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Chapter 9

Shape Optimization
Problems of Domain
Variation Type

In Chap. 8 we looked at problems for obtaining the optimal topologies of
continua with the densities of continua set to be the design variable. In this
chapter, we shall look at the type of shape optimization problems in which the
boundary of a continuum varies. The key theory of numerical solution shown
in this chapter is published in the paper [3]. In this book, we shall look at the
theory used there by comparing it to the contents shown in Chaps. 1 to 7.

First, let us take an abridged look at the history of research relating to
a shape optimization problem of domain variation type. This type of shape
optimization problem is also referred to as a domain optimization problem
and has been studied since the early 20th century. For example, among
the vast works of Hadamard, there is a description relating to a problem
seeking the boundary shape of a thin membrane such that the fundamental
vibration frequency is maximized. In this description, a notion equivalent to
a Fréchet derivative of the fundamental frequency when a boundary is moved
in the outward normal direction is presented [28, 87]. Even after that, Fréchet
derivatives with respect to shape variations of domain variation type have been
referred to as shape derivatives, and many researchers have announced research
results relating to it.1 To add background to this research, there are works
relating to optimal control theory assuming a function as a control variable by
mathematicians lead by Lions [61].

In this way, theories relating to the calculation methods of shape derivatives
have been developed consistently, but research relating to moving the shapes
using shape derivatives has not always obtained favorable results. In reality, it
is known that if the node coordinates on a boundary of a finite element model

1For example, refer to [11–13,18–23,25,26,29–32,35,65,68,71–74,85,87,100,101].

3



4 Chapter 9 Shape Optimization Problems of Domain Variation Type

(a) Rippling shape (b) Optimal shape by H1 gradient method

Fig. 9.1: Numerical examples with respect to the shape optimization problem
of a linear elastic body (provided by Quint Corporation).

are chosen to be the design variable, and the Fréchet derivatives with respect
to the variation of the design variable are evaluated in order to move the nodes,
a numerically unstable phenomenon in which the boundary becomes rippled
such as shown in Fig. 9.1 (a) appears [40]. Figure 9.1 (a) shows the result of a
numerical analysis with respect to a mean compliance minimization problem
(Problem 9.12.2) of a three-dimensional linear elastic body. The boundary
condition in the state determination problem constrains the displacement on the
back edge, while a uniform downward facing nodal force (external force) on the
horizontal central line of the front edge was assumed. The boundary condition
in the shape variation problem restrains the variation in the normal direction on
the front/back and left/right edges, and the variation on the horizontal central
line on the front/back edge. Numerical analysis of a state determination problem
uses the first-order finite elements. The calculation method of shape derivatives
uses the formula of boundary integration form as shown later.

In order to avoid rippling boundaries such as in this case, there is a method
to define the boundary shape as a B-spline curve, Bezier curve, etc. and choose
its control variables as the design variables [16, 17]. There is also a method for
giving the shape variation as the linear sum of the basic deformation modes and
choosing the undetermined multipliers in this case as the design variables (basis
vector method) [14,32,75,90,91]. All these methods have been highlighted and
used in actual optimal designs. However, all the methods used derivatives with
respect to parametric design variables, such as those explained in the Preface
and differ from original shape derivatives.

In this chapter, we will look at a method for evaluating the shape derivatives
of cost functions after having constructed a shape optimization problem of a
domain variation type in which a function expressing the domain variation
defined on an appropriate function space is set to be the design variable based on
the framework of the abstract optimal design problem shown in Chap. 7. As a
result, the shape gradient does not have enough regularity to create the following
domain. This is thought to be one of the factors generating numerical instability.
In this situation, even if such a shape derivative is used, if an appropriate
gradient method is used, there is the possibility that a shape optimization
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problem can be solved without facing numerical instability. In this chapter,
this method will be the focus of our discussion.

Figure 9.1 (b) shows the results obtained via the algorithm shown in Sect.
9.10. Boundary conditions and calculation method of the shape derivative are
the same as in Fig. 9.1 (a). Numerical analysis of the state determination
problem used second-order tetrahedral finite elements. Moreover, in numerical
analysis of the H1 gradient method using the Robin condition shown later, the
first-order tetrahedral finite elements were used. Moreover, the validity relating
to the selection of a finite element such as this is shown in Sect. 9.11.

