Answers to Practice
Problems

Chapter 1

1.1 Let the Lagrange function of fy be

% (a,u,vg)
= fO (’U,) + gS (aa u?”@)
=fo(u) —vo- (K (a)u—p)

0
= (O U2) <u2>
€y (a1 +az —az) (U1 p1
— (vo1 W — — ,
o) (5 ("0 ) (2)-G2)
where vy € R? is an adjoint variable (Lagrange multiplier). The stationary
condition of %, with respect to an arbitrary variation vy € U of vy,
Low, (@, u,v0) [09] = Zs (a,u, ) =0

holds when w satisfies the state equation. The stationary condition of %
with respect to an arbitrary variation @ € U of u:

Zou (a,u,v0) [U] = fou (u) [4] — Lsu (a;u,v9) [4]

=2(0 wug) (Z;) —vo- (K (a)w)

=—u- (K" (a)vy — 03} —o

= 0 2y =
holds when vq satisfies

ey fay+az —az\ (vo1 0
= . P11

Equation (P.1.1) is an adjoint equation with respect to fo. Moreover,
when w satisfies the state equation and wvq is the solution of Eq. (P.1.1),
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the following, which is the same as Eq. (1.1.36), can be obtained:

Zoa (a,u,v9) [b] = f; (u(a)) [b]
G e
= 1 (=0 (u1) (o) —o0 (uz — ur)e (voz — von)) (’g;)

=gy b

1.2 If u satisfies mingege 7 (@, u),
mu (a,u)[4] =@ - (K (a)u—p) =0

holds with respect to an arbitrary @ € R2. In other words, it is satisfied
if u is the solution of the state determination problem (Problem 1.1.3).
Moreover, there exists a > 0 such that

T (a,0) [4, 4] = 4~ (K (a) @) > allil|g. .

Hence, it can be confirmed that the solution w of the state determination
problem (Problem 1.1.3) is a minimizer of 7 (@, w). On the other hand, the
maximum point of 7 (a, u) with respect to a becomes the minimum point
of —7 (a,u). When u is the solution to a state determination problem,

I, {u <8K(a)u 6K(a)u>}b

9 6@1 aag
le b
_ _§TY (ulul (uz —ur) (uz — ul)) (b;)
1
= 590 -b

holds with respect to an arbitrary b € R2. Here, g, expresses the vector
of Eq. (1.1.36).

1.3 Since u is obtained by Eq. (1.1.20),
2 1\°
fo(u(a)) = <al + a2) :

As per Exercise 1.1.7, let

al 1—a1

foan = folu (et —a) = (2 4+ )

Here, the values of a; that satisfy

dfo <2 1 ) 2 1
To_o( =4 G r =0
da; a 1l—a a? (1—a1)2
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are 2, 2 — v/2 and 24 v/2. The values of as with respect to these are —1,
V2 —1 and —v/2 — 1, respectively. Of these, the one satisfying a > Og= is
determined when a = (2 — \/§, V2 — 1)T. Moreover, due to the convexity

of fo and f1, this a, which satisfies the KKT conditions, is the minimizer
of Practice 1.1.

1.4 The side constraint with respect to the cross-sectional area a; in the
definition of admissible set D in Eq. (1.1.16) of design variable a becomes
active. Hence, in addition to fi (a) < 0, the second inequality constraint
is set to be

f2(a) =aop1 —a; <0.

Here, the cross-sectional derivative of fs is

foa = <_01) =g,. (P.1.2)

If the Lagrange multiplier with respect to fo < 0 is set to be Ag, the KKT
conditions are given by

Lo (@, A1, 02) = g+ Mgy + A2gy = Ope, (P.1.3)
D (@ A1,72) = fi(a) =1(a1 +az) —e1 <0,
D, (@, A1, X2) = fa(a) = ap1 —ay <0,
Afi(a) =0,
A2 f2(a) =0,
A1 >0,
Ao > 0.

With an optimal solution, fi =0, fo =0, Ay > 0 and A2 > 0. Here, if g,
g, and g, of Eq. (1.1.28), Eq. (1.1.17) and Eq. (P.1.2), respectively, are
substituted into Eq. (P.1.3),

l (—0 (u;U—(ZSiEZ;)— ul)) M (ﬁ) + A2 (01> = (8) :

Here, if the simultaneous linear equations with respect to Ay and Ay are
solved, we obtain

() = Co a2 3 0l e i - )
— o (s —ur) & (up — ) G) .

1.5 Let us use the adjoint variable method. Equation (1.1.36) becomes

Za (a,u,vg) [b]
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-~ (e )}
=T (5 ) () (B ) ()

e
= —TY (2a1u1v01  2a2 (up — u1) (vo2 — vo1)) b

=9go-b.

Here, if the self-adjoint relationship (Eq. (1.1.35)) is used, we get

_ ey 2a1u?
9o = l 2&2 (UQ — U1)2 '

The Hesse matrix is calculated as shown below. The second-order
derivative of the Lagrange function .4, with respect to arbitrary variations
(b1, @1) and (bg,wg) of the design variable (a,u) becomes Eq. (1.1.38).
Here, u and vg are the solutions of the state determination problem
(Problem 1.1.3) and adjoint problem (Problem 1.1.5) with respect to the
design variable a. Furthermore, ©; and wy are taken to be the variations
of u given that the state determination problem is satisfied with respect
to arbitrary variations b, and by of a, respectively. That is,

8U1 8’6&1
~ ou aa 87 bil
w(a)[bi] = 5 5bi = | §; 87“2 b
80,1 8&2

(e L) ()

Here, the second-order derivative of Lagrange function % is

(Zva (@, u,v0) [b1] + Lou (a, u, vo) [@(a) [b1]]),, [b2]
+ (Zoa (a,u,vo) [b1] + Zou (@, u, vo) [@(a) [b1]]),, [@(a) [b2]]
= Laa (@, u,v9) [u1, 2] + 2%50u (@, u, vo) [b1, (@) [ba]]

dgo 99y
— b [ (%90 Y90,
! <(aa1 8&2 2
b, vy K, —2uy/ay 0 b
! 11(—)'—I(a2 —2uy/ar  —2(uz —uy)/as 2
o —6—Yb ) 2U1'U()1 0 b )
]t 0 2 (ug — uy) (Vo2 —vo1) ) *
_ 2b1 . el 2(111}01 0
I \—2a2 (vo2 —vo1) 2a2 (vo2 — vo1)

x (:Zﬂf& —2(us —0 U1)/a2> b2>
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- _@lb ) 2U1’U01 0 b
l 1 0 2 (UQ — Ul) (’1)02 — 1)01) 2
2oy, ( (o 0 b
[t 0 —4(ug — uy)(vo2 —vo1)) 2
bey ULVo1 0 > )
= 2Ny, by ).
e <( 0 (u2 — u1) (vo2 — vo1) )~

Hence, if the self-adjoint relationship (Eq. (1.1.35)) is used, we get

bey u% 0
Hy=— .
T < 0 (uz— u1)2>

1.6 The cost function becomes

1

f(a)= g 0102

Hence,

s@=g () m=5( o)

Here, notice that the Hesse matrix H is not positive definite.

