h1h2

∫
Ξi

(
∂φ̂α

∂ξ1

∂φ̂α

∂ξ2

)(
h2 0
0 h1

)(
h2 0
0 h1

)(
∂φ̂β/∂ξ1
∂φ̂β/∂ξ2

)
dξ

=

∫
Ξi

(
h2

h1

∂φ̂α

∂ξ1

∂φ̂β

∂ξ1
+

h1

h2

∂φ̂α

∂ξ2

∂φ̂β

∂ξ2

)
dξ.

Letting σ = h2/h1, we get

āi11 =

∫
Ξi

[
σ {−(1− ξ2)}2 + σ−1 {−(1− ξ1)}2

]
dξ =

1

3

(
σ + σ−1

)
.

From these calculations we get

Āi =
1

6


2σ + 2σ−1 −2σ + σ−1 −σ − σ−1 σ − 2σ−1

−2σ + σ−1 2σ + 2σ−1 σ − 2σ−1 −σ − σ−1

−σ − σ−1 σ − 2σ−1 2σ + 2σ−1 −2σ + σ−1

σ − 2σ−1 −σ − σ−1 −2σ + σ−1 2σ + 2σ−1

 .

The known term vector l̄i =
(
l̄iα
)
α
∈ R4 becomes

l̄iα =

∫
Ωi

bφ̂α dx = b0

∫
Ξi

φ̂α (ξ)ω (ξ) dξ.

Therefore,

l̄i = b0h1h2



∫
Ξi

(1− ξ1)(1− ξ2) dξ∫
Ξi

ξ1(1− ξ2) dξ∫
Ξi

ξ1ξ2 dξ∫
Ξi

(1− ξ1)ξ2 dξ


=

b0h1h2

4


1
1
1
1

 .

6.6 Let Ξ = (0, 1)
2
be a standard domain. With respect to α ∈ {1, . . . , 4}, let

φ̂(α)(ξ) are basis functions on Ξ. Here, the following holds:

ε (ξ) =

 ε11
ε22
2ε12

 =


∂uh1

∂x1
∂uh2

∂x2
∂uh2

∂x1
+

∂uh1

∂x2
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=


∂φ̂1

∂x1

∂φ̂2

∂x1

∂φ̂3

∂x1

∂φ̂4

∂x1
0 0 0 0

0 0 0 0
∂φ̂1

∂x2

∂φ̂2

∂x2

∂φ̂3

∂x2

∂φ̂4

∂x2
∂φ̂1

∂x2

∂φ̂2

∂x2

∂φ̂3

∂x2

∂φ̂4

∂x2

∂φ̂1

∂x1

∂φ̂2

∂x1

∂φ̂3

∂x1

∂φ̂4

∂x1





u11

u12

u13

u14

u21

u22

u23

u24



=
1

ω(ξ)