The fundamental idea relating the gradient method on a function space
was presented by Cea [18]. A primitive form of the gradient method can be
found in Pironneau’s monograph [73, p. 48 (17)]. In addition, a method called
asymptotical regularization was proposed by Tautenhahn [89]. In contrast, in
the 1990s, the author [2] proposed a gradient method on a function space which
was referred to as the traction method, based on an engineering principle.
After that, a generalization of the traction method was also introduced [7].
Furthermore, these methods have been applied in various engineering problems.2

Moreover, the interpretation of the traction method in mathematics was also
attempted in an existing report [45]. Here the domain mapping was assumed
to be an element of the set of all continuous functions of some class, and the
traction method was justified using the Gâteaux derivative of a cost function
with respect to the variation of the domain mapping. In this chapter, a gradient
method uses the Fréchet derivative of a cost function by defining the variation
of the domain mapping in an appropriate Hilbert space. Based on this gradient
method, it is apparent that the traction method was indeed a concrete example
of that computational procedure.

Furthermore, a different method for constructing a shape optimization
problem of domain variation type is proposed. As thought by Hadamard [28],
since the next boundary shape can be determined by moving the boundary
to the normal direction, one method is choosing the function that represents
the amount of movement in the normal direction defined on the boundary
as the design variable [64]. This method also uses the gradient method with
the functionality of keeping the regularity equivalent to the gradient method
shown in this chapter. However, if a finite element method is used for numerical
analysis of a state determination problem, after the boundary has been moved by
the gradient method, we have to consider a method for moving the finite element
mesh within the domain along with the new boundary. In addition, methods
using level-set functions for design variables are also being researched [1,92,99].
In these methods, a level-set function which is a continuous function with scalar
value defined on a fixed domain is used to define the boundary with a set of
points in the domain where its value is zero. Using these methods, the topology
of the domain can easily be changed through joining the holes together by
varying the level-set function. However, since the level-set function is defined
using Euler notation (see after Definition 9.1.3), a wider domain is required than

2See, for example, references [4, 6, 8–10,36–39,41–44,46–58,76–84,93–98].



6 Chapter 9 Shape Optimization Problems of Domain Variation Type

the actual domain. Moreover, in order to extract a numerical model from the
level set of zero, some processes are required. Furthermore, stronger conditions
with respect to the regularity of the solution for the state determination problem
are required for the aforementioned two methods than for the method shown in
this chapter. The reason for this is that when calculating the Fréchet derivatives
of cost functions, only the formula of boundary integral type can be applicable.

This chapter is structured as follows. In Sections 9.1 to 9.4, the definitions
and formulae relating to functions and functionals defined on a moving domain
are summarized. In Sect. 9.1, the definitions of admissible set of a design
variable (function representing domain variation) and shape derivatives of
functions and functionals are shown. There, attention will be given to the fact
that there are two methods of defining the derivatives of functions defined on a
moving domain with respect to domain variation. In this book, we shall refer
to these notions of derivatives as “shape derivative of a function” and “partial
shape derivative of a function”. Using these definitions, the formulae for shape
derivatives relating to the Jacobi matrix of the domain mapping will be obtained
in Sect. 9.2. Using the formulae, in Sect. 9.3, the propositions relating to shape
derivatives of functions and functionals are shown. Here also, we will focus on
the fact that the formulae using the shape derivatives of functions and partial
shape derivatives of functions can be obtained. Sect. 9.4 defines several rules
for variations of functions with respect to domain variation using the shape
derivative of a function and the partial shape derivative of a function.

In Sections 9.5 to 9.8, we will consider a shape optimization problem when
a Poisson problem is chosen to be the state determination problem and present
the process of computing the shape derivatives of cost functions. In Sect. 9.5, a
state determination problem will be defined using a Poisson problem using the
variation rules for functions shown in Sect. 9.4. The solution to this problem
is used in Sect. 9.6 to define a general cost function which is then used to
define a shape optimization problem. The existence of a solution to the shape
optimization problem of this is shown in Sect. 9.7. In Sect. 9.8, the methods
for obtaining the Fréchet derivatives of cost functions shown in Section 7.4
are followed in order to show the methods to obtain shape derivatives and
second-order derivatives of cost functions with respect to a domain variation.
In this case, we focus on the fact that we can think of two methods: one using
formulae based on the shape derivative of a function, and another using formulae
based on the partial shape derivative of a function. As a result, it becomes clear
that whichever method is used, the shape gradients of the cost functions do not
have enough regularity to be able to define the following domain.