1.7 The potential energy of Problem 1.2.1 is given by extending Eq. (1.1.9) as

l nl
7r(u)=/0 1U(u)6(u)a1dx—|—---—|—/( L (u) e (u) ap, dz

-0
2 n—1)I 2
J— p . u
ley ley
=-—auf o+ o (U — 1)’ — prun — - — Pty
21 21
The stationary conditions of 7 which correspond to Eq. (1.2.1) can be
written as
a1 + as —as cee 0 0 U1
—as9 as + as e 0 0 Ug
€y .
l :
0 0 Gp—1+0n —Qp—1 Up—1
O O —Qnp_1 an Un
b1
b2
Pn—1
Pn

K (a) is the coefficient matrix of the left-hand side of this equation.
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We use p such that maxp,cge 7 (@, p) satisfies
—mp(a,p)[pl=p-(A(a)p+u)=0

with respect to an arbitrary p € R2. Here, if p is the solution of the state
determination problem (Problem 1.3.1), then it is satisfied. Moreover,
there exists a > 0 which satisfies

—mpp (a,p) [Pl =P (A(a)p) > « ||f7\|ﬂ2§2 )

Hence, p which satisfies the state determination problem can be confirmed
to be the maximizer of 7 (a,p). On the other hand, when p is a solution
of the state determination problem,

Ta (@, p) [b] = -1 {p~ (8A (a)p o4 (a)p> } b

2 8&1 aa2
2
L (el ()
(a2 + a2 +a2)* \a2 {adp2 + ai (p2 — 1)} b2
uf
a b
—_]a e
- |2) )
az
1
= 590 b

holds with respect to an arbitrary b € R2. Here, g, represents the vector
of Eq. (1.3.19).

Asin Fig. 1.5.2, let L = (lp, 1, I5)" € R3 be the three lengths of a cylinder.
Here, the value dividing the sum of the three cylinder volumes by 7 is
given by

f (lo, ll, ZQ) = ’f'glo + T%ll —+ T%lg.
On the other hand, the geometric relationship leads to

hl = ll sinHl — Qg = 0,

hQ = lo — +11COS91 = 0,

hg = lg sin92 — 62 = O,

hy =1lg— 1+ lacosby = 0.

Using these relationships, we can write

f o) =rdlo+131/0d + (a1 — o) + 131/ B2 + (B1 — lo)*.

Here, the following can be obtained:

daf _ ri (1 —lo) 75 (g — o)

=Ty —
dlo \/Oé% + (1 — 1y)? \/522 + (1 — lo)?
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o ri(aa—lo) 73 (e —lo)
=ry— —

Iy lo
=75 —ricost) —r3cosby =0
=713 —ricosf —r5cosfy = 0.

Chapter 2
2.1 The eigenvalues and eigenvectors of A are written as \; < --- < X g € R
and x1, ..., xq € R? respectively. Here, the eigenvectors are mutually

orthogonal, hence the arbitrary vector € R? can be written as
=Y @
i€{1,...,d}

by using € = (£1,...,&) € R Here, let ||z1]ga = -+ = | ®allga = 1.
Even with this, with respect to an arbitrary & € RY, arbitrary € R¢ can
be obtained. Here, if A is positive definite, from Theorem A.2.1, Ay >,
..., > A1 > 0. Hence, we get

z Az = > M€ > M€l =M 2l >0
ie€{l,...,d}

with respect to an arbitrary & € R%\ {Oga}. Moreover, if A is a negative
definite, Ay <, ..., < A1 < 0. Hence,

oAz = > NE >\ [€lre =M lz[3. <0

is obtained with respect to an arbitrary € R?\ {Oga}.

2.2 From Theorem 2.5.2, the required conditions for f to take a minimum

value are
ﬁ:ax1+bx2+d:0,
E)xl
0
—fszl +cxo +e=0.
8902

These equations can be written as

o= (oran) = (i 2) ()~ () =)

The sufficient condition is shown by confirming that f is a convex function
based on Theorem 2.5.6. In order to do so, the Hesse matrix needs to be
shown to be positive semi-definite using Theorem 2.4.6. From

0% f _ 0% f . aof

8%181’1 =% a$13$2 ’ 8x28x2
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the Hesse matrix becomes

a b
e (1),
If the positive definiteness of this matrix is shown by Sylvester’s criterion
(Theorem A.2.2), we get

a b

a >0, ‘zac—b2>0.
b ¢

This relationship holds regardless of & € R2. Furthermore, if b = (d, c)T
is used, f (x1,x2) of this problem can be written as

e (5 o0) ()@ (3

- (Hzx)+b-x.

N~ N

f(w1,22)

The problem can be written as

ngRg {fo(x) = —m122| f1(2) =2 (21 +22) — 1 <0}

Let A1 € R be a Lagrange multiplier with respect to the constraint of
the length of the sides of the rectangle, and the Lagrange function of this
problem be

L (x1,29, M) = fo(x)+ Mifi(x) = —z120 + M {2 (21 +22) — 1}
The KKT conditions become

Ly, = =22+ 2) =0,
Ly, = —x1+ 20 =0,
=f(z) =221 +22) —c1 <0,
Mf(e) = {21 +22) —c1} =0,
A > 0.

From these, the KKT conditions are satisfied when

T my o

2 2 8

This result indicates a square. The fact that the solution satisfying the
KKT conditions is a minimizer is shown below. fj is not a convex function
(Exercise 2.4.9). However, fo(x1) = fo(z1,—21+¢1/2) is a convex
function. Here, if it is viewed as an unconstrained minimization problem
of fo (21), it can be shown that (z1,x2) satisfying the KKT conditions is
a minimizer. Figure P.1 shows the status when ¢; = 2.

A=
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Fig. P.1: Function fy () = —x125.

Chpter 3

3.1 If Eq. (3.5.7) showing the Newton—Raphson method is rewritten for f,

f ()
g (zk)
Moreover, if g (zy) is replaced by the difference,

f(wk)

Ti+1 = Tk —

Tk — Tk—1

[ (@e) = f(2r-1)

Th41 = Tk —

is obtained.