∂x̂2

∂ξ2

∂φ̂1

∂ξ1
− ∂x̂2

∂ξ1

∂φ̂1

∂ξ2

∂x̂2

∂ξ2

∂φ̂2

∂ξ1
− ∂x̂2

∂ξ1

∂φ̂2

∂ξ2
0 0

−∂x̂1

∂ξ2

∂φ̂1

∂ξ1
+

∂x̂1

∂ξ1

∂φ̂1

∂ξ2
−∂x̂1

∂ξ2

∂φ̂2

∂ξ1
+

∂x̂1

∂ξ1

∂φ̂2

∂ξ2
∂x̂2

∂ξ2

∂φ̂3

∂ξ1
− ∂x̂2

∂ξ1

∂φ̂3

∂ξ2

∂x̂2

∂ξ2

∂φ̂4

∂ξ1
− ∂x̂2

∂ξ1

∂φ̂4

∂ξ2
0 0

−∂x̂1

∂ξ2

∂φ̂3

∂ξ1
+

∂x̂1

∂ξ1

∂φ̂3

∂ξ2
−∂x̂1

∂ξ2

∂φ̂4

∂ξ1
+

∂x̂1

∂ξ1

∂φ̂4

∂ξ2

0 0

−∂x̂1

∂ξ2

∂φ̂1

∂ξ1
+

∂x̂1

∂ξ1

∂φ̂1

∂ξ2
−∂x̂1

∂ξ2

∂φ̂2

∂ξ1
+

∂x̂1

∂ξ1

∂φ̂2

∂ξ2
∂x̂2

∂ξ2

∂φ̂1

∂ξ1
− ∂x̂2

∂ξ1

∂φ̂1

∂ξ2

∂x̂2

∂ξ2

∂φ̂2

∂ξ1
− ∂x̂2

∂ξ1

∂φ̂2

∂ξ2

0 0

−∂x̂1

∂ξ2

∂φ̂3

∂ξ1
+

∂x̂1

∂ξ1

∂φ̂3

∂ξ2
−∂x̂1

∂ξ2

∂φ̂4

∂ξ1
+

∂x̂1

∂ξ1

∂φ̂4

∂ξ2
∂x̂2

∂ξ2

∂φ̂3

∂ξ1
− ∂x̂2

∂ξ1

∂φ̂3

∂ξ2

∂x̂2

∂ξ2

∂φ̂4

∂ξ1
− ∂x̂2

∂ξ1

∂φ̂4

∂ξ2





u11

u12

u13

u14

u21

u22

u23

u24


= B (ξ) ūi,

where ω(ξ) = det
(
∂ξx

⊤). The element coefficient matrix becomes

Ki =

∫
Ωi

B⊤(x)DB(x) dx =

∫
Ξ

B⊤(ξ)DB(ξ)ω(ξ) dξ.

Here, the integral of the right-hand side can be obtained by the Gaussian
quadrature.

Chapter 8

8.1 When the θ-type elastic problem (Problem 8.9.2) was made into a state
determination problem, a self-adjoint relationship was obtained with
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respect to the mean compliance f0 defined by Eq. (8.9.6). Similarly,
when the θ-type Poisson problem (Problem 8.2.3) is made into a state
determination problem, if

f0 (u) =

∫
D

b (θ)u dx+

∫
ΓN

pNu dγ −
∫
ΓD

ϕα (θ)uD∂νu dγ

is taken to be an objective function, the self-adjoint relationship is
obtained. Moreover, the θ-derivative of f0 becomes

f̃ ′
0 (θ) [ϑ] = ⟨g0, ϑ⟩ =

∫
D

(
2bθu− αϕα−1ϕθ∇u ·∇u

)
ϑ dx.

8.2 The θ-type expanded Poisson problem becomes as below.

Problem P.8.1 (θ-type expanded Poisson problem) Let D be a
d ∈ {2, 3}-dimensional Lipschitz domain. With respect to θ ∈ D,
b ∈ C1

(
D;L2qR (D;R)

)
, cΩ ∈ L∞ (D;R), pB ∈ L2qR (∂D;R), c∂Ω ∈

L∞ (∂D;R) are assumed to be given, where let qR > d. Here, obtain
u : D → R that satisfies

−∇ · (ϕα (θ)∇u) + cΩu = b (θ) in D,

ϕα (θ) ∂νu+ c∂Ωu = pB on ∂D.

□

Let the Lagrange function with respect to Problem P.8.1 be

LS (θ, u, v) =

∫
D

(−ϕα (θ)∇u ·∇v − cΩuv + b (θ) v) dx

+

∫
∂Ω

(−c∂Ωuv + pBv) dγ

by applying Problem 5.1.4. As an analogy with the mean compliance with
respect to the θ-type linear elastic problem, let an objective function be

f0 (u) =

∫
D

b (θ)u dx+

∫
∂D

pBu dγ, (P.8.1)

and a constraint function with respect to the domain measure be
Eq. (8.9.7). Here, the θ-type topology optimization problem becomes as
follows.