Even if the shape gradients have insufficient regularities, by applying the
abstract gradient method or the abstract Newton method shown in Section 7.5
to the shape optimization problems, a gradient method and Newton method
with the functionality to regularize the shape derivatives of cost functions can
be defined. In Sect. 9.9, their abstract definitions and several methods for
specifying these are introduced. In Sect. 9.10, algorithms will be considered.
However, the basic structures are as per the algorithms shown in Section 3.7.
The error evaluation of the numerical solutions obtained using these algorithms



9.1 Set of Domain Variations and Definition of Shape Derivatives 7

Fig. 9.2: Domain variation (displacement) ϕ : D → Rd.

is shown in Sect. 9.11. Here, the results from the error estimations of numerical
analyses shown in Section 6.6 will be used.

Once we look at the range of solutions with respect to the shape optimization
problem of a Poisson problem, the shape derivatives of cost functions with
respect to a mean compliance minimization problem of a linear elastic body
will be sought in Sect. 9.12. Furthermore, in Sect. 9.13, the mean flow
resistance minimization problem of a Stokes flow field will be used as an
example to obtain the shape derivatives of the cost functions. The conditions
of optimality using these shape derivatives can be seen matching the conditions
of optimality with respect to the mean compliance minimization problem for
a one-dimensional linear elastic body shown in Section 1.1 and the mean flow
resistance minimization problem for a one-dimensional branched Stokes flow
field shown in Section 1.3. Moreover, in Sections 9.12.5 and 9.13.5, numerical
examples with respect to these simple problems will be shown.

9.1 Set of Domain Variations and Definition of
Shape Derivatives

In order to construct a shape optimization problem of domain variation type, let
us define the admissible set of design variables. Moreover, the Fréchet derivatives
of functions and functionals defined in a moving domain with respect to domain
variation will be referred to as shape derivatives. These definitions will be shown
in this section.

9.1.1 Initial Domain

Referring to Fig. 9.2, Ω0 ⊂ Rd is taken to be a d ∈ {2, 3}-dimensional Lipschitz
domain (Section A.5) representing the initial domain. In this chapter, we will
assume that this boundary ∂Ω0 is also H2 ∩ C0,1 class. Here, a boundary
of Hk+2 ∩ Ck,1 class (k ∈ {0, 1, 2, . . .}) is defined as that the function ϕ
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(a) Ω0 ⊂ R2 (b) Ω0 ⊂ R3

Fig. 9.3: Set of corner points (when d = 2) or edges (when d = 3) Θ0 =
∂Γ01 ∩ ∂Γ02 on boundary Γ0 = Γ01 ∪ Γ02 ∪ (∂Γ01 ∩ ∂Γ02) ⊂ ∂Ω0 and outward
facing tangent τ (∂Γ01) and τ (∂Γ02) on ∂Γ01 and ∂Γ02, respectively.

defined in Definition A.5.2 (Ck class domain) belongs to Hk+2
(
B (x,α) ;Rd

)
∩

Ck,1
(
B (x,α) ;Rd

)
(Hk+3/2

(
∂Ω0 ∩B (x,α) ;Rd

)
∩ Ck,1

(
∂Ω0 ∩B (x,α) ;Rd

)
on boundary). Moreover, hereafter, we denote Hk+2

(
Ω0;Rd

)
∩Ck,1

(
Ω0;Rd

)
as

Hk+2 ∩ Ck,1
(
Ω0;Rd

)
.

It is assumed that Ω0 is given. With respect to the boundary ∂Ω0 of the
initial domain, ΓD0 ⊂ ∂Ω0 is taken to be a Dirichlet boundary and ΓN0 = ∂Ω0 \
Γ̄D0 a Neumann boundary. Moreover, the notation for the set ¯( · ) is to represent
a closure. Moreover, in this chapter, homogeneous Neumann boundaries and
inhomogeneous Neumann boundaries will be distinguished from one another,
and the inhomogeneous Neumann boundary of the initial domain will be written
as Γp0 ⊂ ΓN0. Furthermore, we assume that the integrands used in the boundary
integrals in the m + 1 cost functions f0 (object cost function) and f1, . . . , fm
(constraint cost functions) to be defined by Eq. (9.6.1) later will be denoted as
ηNi with respect to i ∈ {0, 1, . . . ,m} and these will be non-zero on Γηi0 ⊂ ΓN0.
If Γp0 and Γηi0 are assumed to vary, these boundaries are piecewise H3 ∩ C1,1,
and when d = 3, boundaries ∂Γp0 or ∂Γηi0 are assumed to be H2 ∩ C0,1 class.
These hypotheses will be needed to guarantee appropriate regularity of shape
derivatives of cost functions obtained on these boundaries. Moreover, when
their boundaries are denoted as Γ0 (Γ0 is an open set excluding ∂Γ0) as shown
in Fig. 9.3, the set of corner points (when d = 2) or edges (when d = 3) on Γ0

is denoted as Θ0, and edges included in Θ0 (when d = 3) are assumed to be
H2 ∩ C0,1 class. For Γ( · ), the notation Θ( · ) is used.