3.2 Let f (wx + Egyg) be f (¢,), and furthermore

In the strict line search method (Problem 3.4.1), €, is determined so that

g(gg) =0

is satisfied. When obtaining the solution of this non-linear equation using
the Newton-Raphson method, €341 = €5 — G (€g) /R (€q) should be

sought so that

g (Egl+1) =g (Egl) +h (ggl) (ggl+1 - Egl) =0

is satisfied. Here, h (€,) is a second-order derivative function of f. When
using the secant method, we would set

h(€g) = g (€g1) =9 (Eg1-1)

ggl - Egl—l
and use
— — Egl - Eglfl — =
€glp1 = Egl — == —— g (€q1)
! I g (egl) -9 (€gl—1) g

in order to obtain €g;41.
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3.3 In the conjugate gradient method, set &y = Ox and y,0 = —gy =
—g(x9) = —b, and calculate €, using Eq. (3.4.8) with respect to
k € NU{0}, and x, g, Bx and g, using from Eq. (3.4.9) to Eq. (3.4.12)
with respect to k € N. Therefore, the following holds:

yk+1 : (Bygk)
= (—gr1 + BkJrlygk) : (B??gk)

9i+1  Gk+1 _
= (_gk+1+++ygk> : (Bygk)
9i 9k
o 9+ €k BYgr) - (gr + €k BY 1) _
= {gk — €k BY gy + ( : gg) ; . ? )ygk
k- 9k

9i - 9 + 2699y - (B.@gk) + Ef,k (B@gk) : (B@gk) _
9k "Gk ygk}
’ (ngk)
= {_gk L (By k)} (BYgr) + Ygi - (BYgr)
gy (Byy) OV BV L
(Bqu> ) (ngk)
Yy - (BYg)
= (g, + @gk) ‘ (B@gk) = BrYp—1" (B@gk) .
Here, Y11 - g5, = 0 was used because we use the strict line search. When

k=0, from y,, = —g,, (g0 + QQO) . (Bygo) = 0 is established. Therefore,
with respect to k € N, g4 - (Bygk) = 0 holds.

+2g; - (By,) + i - i

3.4 The gradient g (a) and Hessian H of f(a) with respect to a variation
of a obtained in Practice 1.6 are used. The Newton method uses Hb =
—g (ap), that is,

L0 1Y\ (b1 _ 1 (ap
6\1 0/ \b2) 6 \aon

to obtain the search vector b. When solving this equation, we get

()=~ ()

Here, the point updated using the first Newton method:

a1\ _ (ao1 b1\ _ (ao1 —ao1) _ (O
= + = =
ai2 ap2 bo ap2 — ap2 0
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becomes the minimum point of f. The reason that the minimum point
could be obtained after using Newton method just once is because the
Taylor expansion of f is fully described by the gradient and the Hesse
matrix. In that case, it can be confirmed that the positive definiteness of
the Hesse matrix is not required.

Chapter 4

4.1 Let U and V be
U={ueH ((0,)) x (0,t7);R) |
u(0,t) =0for t € (0,tr), u(z,0) =a(z) for z € (0,1)},
V={veH ((0,]) x (0,t7);R) |
v (0,t) =0 for t € (0,¢7), v(z,0) =0 for z € (0,)}.

Select and fix an element ug of H* ((0,1) x (0,t7); R) satisfying ug (z,0) =
a(z). The first variation of f(u) with respect to an arbitrary v € V
becomes

' (u) [v]
tr l
:/ {/ (pud — eVuVuv + bv) ag dx + pyv (1, 1) as (Lt)}dt
0 0
l
—/0 pBv (x,tr) ag dz
tr ¢ pl
:/0 {/0 (—pti + V (eVu) + b) vag dz
— (eVu(l,t) —pn)v (L, t) ag (Z)}dt

!
Jr/o p (G (xz,tr) — B)v(x, tr)as dx.

Hence, the stationary condition of f (u) with respect to an arbitrary v € V
is given by the condition such that f’ (u) [v] = 0 with respect to u—wug € V.
In other words, we get

pii — V (eVu) = pii — Vo(u) = b for (z,t) € (0,1) x (0,tT),

eVu (l,t) =0 (u(l,t)) = px for t € (0,¢1),
G (x,tr) =B for x € (0,1).

At that time, for f (u) and f’ (u) [v] to have meaning, we need the following
to hold:

peL®((0,:R), acH ((0,):R), BeL*((0,1):R),

be L*((0,1) x (0,t7r);R), pn € L*((0,t1);R).
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4.2 The first variation of the action integral f (u) with respect to an arbitrary
variation v € V' of u € U becomes

I
h
,_]
Y
gl
|
&l
Q
gl

) vtk S o) vl - 52000

(A ey,
With respect to an arbitrary v € V, for f' (u,w) [v,9] = 0 to hold, the
Lagrange equation of motion needs to hold.

4.3 The first variation of the action integral f (u,q) with respect to an
arbitrary variation v € V of w € U and an arbitrary variation » € @
of g € @ becomes

f(u.q)[v,7]

_/tT _'./U_%.v_”"~u—%'r dt
) 1 ou dq

) e (o5 o

With respect to an arbitrary v € V and an arbitrary r € @, for
f'(u,q)[v,r] = 0 to hold, the Hamilton equation of motion needs to
hold. Moreover, when the Hamilton equation of motion holds,

- o .  0H . 0K 0K 0H 0
I (u,q) = cU 4 = . — . =

ou dq q ou 0Jq dqg Ou 0

holds. Furthermore, with respect to a spring mass system of Fig. 4.1.1,
when the external force p = 0, since the momentum is given by ¢ = mu,
we get

1 1 1 1
H(u,q) = =1 (u,q) + qu = —§mu2 + §ku2 +qu = §mu2 + ik:uz.

In other words, it shows that when there are no external forces in play, the
sum of kinetic energy and potential energy becomes a Hamilton function
and that it is conserved.

4.4 If Y € Z, there exists some positive constant ¢ and with respect to an
arbitrary x € Y,

2]z < cllzly
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holds. Here, if the definitions of norms (Definition 4.4.5) with respect to
Y’ and Z’ are used,

1 @ @
Yl = swp MEEN o, Ll
¢ zev\{oy} CllZzlly T zeznfosy [zl

= ||¢||Z/

is established with respect to an arbitrary ¢ € Z’. Therefore, from
lplly: <clléll,, Z' €Y' is obtained.

Chapter 5

5.1 From the fact that Dirichlet condition is given over the whole boundary,
U = H (;R). In this case,

/Q(—AU-Fu)vdx:/Q(—V~Vu+u)vdx

:—/ vVu-ud’y—k/(Vu-Vv—i—uv) dz
o9 Q

:/(Vu-Vv+uv) dx:/bwdm
Q )

holds with respect to an arbitrary v € U. Here, the weak form of this
problem becomes a problem seeking @ = u — up € U satisfying

a(u,v) =1(v)

with respect to an arbitrary v € U, where
a(u,v):/ (Vu- Vv +uv) dz, l(v):/bvdx.
Q Q

For this weak-form solution to exist uniquely, the assumptions for the
Lax-Milgram theorem need to hold. U = H} (€;R) is a Hilbert space.
Moreover, from the fact that

2
a (’l),’l)) = HvHHl(Q;R)

holds with respect to an arbitrary v € H} (Q;R), a is coercive and
bounded. Hence, just [ € U’ needs to hold. With respect to I,

‘[(v)’ < / lbo| dz +/ (IVup - Vol + [up]) da
Q Q
< bl 2wy 1Vl 2 () + [ VUDll p2(0:R0) VOl 22(0R0)
+ llunllp2ory 101l L2(0im)
< (160220 + Il @iz ) ol my

holds. Therefore, we need b € L? (;R) and up € H' (O;R).