Problem P.8.2 (θ-type topology optimization problem) Let D be
Eq. (8.1.4), and S = W 1,2qR (D;R). Let f0 and f1 be Eq. (P.8.1) and
Eq. (8.9.7), respectively. In this case, obtain θ satisfying

min
(θ,u)∈D×S

{f0 (θ, u) | f1 (θ) ≤ 0, Problem P.8.1} .

□
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In order to obtain the θ-derivative of f0, let the Lagrange function with
respect to f0 be

L0 (θ, u, v0) = f0 (θ, u) + LS (θ, u, v0)

=

∫
D

{−ϕα (θ)∇u ·∇v0 + b (θ) (u+ v0)} dx

+

∫
∂Ω

pB (u+ v0) dγ.

Let the Fréchet derivative of L0 with respect to an arbitrary variation
(ϑ, û, v̂0) ∈ X × U × U (where U = H1 (D;R)) of (θ, u, v0) be

L ′
0 (θ, u, v0) [ϑ, û, v̂0] = L0θ (θ, u, v0) [ϑ] + L0u (θ, u, v0) [û]

+ L0v0 (θ, u, v0) [v̂0] . (P.8.2)

The third term on the right-hand side of Eq. (P.8.2) becomes

L0v0 (θ, u, v0) [v̂0] = LSv0 (θ, u, v0) [v̂0] = LS (θ, u, v̂0) .

Moreover, the second term on the right-hand side of Eq. (P.8.2) becomes

L0u (θ, u, v0) [û] = LS (θ, û, v0) .

Here, the self-adjoint relationship:

u = v0

holds. Furthermore, the first term on the right-hand side of Eq. (P.8.2)
becomes

L0θ (θ, u, v0) [ϑ] =

∫
D

{
bθ · (u+ v0)− αϕα−1ϕθ∇u ·∇v0

}
ϑ dx.

Hence, we get

f̃ ′
0 (θ) [ϑ] = L0θ (θ, u, v0) [ϑ] = ⟨g0, ϑ⟩

=

∫
D

(
2bθ · u− αϕα−1ϕθ∇u ·∇u

)
ϑ dx.

On the other hand, the θ-derivative of f1 (θ) becomes

f ′
1 (θ) [ϑ] = ⟨g1, ϑ⟩ =

∫
D

ϕθϑ dx.

Here, the KKT conditions with respect to Problem P.8.2 are given as the
conditions for which

⟨g0 + λ1g1, ϑ⟩ =
〈
2bθ · u+

(
−αϕα−1∇u ·∇u+ λ1

)
ϕθ, ϑ

〉
= 0,

f1 (θ) ≤ 0,
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λ1f1 (θ) = 0,

λ1 ≥ 0

hold with respect to an arbitrary ϑ ∈ X. Here, λ1 is the Lagrange
multiplier with respect to the domain measure constraint.

8.3 Let the Lagrange function with respect to Problem 8.12.1 be

L (θ, β, u, v1, . . . , vm, λ1, . . . , λm) = β +
∑

i∈{1,...,m}

λiLi (θ, β, u, vi) ,

where λ = {λ1, . . . , λm}⊤ is a Lagrange multiplier with respect to f1−β ≤
0, . . . , fm − β ≤ 0, and

Li (θ, β, u, vi) = fi (θ, u)− β + LS (θ, u, vi) .