14

5.2

5.3

5.4

Answers to Practice Problems

The point xa is a boundary between a homogeneous Dirichlet and
homogeneous Neumann boundaries at which the opening angle is o =
7/2. From Theorem 5.3.2 (2), getting u € H? (Ba;R?) around the
neighborhood Bp of the point xa, the point x4 is not a singular point.
On the other hand, the point xp is a boundary between homogeneous
Neumann and non-homogeneous Neumann boundaries at which the
opening angle « is 7/2. There is no singularity in the solution at this
angle from Theorem 5.3.2 (1). However, py changes as a step function

around the neighborhood Bg of g as (0,0) and (0,—1)" across the
boundary I',. From this, if we view it as py € L™ (BB;]Rz), we have
uc O%! (BB;RQ) which is not included in H? (BB;R2).

The function space with respect to this problem is set as

U= {’U, S I{1 ((O,tT) ;Hl (Q,Rd)) | u = O]Rd on FD X (O,tT),
u = Oga on Q x {0,t7}}.

Assume upg, upt € H'(GRY) and up € H' ((0,¢7); H (;RY)).
Furthermore, assume b € L? ((0, tr); L2 (Q; Rd)), PN €
L? ((O,tT);L2 (I‘N;Rd)). Here, the weak form of this problem can
be obtained by multiplying an arbitrary v € U to the first equation,

integrating with Q x (0,t7) and using the fundamental boundary
conditions as follows. “Obtain w = u — up € U which satisfy

/OT(b(u,iJ)—a(u,v)—l—l(v)) dt =0

with respect to an arbitrary v € U, where let
b(u,v) = / pu - vdx,
Q

a(u,v) = /Q.S'(u) - E(v) dz,

l(v):/b-vdx—i—/ py - vdy.”
Q I'n

Let the function space with respect to ¢ be
U={¢pecH (LR | ¢=0z onTp}.

In this case, substituting w (x,t) = ¢ (z) e with respect to ¢ € U into
pu’ — V'S (u) = Oﬁgd, integrating this equation over 2 after having
an arbitrary v € U multiplied by it, and considering the fundamental
boundary condition w = up on I'p x (0, tT), the weak form of the natural
frequency problem can be obtained as below. “Obtain (¢,\) € U x C
satisfying

A2b (¢, v) 4+ a(¢,v) =0
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5.5

with respect to an arbitrary v € U.”

Commentary  This problem is an eigenvalue problem (the equation
is an eigen equation) on a function space U. In this problem, if a
non-negative definiteness (coerciveness including 0) of a (-, -) and positive
definiteness (coverciveness) of b (-, -) are considered, eigenpairs (¢;, A;);
of the number of dimensions of U, which is the same as a countably infinite
number, exist. In this case, A? < 0, in other words, \; = +iw; (i is
the imaginary unit) is derived. From this result, ¢; (x) (e'i* + e~ wif) =
¢, cosw;t becomes a solution of the eigen value problem and w; and ¢;
are called eigenfrequencies and eigenmodes.

Let the function space with respect to u and p be as follows respectively:
U={ueH ((0,tr); H (G RY)) |
u = Oga on 0 x (0,t7) UQ x {0}},
V={ueH ((0,tr);H (%RY)) |
u = Oga on 0 x (0,t7) UQ x {t1}},

P{p€L2 ((0,t1); L? (4 R)) ‘/dex()}.

Here, if an arbitrary v € V is used to multiply the Navier—Stokes equation
and integrate it over (0,¢T) X €2, and a basic boundary condition u =
up on 0N x (0,t7) U Q x {0} is considered, a weak-form equation with
respect to the Navier—Stokes equation can be obtained. On the other
hand, if an arbitrary ¢ € P is used to multiply through the equation of
continuity and integrate it over (0,tr) X Q, the weak form with respect to
the equation of continuity can be obtained. This can be written as below.
“Obtain (u — up,p) € U x @ which satisfies

/Twmm+ammmwwmmwwwm»w=/Tumm,
0 0
/Td(u,q)dtzo
0

with respect to an arbitrary (v, q) € U x @, where we let
a(u,v) = / p(Vu') (Vo) da,
Q
b('u,,'u):/pu-’udac7
Q
c(w)w.v) = [ pllu:V)w) vz,

Q

d(’l),q) = _/S;qv'vdxa

l(v):/b-vdx—l—/ py - vdy.”
Q I'n
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*fo 00/ \Uo
2
00— T—El 00 UO\ /UO E
2
‘i‘ -~ >
—0o V2
(a) Compression and tension (b) Coordinate system rotated

in anti-clockwise direction by /4

Fig. P.1: Deformation with shearing stress

5.6 When a stress such as that in Fig. P.1 (a) occurs, the linear strain becomes

1+uvp
ey

€11 = —€22 = agp. (P.5.1)

On the other hand, in a coordinate system which is just one 7/4 rotation
in the anti-clockwise direction such as in Fig. P.1 (b),

:712/\/5:%27 / 90

€ —= =gy = P.5.2
1 3 5 12 5 (P.5.2)
holds. From Eq. (P.5.1) and Eq. (P.5.2), ey = 2ur, (1 + vp) holds.
Chapter 6
6.1 The weak form of this problem can be written as
a(u,v) + ¢ (u,v) =1y (v) (P.6.1)

with respect to an arbitrary v : (0,1) — R satisfying v (0) = v (1) = 0,
where a (-, -) and Iy (-) use the definitions in Exercise 6.1.5. Moreover,
let

1
c(u,v):/ uv dz.
0

The result when approximate functions w, and v, are substituted in
a (u,v) and Iy (v) is as per Exercise 6.1.5. Here, if uj, and vy, are substituted
in ¢(u,v), we get

¢ (up,vp) = Z a; sin(imz) Z Bjsin(jmx) p da
0

ie{l,...,m} je{1,....m}
=8"Co.
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Here, C' = (c(sin(irz), sin(jmz))),; and

¢ (sin(ira), sin(jnzx))

1
:/ sin(imz) sin(jrz) da
0

1

:*5/0 [cos {(i + j)mz} — cos {(i — j)mz}] dz =

From the answer to Exercise 6.1.5 and the result above, Eq. (P.6.1)
becomes

(A+C)a=f.

In other words,

10 0 0 1 0 0 o
L0040 0 01 0 0 s
~looo9 - 0|, L]0 1 0 as
2 N N . .. . 2 .
00 0 m2 00 0 1 U
2
0
_1 2/3
Vi . ’
{(_1)m+1 + 1} /m
or
P2+l (1) 4l
5 M w

If this simultaneous linear equation is solved,

- 2{(_1)i+1 +1}
Ry FPRC R

is obtained. Therefore, the approximate function becomes

2{(-1)*t+1}

up, = Z T D) sin (irx) .

6.2 The weak form of this problem is given by Eq. (P.6.1). a (u,v) and I (v)

with approximate functions u; and v substituted in are as shown in
Exercise 6.2.1. Here, if uj, and vy, are substituted in ¢ (u,v), we get

z;
¢ (up,vp) = Z / upvp, do = Z ¢i (up,vg),
Ti—1

ie{l,...,m} ie{l,...,m}
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ci (un,vn)
/ Pi(1)Pi(1) dz / Pi(1)Pi(2) dz
Tj—1 Iifl (u’b(l)>

(viy vi) | " & w
/ Pi(2)pi(1) de / ©i2)Pi(2) dr 2)
T Ti1

i—1 i—

=9, - Cin;=v-2;CiZu=1v-Csa.
Here, C; = (Ciap), 5 € R? becomes

B X 1 X,
Ci1l = / Pi)pi) dr = 72/ (x; — x)2 dz
Ti—1 Ti—1

(Ii - Iz‘—l) i
Tj — Tj—1
3 )

z;
Cil2 = Cig1 = / Pi(1)pi(2) dx
Ti_1

1 /wL Ty — Tj—1
- - z;—z)(r—xi—1) do = ———,
(Ii - Ii—1)2 Ti—1 ( ) ( 1) 6
_ i 1 o 2
Cizz = Pi2)Pi2) dr = ———— (r —w1)" do
Ti—1 (mz - ‘rifl) Ti—1
Xy — -1
B 3

In other words,

A~ Ti— i (201
6= (2 1)

Matrix C, which is the sum of all elements, becomes

2100 0
oy lrar 00
c=2101410
610 0 1 4 1
000 1 2

Therefore, the approximate equation becomes

1 2 -1 0 I 4 1 0 U1 1
0 -1 2 01 4 u3 1

Supplementary  The integrals on the finite element are simplified
if the domain is changed to a standard domain. Let the mapping
g: (xi,l,xi) — (0, 1) be

T =T
5_ h 9
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where h = x; — x;_1. Here, the Jacobian becomes

d§

5 g

dz

The base function becomes

T, — X n

piy(T) = = 1lo6= Giy(§),
T — R

%‘(2)(37) = Tl == <Pz‘(2)(€)~

This time, C; can be calculated as
1 1 1 L
cn= [ pphdi=h [ -7 de=n [ i dy=g,
0 0 0
h

1 1
cna = e = | b d=h [ 1-geds =7,
0 0

1 1 h
coa = [ Gupiah ds=h | € de=7.
0 0
6.3 Let us think about a domain 2; of a triangular finite element such as in

Fig. P.1. Here, with respect to the cross product of two vectors ;o) —x;(1)
and wl(g) — wi(l),

2|Qi|€3

Ti(2)1 — Ti(1)1
= | Ti(2)2 — Ti(1)2

€
= [Ti(2)1 — Ti(1)1
Ti(3)1 — Ti(1)1

0
= [Ti(2)1 — Ti(1)1
Ti(3)1 — Ti(1)1

0

= | |%i2)1 — Ti(1)1
Ti(3)1 — Ti(1)1

Ti(1)1  Ti(1)2
= [Ti2)1  Ti(2)2
Ti(3)1  T4(3)2

Li(3)1 — Ti(1)1
X | Zi3)2 — Ti(1)2

€9 €3
Ti(2)2 = Ti(1)2 0
Ti3)2 — T2 0
0 1
Ti(2)2 — Ti(1)2 Oles
Ti3)2 — Ti1)2 0
0 1 Ty Tiy2 O
Ti(2)2 — Ti(1)2 0 + Ti(1)1  Li(1)2 1| | es
Li(3)2 — Ti(1)2 0 Ti(1)1  Li(1)2
1
1 €e3 = yes
1

holds, where e1, e; and ez are unit orthogonal vectors of x1, x2 and x3
coordinate systems. Hence, v = 2[€2;| is obtained.

6.4 Let the finite elements with finite element numbers {3,5}, {4,6}, {1,7}
and {2,8} be called Type 1, Type 2, Type 3 and Type 4, respectively.
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Ti(3)

€2 Ti(2)

Zi(1)
€3 €1

Fig. P.1: Triangular €2; and points x;(1), ;2) and x;3).

The result from Exercise 6.3.2 is used with respect to Type 1 and Type 2.
With respect to Type 3, v = h?, |Q;| = h?/2 and

m 1 [ Ti2)2 — Ti3)2 1 —h
ml =—-1%i@32 T2 | = 2 h ],
N3 T\, —x; 0
i(1)2 i(2)2
01 1 [T — Ti2)1 1 —h
O | = — Ti(1)1 — Ti(3)1 | = 75 0
y h
03 Ti(2)1 — Ti(1)1 h
Therefore,
2 -1 -1 1
- 1 h?
Ai==-1-1 1 0], b= 3 1
-1 0 1 1

is obtained. With respect to Type 4 too, in a similar way, v = h?, |Q;| =

h?/2 and
m 1 0 01 1 —h
3 —h 03 0
i 1 -1 0 e 1
A=s (-1 2 1), b= |1
0 -1 1 1

can be obtained. On the other hand, the local node number and total
node numbers can be made correspondent in the way shown in Table P.1.
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Table P.1: The relationship between the local nodes x;(1), ;(2), T;3) and total
nodes x;.

1€ ] 1 2 3 4 ) 6 7 8
Li(1) | €1 | T4 | T2 | T2 | T4 | Ty | T5 | T8
Li2) | 4 | 5 | L5 | e | L7 | T8 | L8 | L9
Ti3) | T2 | L2 | Tg | 3 | T8 | 5 | Tg | Te
Type | 3 4 1 2 1 2 3 4

If a sum of all elements is taken, A and I become

2 -1 0 -1 0 0 0 0 0
1 4 -1 0 -2 0 0 0 0
0 -1 2 0 0 -1 0 0 0
ot o0 4 20 10 o
A=-|lo0o —2 0 —2 8 —2 0 -2 o],
210 0 -1 0 -2 4 0 o0 -1
0 0 0 -1 0 0 2 -1 0
0 0 0 0 -2 0 -1 4 -1
0 0 0 0 0 -1 0 -1 2
1
1
1
, |4
Z=h4
614
1
4
1

Here, the fundamental boundary conditions u; = us = uz = ug = u7 =0
and v = v = v3 =v4 = vy =0 and h = 1/2 can be used to obtain

8 -2 -2 0\ [us 4
2 4 0 —1|]u| 1

1[4
-2 0 4 -1 ug | 12| 4
0 -1 -1 2 Ug 1

Solving this, we get

us 3 2 2 2 4 15
ug | 1 2 6 2 4 41 1 (22
us |~ 16x1212 2 6 4 41 96 | 22
Ug 2 4 4 12/ \1 26

6.5 With respect to a finite element ¢ € £ in Fig. 6.4.7, a standard domain is set
to be E; = (0, 1)2. The isoparametric representations of the approximate
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functions and coordimates become

(€)= D Pal®)uia=¢(&)- us,
(€)= Y. ¢al&)via=0(&) v,
(€)= Y, ¢al®)mira=¢ (&) za,
(€)= Y Pal(®)Tiza =@ (&) Tia.