Here, let LS be defined in Eq. (8.2.4). The Fréchet derivative of L with

respect to an arbitrary variation
(
ϑ, β̂, û, v̂1, . . . , v̂m

)
∈ X ×R×Um+1 of

(θ, β, u, v1, . . . , vm) is written as

L ′ (θ, β, u, v1, . . . , vm, λ1, . . . , λm)
[
ϑ, β̂, û, v̂1, . . . , v̂m

]
= Lθ (θ, β, u, v1, . . . , vm, λ1, . . . , λm) [ϑ]

+ Lβ (θ, β, u, v1, . . . , vm, λ1, . . . , λm)
[
β̂
]

+
∑

i∈{1,...,m}

λiLiu (θ, β, u, vi) [û]

+
∑

i∈{1,...,m}

λiLivi (θ, β, u, vi) [v
′
i] . (P.8.3)

The fourth term on the right-hand side of Eq. (P.8.3) becomes 0 when u
is the weak solution of the state determination problem. The third term
on the right-hand side of Eq. (P.8.3) becomes∑

i∈{1,...,m}

λiLiu (θ, β, u, vi) [û]

=
∑

i∈{1,...,m}

λi (fiu (θ, u) [û] + LSu (θ, u, vi) [û]) .

When v1, . . . , vm are the weak solutions of adjoint problem (Problem
8.5.1) with respect to f1, . . . and fm, respectively, it becomes 0. The
second term on the right-hand side of Eq. (P.8.3) becomes

Lβ (θ, β, u, v1, . . . , vm, λ1, . . . , λm)
[
β̂
]
= (1− λ1 − . . .− λm) β̂.
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Furthermore, the first term on the right-hand side of Eq. (P.8.3) can be
written as

Lθ (θ, β, u, v1, . . . , vm, λ1, . . . , λm) [ϑ]

=
∑

i∈{1,...,m}

λiLiθ (θ, β, u, vi) [ϑ] =
∑

i∈{1,...,m}

λi ⟨gi, ϑ⟩ .

Here gi is given by Eq. (8.5.6).

Hence, the KKT conditions with respect to Problem 8.12.1 are given as
the conditions under which

λ1 + · · ·+ λm = 1, (P.8.4)〈 ∑
i∈{1,...,m}

λigi, ϑ

〉
= 0,

fi (θ) ≤ 0 for i ∈ {1, . . . ,m} ,
λifi (θ) = 0 for i ∈ {1, . . . ,m} ,

λi ≥ 0 for i ∈ {1, . . . ,m}

holds with respect to an arbitrary ϑ ∈ X.

Moreover, the solution to this problem using the gradient method
with respect to constrained problems becomes as seen below. Imagine
a situation with a simple algorithm (Algorithm 3.7.2) shown in Section
3.7.1, and suppose the replacements such as those shown in Section 8.7
are conducted. In this problem, g0 (g0 in Problem 3.7.1) becomes 0.
Therefore ϑg0 = 0. Moreover, set β = maxi∈{1,...,m} fi − ϵ with ϵ as a
positive constant. Here, Eq. (8.7.3) for obtaining the Lagrange multiplier
becomes

(⟨gi, ϑgj⟩)(i,j)∈I2
A
(λj)j∈IA

= − (fi)i∈IA
. (P.8.5)

If (gi)i∈IA
is linearly independent, (λj)j∈IA

satisfying Eq. (P.8.5) is

uniquely determined. Here, if c =
∑

j∈IA
λj is used to replace (λj/c)j∈IA

with (λj)j∈IA
and (cϑgj)j∈IA

with (ϑgj)j∈IA
, Eq. (P.8.4) and Eq. (P.8.5)

are simultaneously satisfied. However, if Eq. (8.7.2) is used to seek ϑg,
these replacements become unnecessary.

8.4 If u is the solution of the state determination problem (Problem 8.9.2),
it satisfies minu∈U π (Theorem 5.2.9). On the other hand, the maximum
point with respect to θ of π (θ,u) becomes the minimum point of −π (θ,u).
When u is a solution of the state determination problem,

− πθ (θ,u) [ϑ] =
1

2
⟨g0, ϑ⟩

holds with respect to an arbitrary ϑ ∈ X. Here, g0 represents a vector of
Eq. (8.9.14).
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8.5 If (u, p) is the solution of a state determination problem (Problem 8.10.2),
it satisfies minu∈U maxp∈P π (Theorem 5.6.6). On the other hand, when
(u, p) is the solution of the state determination problem,

πθ (θ,u, p) [ϑ] =
1

2
⟨g0, ϑ⟩

holds with respect to an arbitrary ϑ ∈ X. Here, g0 represents a vector of
Eq. (8.10.17).

Chapter 9

9.1 With respect to the second term on the right-hand side of Eq. (9.8.9),∥∥∥∥∥∥
 ∑

j∈{1,...,d−1}

{τ j ·∇ (pNvi)} τ j

 ·φ

∥∥∥∥∥∥
L1(Γp(ϕ);R)

≤ (d− 1) max
j∈{1,...,d−1}

(
∥τ j∥2L∞(Γp(ϕ);R)

× ∥∇ (pNvi)∥L2(Γp(ϕ);R)

)
∥φ∥L2(Γp(ϕ);Rd) (P.9.1)

holds. Here,

∥∇ (pNvi)∥L2(Γp(ϕ);R) ≤ ∥pNvi∥H1(Γp(ϕ);R)

≤ ∥pN∥W 1,4(Γp(ϕ);R) ∥vi∥W 1,4(Γp(ϕ);R)

≤ ∥γ∂Ω∥2 ∥pN∥C1,1(D;R) ∥vi∥W 2,4(D;R)

holds. Hence,

(Eq. (P.9.1) の右辺)

≤ ∥γ∂Ω∥3 (d− 1) max
j∈{1,...,d−1}

∥τ j∥2H3/2∩C0,1(Γp(ϕ);R)

× ∥pN∥C1,1(D;R) ∥vi∥W 2,4(D;R) ∥φ∥X

holds. If Hypothesis 9.5.1 is satisfied, the right-hand side of the equation
above becomes bounded, and the second term on the right-hand side
of Eq. (9.8.9) becomes an element of X ′. Furthermore, from the fact
that ∇ (pNvi) = vi∇pN + pN∇vi ∈ W 1,4 (D;R) and τ j ∈ H3/2 ∩
C0,1 (Γp (ϕ) ;R), the second term on the right-hand side of Eq. (9.8.9)
is included in H1/2 ∩ L∞ (Γp (ϕ) ;Rd

)
.

9.2 Let the Lagrange function of Problem 9.15.1 be

LS (ϕ, u, v) = −
∫
Ω(ϕ)

∇u ·∇v dx+

∫
∂Ω(ϕ)

(pRv − c∂Ωuv) dγ.
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Moreover, the Lagrange function with respect to fi is set to be

Li (ϕ, u, vi) = fi (ϕ, u) + LS (ϕ, u, vi)

= −
∫
Ω(ϕ)

∇u ·∇vi dx

+

∫
∂Ω(ϕ)

(ηRi (ϕ, u) + pRvi − c∂Ωuvi) dγ.

Applying the formulae using the shape derivative of a function, the shape
derivative of Li can be written as

L ′
i (ϕ, u, vi) [φ, û, v̂i]

= Liϕ′ (ϕ, u, vi) [φ] + Liu (ϕ, u, vi) [û] + Livi (ϕ, u, vi) [v̂i] .
(P.9.2)

The third term on the right-hand side of Eq. (P.9.2) becomes

Livi
(ϕ, u, vi) [v̂i] = LSvi (ϕ, u, vi) [v̂i] = LS (ϕ, u, v̂i) .

If u is a weak solution of the state determination problem (Problem
9.15.1), it becomes 0. Moreover, the second term on the right-hand side
of Eq. (P.9.2) becomes

Liu (ϕ, u, vi) [û]

= −
∫
Ω(ϕ)

∇û ·∇vidx+

∫
∂Ω(ϕ)

(ηRiu (ϕ, u) [û]− c∂Ωviû) dγ.