Here, let xil(?) — x“(l) = hl and LL',L'Q(Q) — xﬂ(l) = hQ and

A1 (Ti1(2) — 71) /M (1-¢&)
Az | _ | (@1 — @) /he | _ &1
A21 x12(2) —x2) /M (1-&) |’
A22 Ty — Ti(1)) /b2 &2
¢1(€) (1-&)(1—¢&)
(;0 — (5) 51 1 - 52
@3 (&) §1&2
P4 () (1—=£&)¢

In this case,
Be b (6) = 000 )08\ _ (021/0& 0i2/061 (0¢a/0z1
£Pa 890@/852 o 6@‘1/852 8§72/8§2 8¢a/8m2
o hl 3¢a/3x1
—\0 h2 6(,5(1/8372
holds. Hence,

(8¢a/8$1> _ L ( 8562/852 —8@2/851) <8¢a/8§1)
8(,5a/(9$2 o ( ) *65&1/8&2 3921/351 6<ﬁa/8§2
1

i (3 2) (%)
hl h2 0 hl 6@(1 /852

can be obtained, where
(&ﬁl/afl 0p2/081  Op3/0& 5'954/351>
0p1/02  Opa/0&  O0p3/0&  Opa/0
:(—(1—52) (1-&) & & )

—(1-¢&) =& & (1-&))°

Using this result, the element coefficient matrix A; = (Ezmg)aﬁ € R4x4
becomes

_ 0p4/011 3@5/8x1)
iaf — . d
Giap /Q (89%/8332) (8@5/8962 *
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_ 8¢a/8x1 . 3@5/5@1
= /: (a% /ax2> (a@, Jom, ) @ (&) €
hl hg 851 852 0 hl 0 hl D

Opp/0&2
_ / (hQaSDa 8505 + Easaa a(ﬁﬁ) df
=, \h1 0 0&  hy 08 0&

23

Letting o = ha/hq1, we get

_ 1
an = [ [ol-0-@y +o (-0 -@))]d = (0 +07).
From these calculations we get
20+207Y 2040"! —og—0! o—20""
A — 1{-20+07! 204207t o6-207' —0—-0!
76| —o—0t o—-207' 2042071 204071
o—20"1 —0 -0t

—204+0"! 2042071

The known term vector I; = (l_m)a € R* becomes

lia

/Q_b% dx:bo/_saa (©)w (&) de.

i =

Therefore,
[a-ana-e)
= )
§1(1 = &) d€
1, = bohihs = = L}ZM }
/ §162 d§ 1
1 —&1)& d¢

6.6 Let = = (0, 1)2 be a standard domain. With respect to a € {1,...,4}, let
P(a)(&) are basis functions on =. Here, the following holds

Oup

0

11 8@%;32

5(5): €22 | = 97s
2612 Oupz  Oupy

8x1 8.’£2
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Uil
E)xl 8371 83?1 8301 OA (1 OA (z u13
“| o 0 0 o 991 0P2 0Ps Ofa | [uia
~ R R R 8:1;2 Bxg 89@ 81’2 U21
Op1 0pa Ops Opa Op1 0ba 03 OPa | | gy
81'2 81'2 8%2 8:52 8x1 8x1 &vl 8$1 U23
U24
1 0 06 0 &1 0% 0 06 0 &1 0%
SO\ 0m0py 00108 00100y 01 0%
08 061 & 0% 0& 061 & 062
0 06 0 &1 062 0 06 0 &1 082
00100y 00105 00100y, 00100
06 06 06 06 0& 06 0& 0&
0 0
00100 001051 0100, 0010
0&s 0 0€1 BEy 0&s 0 0€1 BEy
x§223<p€11 3x§18 e x§223<p€21 333%18 L
06 06 06 06 0& 06 0& 0&
U1l
0 0 U2
021093 | 02103 a;zl 0ps  0i10¢a | |
—— —— 14
& 0. 8 0 0 8 0
0 06 06 06 0606 096 06 |2
U24
=B(§u
where w(€) = det (¢x ). The element coefficient matrix becomes
Ki= | B'@DB()ds = | BT(DB(ew(e) d
Q =
Here, the integral of the right-hand side can be obtained by the Gaussian
quadrature.
Chapter 8

8.1 When the -type elastic problem (Problem 8.9.2) was made into a state
determination problem, a self-adjoint relationship was obtained with
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8.2

respect to the mean compliance fy defined by Eq. (8.9.6). Similarly,
when the 6-type Poisson problem (Problem 8.2.3) is made into a state
determination problem, if

fo= [ b@uds+ [ pyudy— [ o @ undudy

is taken to be an objective function, the self-adjoint relationship is
obtained. Moreover, the #-derivative of fy becomes

fo (0) [9] = (g0, ¥) = /D (2bgu — g™ ¢ Vu - Vu) ¥ da.

The 6-type expanded Poisson problem becomes as below.

Problem P.8.1 (f-type expanded Poisson problem) Let D be a
d € {2,3}-dimensional Lipschitz domain. With respect to § € D,
b € C'(D;L*® (D;R)), cq € L>(D;R), pg € L*™ (OD;R), coq €
L (0D;R) are assumed to be given, where let gg > d. Here, obtain
u: D — R that satisfies

~V - (¢* (0) Vu) + cqu=1"5(0) in D,
¢* (0) Opu + coqu =ps  on OD.

Let the Lagrange function with respect to Problem P.8.1 be
Zs (0, u,v) = / (=9 (0) Vu - Vv — cquv + b (0) v) dz
D

+ / (—CaQuU + pBU) dy
o0

by applying Problem 5.1.4. As an analogy with the mean compliance with
respect to the f-type linear elastic problem, let an objective function be

folw) = / b(0)u dx +/ pu d, (P.8.1)
D oD

and a constraint function with respect to the domain measure be

Eq. (8.9.7). Here, the 6-type topology optimization problem becomes as

follows.

Problem P.8.2 (f-type topology optimization problem) Let D be
Eq. (8.1.4), and § = W12 (D;R). Let fy and f; be Eq. (P.8.1) and
Eq. (8.9.7), respectively. In this case, obtain 6 satisfying

(e’ur)neigxs{fo (0,u) | f1(9) <0, Problem P.8.1}.
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In order to obtain the #-derivative of fy, let the Lagrange function with
respect to fy be

-i/ﬂ[) (G,U/, UO) = fO (H,U) + gs (97U/7 UO)

:/D{—¢O‘ (0) Vu - Vg + b (0) (u+v)} dw
—i—/mpB (u+wo) dv.

Let the Fréchet derivative of %, with respect to an arbitrary variation
(9,4,90) € X x U x U (where U = H! (D;R)) of (6,u,vo) be

L0, u,v0) [9, 1, Do) = Lo (0,1, v0) [9] + Lo (0,1, v0) [1]
+ g()vo (0, u, 'Uo) [f)o] . (PSQ)

The third term on the right-hand side of Eq. (P.8.2) becomes
Low, (0,u,v0) [00] = Lsu, (0,u,v0) [B0] = ZLs (0,u,70) -

Moreover, the second term on the right-hand side of Eq. (P.8.2) becomes
Low (0,u,v0) [4] = %5 (6,4, v0) .