When vi is a weak solution of an adjoint problem with respect to fi such
as the following, the second term on the right-hand side of Eq. (P.9.2)
becomes 0 too.

Problem P.9.1 (Adjoint problem with respect to fi) When a
solution u of Problem 9.15.1 with respect to ϕ ∈ D is given, obtain vi :
Ω (ϕ) → R which satisfies

−∆vi = 0 in Ω (ϕ) ,

∂νvi + c∂Ω (ϕ) vi = ηRiu (ϕ, u) on ∂Ω(ϕ) .

□

Furthermore, the first term on the right-hand side of Eq. (P.9.2) becomes

Liϕ′ (ϕ, u, vi) [φ]

=

∫
Ω(ϕ)

{
∇u ·

(
∇φ⊤∇vi

)
+∇vi ·

(
∇φ⊤∇u

)
− (∇u ·∇vi)∇ ·φ

}
dx
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+

∫
∂Ω(ϕ)

{
κ (ηRi (ϕ, u) + pRvi − c∂Ωuvi)ν ·φ

−∇τ (ηRi (ϕ, u) + pRvi − c∂Ωuvi) ·φτ

}
dγ

+

∫
Θ(ϕ)

(ηRi (ϕ, u) + pRvi − c∂Ωuvi) τ ·φ dς.

In order to obtain this integral, the fact that ∂Ω(ϕ) is piecewise H3∩C1,1

was used. Moreover, the known function was assumed to be fixed with
the material.

With the above results in mind, if u and vi are assumed to be the weak
solutions of Problems 9.15.1 and P.9.1,

f̃ ′
i (ϕ) [φ] = Liϕ′ (ϕ, u, vi) [φ] = ⟨gi,φ⟩

=

∫
Ω(ϕ)

(
GΩi ·∇φ⊤ + gΩi∇ ·φ

)
dx+

∫
∂Ω(ϕ)

g∂Ωi ·φ dγ

+

∫
Θ(ϕ)

gΘi ·φ dς

can be written. Here, we get

GΩi = ∇u (∇vi)
⊤
+∇vi (∇u)

⊤
,

gΩi = −∇u ·∇vi,

g∂Ωi = κ (ηRi (ϕ, u) + pRvi − c∂Ωuvi)ν

−
∑

j∈{1,...,d−1}

{τ j ·∇ (ηRi (ϕ, u) + pRvi − c∂Ωuvi)} τ j ,

gΘi = (ηRi (ϕ, u) + pRvi − c∂Ωuvi) τ .

The similar regularity for gi in Theorem 9.8.2 means GΩi ∈ H1 ∩
L∞ (Ω(ϕ) ;Rd×d

)
, gΩi ∈ H1 ∩ L∞ (Ω (ϕ) ;R) and g∂Ωi ∈ H1/2 ∩

L∞ (∂Ω(ϕ) ;Rd
)
. To obtain the results, from the proof of Theorem 9.8.2,

considering that u and vi are elements of W 2,4 (D;R), the regularity of
known function required in this case is

c∂Ω ∈ C1
S′

(
B;C1,1 (D;R)

)
, pR ∈ C1

S′

(
B;C1,1 (D;R)

)
,

ηRi (ϕ, u) ∈ W 2,qR (D;R) , ηRiu (ϕ, u) [û] ∈ W 1,4 (D;R)

in a neighborhood B ⊂ Y of ϕ ∈ D◦. On the other side, with respect to
an opening angle β of a corner point, the condition β < 2π/3 when the
corner point is between boundaries of the same type will be applied.

9.3 Let us use Eq. (9.15.3) in order to obtain ĝiC. With respect to the first
term in the right-hand integrand of Eq. (9.15.3),

∇u =

cos θ
∂

∂r
− sin θ

r

∂

∂θ

sin θ
∂

∂r
+

cos θ

r

∂

∂θ

u =
kj

2ϵ1/2

(
cos (θ/2)
sin (θ/2)

)
,
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∇vi =
lij

2ϵ1/2

(
cos (θ/2)
sin (θ/2)

)
holds. Here, we obtain

∇u ·∇vi =
kj lij
4ϵ

.

Substituting this result into the first term of the right-hand integrand of
Eq. (9.15.3) gives

−
∫ 2π

0

(∇u ·∇vi)ν ·φ ϵdθ

=

∫ 2π

0

kj lij
4

(φ1 cos θ + φ2 sin θ) dθ = 0 (P.9.3)

with respect to an arbitrary φ = (φ1, φ2)
⊤ ∈ R2. Furthermore, with

respect to the second term of the integrand,

∂νu = ν ·∇u =
kj

2ϵ1/2

(
− cos θ
− sin θ

)
·
(
cos (θ/2)
sin (θ/2)

)
= − kj

2ϵ1/2
cos (θ/2) ,

∂νu∇vi = −kj lij
4ϵ

cos (θ/2)

(
cos (θ/2)
sin (θ/2)

)
is established. Here the second term of the integrand becomes∫ 2π

0

∂νu∇vi ·φ ϵdθ =

∫ 2π

0

∂νvi∇u ·φ ϵ dθ

= −kj lij
4

(
π
0

)
·
(
φ1

φ2

)
(P.9.4)

with respect to an arbitraryφ = (φ1, φ2)
⊤ ∈ R2. The same result holds for

the third term of the integrand. Hence, from Eq. (P.9.3) and Eq. (P.9.4),

⟨ĝiC,φ⟩ = −kj lij
2

(
π
0

)
·
(
φ1

φ2

)
(P.9.5)

can be obtained. From Eq. (P.9.5), we see that the shape derivative ĝiC

with respect to a variation of a crack point is in the direction of the crack
surface.

ĝiM becomes as follows. With respect to the first term on the right-hand
integrand of Eq. (9.15.3),

∇u =

cos θ
∂

∂r
− sin θ

r

∂

∂θ

sin θ
∂

∂r
+

cos θ

r

∂

∂θ

u =
kj

2ϵ1/2

(
− sin (θ/2)
cos (θ/2)

)
,
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∇vi =
lij

2ϵ1/2

(
− sin (θ/2)
cos (θ/2)

)
holds. Hence,

∇u ·∇vi =
kj lij
4ϵ

is obtained. If this result is substituted into the first term of the right-hand
integrand of Eq. (9.15.3), it becomes

−
∫ π

0

(∇u ·∇vi)ν ·φ ϵ dθ =

∫ π

0

kj lij
4

(φ1 cos θ + φ2 sin θ) dθ

=
kj lij
2

φ2 (P.9.6)

with respect to an arbitrary φ = (φ1, φ2)
⊤ ∈ R2. Furthermore,

∂νu = ν ·∇u =
kj

2ϵ1/2

(
− cos θ
− sin θ

)
·
(
− sin (θ/2)
cos (θ/2)

)
= − kj

2ϵ1/2
sin (θ/2) ,

∂νu∇vi = −kj lij
4ϵ

sin (θ/2)

(
− sin (θ/2)
cos (θ/2)

)
holds. Here, the second term of the integrand becomes∫ π

0

∂νu∇vi ·φ ϵdθ =

∫ π

0

∂νvi∇u ·φ ϵdθ

=
kj lij
8

(
π
−2

)
·
(
φ1

φ2

)
(P.9.7)

with respect to an arbitrary φ = (φ1, φ2)
⊤ ∈ R2. The third term of the

integrand gives the same result. Hence, from Eq. (P.9.6) and Eq. (P.9.7),

⟨ĝiM,φ⟩ = kj lij
4

(
π
0

)
·
(
φ1

φ2

)
(P.9.8)

can be obtained. Equation (P.9.8) shows that the shape derivative ĝiM at
a point of a mixed boundary on a smooth boundary is in the direction of
the Neumann boundary.
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