Here, the self-adjoint relationship:
U =g

holds. Furthermore, the first term on the right-hand side of Eq. (P.8.2)
becomes

Zoo (0,u,v0) [0] = / {bo - (u+vo) — ap* P Vu- Vi } 9 da.
D
Hence, we get

f[,) (9) [’19} = gOG (03 u, vO) [7‘9] = <90a 19>
= / (20 - u — ™ 'PgVu - Vu) 9 da.
D

On the other hand, the 6-derivative of f; () becomes
FOW] = t01.0) = [ o a.

Here, the KKT conditions with respect to Problem P.8.2 are given as the
conditions for which

(g0 + Arg1,¥) = (2bg - u+ (—ag™ "Vu- Vu+ A1) ¢p,9) =0,
fl (9) S Oa
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8.3

hold with respect to an arbitrary ¥ € X. Here, \; is the Lagrange
multiplier with respect to the domain measure constraint.

Let the Lagrange function with respect to Problem 8.12.1 be

i’(@,,@,u,vl,...,Um,/\l,...,)\m):ﬁ—|— Z Aiogfpi(ovﬁauavi)7

i€{1,mm}

where A = {\q,. .., )\m}T is a Lagrange multiplier with respect to fi—38 <
0,..., fm—08<0,and

Z(gvﬁauavi) = fl (Q,u) _ﬁ—’_fs (9,u,vi).

Here, let Z5 be defined in Eq. (8.2.4). The Fréchet derivative of . with
respect to an arbitrary variation (19, B, Uy U1,y ,ﬁm) € X x Rx U™t of
(0,8,u,v1,...,0,) is written as
Dip/ (976711"1}1)""1}771’)\17' 7Am) [1973712’{}%"-’{}771}
de (Qvﬂvuvvla"'7vma)‘17~~~a)‘m) [19]
+$,3 (035711‘7”17"'7UWL7)\1a"'7>\m) |:B:|
+ Z )\ZZU (97B,U,Ui) [’l)]

ie{l,...,m}
+ Z XiZiw, (0, B, u,v;) [vl]. (P.8.3)
ie{l,...,m}

The fourth term on the right-hand side of Eq. (P.8.3) becomes 0 when u
is the weak solution of the state determination problem. The third term
on the right-hand side of Eq. (P.8.3) becomes

Z )\zﬁu (ovﬁaua Ui) [a}

ie{l,...,m}
= > A (fu (0,u) [8] + Lo (0,u,0:) [4)) -
ie{l,...,m}
When vy, ..., v, are the weak solutions of adjoint problem (Problem
8.5.1) with respect to f1, ... and f,,, respectively, it becomes 0. The

second term on the right-hand side of Eq. (P.8.3) becomes

L5 (0, B,1,01, . Vs Ay Am) [B} (1= A == A B
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Furthermore, the first term on the right-hand side of Eq. (P.8.3) can be
written as

gg(Q,B,U,Ul,...,'Um,)\l,...,Am)[19]
= Z AiZio (0,8, u,v;) [9] = Z Ai (g, 7)

i€{l,...,m} i€{l,...,m}

Here g; is given by Eq. (8.5.6).

Hence, the KKT conditions with respect to Problem 8.12.1 are given as
the conditions under which

MA ot A =1, (P.8.4)

< > Aigi,79>=o,
ie{l,...,m}

fi(0) <0 forie{l,...,m},
)xzfz(ﬂ):o forie{l,...,m},
A >0 forie{l,...,m}

holds with respect to an arbitrary 9 € X.

Moreover, the solution to this problem using the gradient method
with respect to constrained problems becomes as seen below. Imagine
a situation with a simple algorithm (Algorithm 3.7.2) shown in Section
3.7.1, and suppose the replacements such as those shown in Section 8.7
are conducted. In this problem, gy (g, in Problem 3.7.1) becomes 0.
Therefore ¥40 = 0. Moreover, set 8 = maxX;cf1,.. m) fi — € With € as a
positive constant. Here, Eq. (8.7.3) for obtaining the Lagrange multiplier
becomes

(g3, ﬂgj>)(i,j)e[i (/\j)jng - (fi)ieIA : (P.8.5)

If (9i);es, is linearly independent, (A;);.;, satisfying Eq. (P.8.5) is
uniquely determined. Here, if ¢ = >, ;, A; is used to replace (A;/c),c;,
with (Aj),c;, and (eg5) 07, With (9g;);c;,, Eq. (P.8.4) and Eq. (P.8.5)
are simultaneously satisfied. However, if Eq. (8.7.2) is used to seck 9,
these replacements become unnecessary.

If w is the solution of the state determination problem (Problem 8.9.2),
it satisfies min, ey 7 (Theorem 5.2.9). On the other hand, the maximum
point with respect to 6 of 7 (6, u) becomes the minimum point of —7 (6, u).
When w is a solution of the state determination problem,

~ mp (6,1) [9] = 5 {90,

holds with respect to an arbitrary ¢ € X. Here, gg represents a vector of
Eq. (8.9.14).
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8.5 If (u,p) is the solution of a state determination problem (Problem 8.10.2),
it satisfies min, ey max,ep m (Theorem 5.6.6). On the other hand, when
(u,p) is the solution of the state determination problem,

1

o (05 U,p) [19] = 5 <90719>
holds with respect to an arbitrary ¥ € X. Here, gg represents a vector of
Eq. (8.10.17).
Chapter 9

9.1 With respect to the second term on the right-hand side of Eq. (9.8.9),

S A{ri Viwvi)lT, | e

JEld= 1) LM(Ty(¢)iR)

2
<(d—1) je{f}?ﬁfl} (HTJ' ||L00(Fp(d>);R)

XNV (oxvill e, oym) ) 190l e, oz (P9.1)
holds. Here,

v (pNUi)||L2(Fp(¢);R) < ||pNUi||H1(FP(¢);R)
< ”pNHle‘*(FP(dJ);R) ”UiHWlA(Fp(qS);R)
2
< |voall” llnllora (pigy Vil wz.apiry

holds. Hence,

(Eq. (P.9.1) ©F)

< Jroal®(@—1) _ max

2
je{l,...,d—1} HTj||H3/2ﬁC°’1(Fp(¢>);R)

X |lpnllcrapiry ”viHW?A(D;R) lellx

holds. If Hypothesis 9.5.1 is satisfied, the right-hand side of the equation
above becomes bounded, and the second term on the right-hand side
of Eq. (9.8.9) becomes an element of X’'. Furthermore, from the fact
that V (pxvi) = vVpn + pnVo; € WH(D;R) and 7; € H?? N
C%1 (T, (¢);R), the second term on the right-hand side of Eq. (9.8.9)
is included in H/2 N L (T, (¢p) ; RY).

9.2 Let the Lagrange function of Problem 9.15.1 be

L5 (d,u,v) = — Vu- Vv dr+ / (prv — coquv) dry.
Q(e) o)
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Moreover, the Lagrange function with respect to f; is set to be

ﬁ (d)v U, Ui) = fl (d)? u) + gs (¢)a U,’Ui)

= — VU . V'Ui d.r
Qo)

+ / (R (@, u) + PRV — caquv;) dy.
o)

Applying the formulae using the shape derivative of a function, the shape
derivative of .%; can be written as

"E/pi/ (¢7 u, Ui) [‘Pa ,&’ f]t]

= i’ (¢7 U, Ui) [QO] + L (¢7 u, Ui) [ﬂ] + «iﬂwb (¢a u, Ui) ["31} .
(P.9.2)

The third term on the right-hand side of Eq. (P.9.2) becomes
egivi (¢a u, Ui) [’f)z] = gSvi (¢a u, vi) [67,} - gs (d)a u, ’IA}'L) .

If u is a weak solution of the state determination problem (Problem
9.15.1), it becomes 0. Moreover, the second term on the right-hand side
of Eq. (P.9.2) becomes

L (G, u,v;) [4]

=_ Vi - Voudz +/ (MRiu (@, u) [U4] — couitt) d.
Q) 0Q(¢)

When v; is a weak solution of an adjoint problem with respect to f; such
as the following, the second term on the right-hand side of Eq. (P.9.2)
becomes 0 too.

Problem P.9.1 (Adjoint problem with respect to f;) When a
solution u of Problem 9.15.1 with respect to ¢ € D is given, obtain v; :
Q2 (¢) — R which satisfies

—Avi =0 inQ (¢) s
duv; + coq (@) Vi = NRriu (P, u) on ON ().

O

Furthermore, the first term on the right-hand side of Eq. (P.9.2) becomes
-=gi¢/ (d)? u, Ui) [(P]
= / {Vu- (chTVvZ-) + Vo - (chTVu)
Q(e)

—(Vu-Vu) V- cp}d:l:
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9.3

+ / {'i (R (@, u) + PRV — coQuvy) V- @
0Q(o)
— V- (ri (@, u) + prv; — coguv;) - goT}dv
+ / (nri (@, u) + prY; — caquvy) T - p ds.
o(¢)

In order to obtain this integral, the fact that 92 (¢) is piecewise H>NC!
was used. Moreover, the known function was assumed to be fixed with
the material.

With the above results in mind, if u and v; are assumed to be the weak
solutions of Problems 9.15.1 and P.9.1,

fi/ (d)) [90] = z!ﬁ’ (¢7u7vi) [(P} = <gi7 90>
= / (Gai- Vo' +90iV - ) da +/ Goqi - ¥ dv
Q)

99(p)
+ / go; ¥ ds
o(e)

can be written. Here, we get
Gai = Vu (V)" + Vo, (Vu) ',
gai = —Vu -V,
9o0i = K (MR (@, u) + PrY; — conuv;) v
- Z {7 -V (ri (@, u) + prYv:i — couv)} T,

goi = (Nri (@, u) + prv; — coquv;) T.

The similar regularity for g; in Theorem 9.8.2 means Gg; € H' N
L (Q(¢);R™), go; € H' N L™ (Q(¢);R) and gy, € HY? N
L> (092 (¢) ;R?). To obtain the results, from the proof of Theorem 9.8.2,
considering that u and v; are elements of W2 (D;R), the regularity of
known function required in this case is

con € CY (B;CYH (D;R)), pr € Cq (B;CH' (D;R)) ,
iRi (@, u) € W (DiR), i (¢,u) [@] € W (D5 R)

in a neighborhood B C Y of ¢ € D°. On the other side, with respect to
an opening angle 5 of a corner point, the condition § < 27/3 when the
corner point is between boundaries of the same type will be applied.

Let us use Eq. (9.15.3) in order to obtain g;s. With respect to the first
term in the right-hand integrand of Eq. (9.15.3),

050 0 sinf 0 )
o . i (c0s(0/2)
Vu= a r 90|y = 2 (C.OS( ) )
sinﬁ% n cos 80 2¢1/2 \ sin (0/2)

or r 00
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Ll [cos(0/2)
Vi = 5a7 (Sin (9/2))

holds. Here, we obtain

Vu-Vu; = %
4de

Substituting this result into the first term of the right-hand integrand of
Eq. (9.15.3) gives

27
—/ (Vu-Vu)v-pedb
0

2

kjlij .

= / % (¢1 cosl + pasinh)dfd =0 (P.9.3)
0

with respect to an arbitrary ¢ = (gol,gog)T € R2. Furthermore, with
respect to the second term of the integrand,

B _kj [—cosb cos (6/2)
du=v- Vu= 2¢1/2 (sin 0) . (sin (0/2)

k.
= —?1]/2 cos (0/2),

_ kjli; s(0/2)
0, uVv; = - cos (0/2) (2?11 (9/2))

is established. Here the second term of the integrand becomes

27 27
d,uVv; - pedf = o,v;Vu-pedd
0 0

— fkfi"j <g> . <i;) (P.9.4)

with respect to an arbitrary ¢ = (1, <p2)T € R2. The same result holds for
the third term of the integrand. Hence, from Eq. (P.9.3) and Eq. (P.9.4),

(@icr ) = —kj;ij (g) : (Z;) (P.9.5)

can be obtained. From Eq. (P.9.5), we see that the shape derivative g,¢
with respect to a variation of a crack point is in the direction of the crack
surface.

g;m becomes as follows. With respect to the first term on the right-hand
integrand of Eq. (9.15.3),

s 0 sinf 0 )
B a  r o0, _ ki (—sin(0/2)
Vu = % cos@é YT o0 ( cos(0/2) )’

sinf— + ——

or r 00
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Vo= oo ()

holds. Hence,

Vu- V’Uz‘ = de

is obtained. If this result is substituted into the first term of the right-hand
integrand of Eq. (9.15.3), it becomes

_/ (Vu.Vvi)y.cpedez/ %(aplcose—i—wgsinwd@
0 0
_ kjli

; (P.9.6)

with respect to an arbitrary ¢ = (@1, @2) € R2. Furthermore,

B K —cos 0 —sin (6/2)
Opu=v- -Vu=_55 (_Sine) ' ( cos (6/2)

ki .
= _le/Q Sin (0/2),

- k‘jlij - —sin (9/2)
O,uVuv; = ——g sin (6/2) ( cos (6/2) )

holds. Here, the second term of the integrand becomes

/atuvi-cpedez/ 0,v;Vu - pedd
0 0

by <_7f2> . (g;) (P.9.7)

with respect to an arbitrary ¢ = (i1, npz)—r € R2. The third term of the
integrand gives the same result. Hence, from Eq. (P.9.6) and Eq. (P.9.7),

(s ) = kjiij (g) : (i;) (P.9.8)

can be obtained. Equation (P.9.8) shows that the shape derivative g, at
a point of a mixed boundary on a smooth boundary is in the direction of
the Neumann boundary.
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