9.1.2 Sets of Domain Variations

Let us define a domain after Ω0 is perturbed. i will represent the identity
mapping. In this case, the domain after Ω0 is perturbed is assumed to be
formed by a continuous bijective mapping i + ϕ : Ω0 → Rd as (i+ ϕ) (Ω0) =
{ (i+ ϕ) (x) | x ∈ Ω0}. In other words, ϕ is to represent the displacement in the
domain mapping. Since the domain (i+ ϕ) (Ω0) is formed by ϕ, it is denoted
by Ω (ϕ). Similarly, with respect to an initial domain or boundary ( · )0, ( · ) (ϕ)
represents { (i+ ϕ) (x) | x ∈ ( · )0}.

When the design variable ϕ is selected as above, even though the domain of
ϕ is fixed at Ω0, the domain of the solution to a state determination problem
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varies with the domain variation. Such a situation is not expected to occur in a
general function optimization problem. However, from the Calderón extension
theorem (Theorem 4.4.4), if the domain of ϕ is expanded to D ⊂ Rd large
enough via Theorem 4.4.4, the conditions for ordinary function optimization
problems are satisfied.

Hence, under conditions satisfying the assumption (with respect to p > 1,
ϕ ∈ W 1,p

(
Ω0;Rd

)
) of Theorem 4.4.4, we will expand the domain of ϕ from

Ω0 to a bounded domain D ⊂ Rd large enough. Furthermore, since we will be
considering the gradient method on a function space later, the function space
containing the design variable ϕ needs to be a Hilbert space. Hence in this
chapter, the linear space of design variables is defined as

X =
{
ϕ ∈ H1

(
D;Rd

) ∣∣ ϕ = 0Rd on ∂D ∪ Ω̄C0

}
, (9.1.1)

where Ω̄C0 ⊂ Ω̄0 represents a boundary or closure of the domain in which the
domain variation is constrained by a design demand. In continuing discussions
in this chapter, it will be viewed as Ω̄C0 = ∅ (in other words, X = H1

(
D;Rd

)
).

If it is needed that the measure of Ω̄C0 is assumed to have a certain positive
value, its condition will be clearly presented.

However, when ϕ is taken to be an element of X, there is no guarantee
that Ω (ϕ) is a Lipschitz domain. In order to become a Lipschitz domain, ϕ
has to be an element of C0,1

(
D;Rd

)
. To repeat domain variations under the

same conditions, the condition (Γp0 ∪ Γη00 ∪ Γη10 ∪ · · · ∪ Γηm0 \ Ω̄C0 belongs to
a class of piecewise H3 ∩ C1,1) with respect to ∂Ω0 needs to be satisfied even
for the perturbed boundary ∂Ω(ϕ). Furthermore, to guarantee the existence
of an optimum shape as shown in Sect. 9.7, the admissible set for ϕ should be
compact in X. Considering those conditions, one needs to take a linear space
of ϕ, in which Fréchet derivatives of functions and functionals with respect to
domain variation can be defined, as

Y =

{
X ∩H2 ∩ C0,1

(
D;Rd

)
(Γ̃0 = ∅ or Γ̃0 ⊂ Ω̄C0)

X ∩H3 ∩ C1,1
(
D;Rd

)
(Γ̃0 ̸⊂ Ω̄C0)

, (9.1.2)

where Γ̃0 denotes Γp0 ∪ Γη00 ∪ Γη10 ∪ · · · ∪ Γηm0 after Sect. 9.5 and a piecewise
H3 ∩ C1,1 class boundary before that section, and the admissible set of design
variables as

D =

ϕ ∈ Y

∣∣∣∣∣∣∣

|ϕ|C0,1(D;Rd) ≤ σ,

∥ϕ∥H2∩C0,1(D;Rd) ≤ β (Γ̃0 = ∅ or Γ̃0 ⊂ Ω̄C0),

∥ϕ∥H3∩C1,1(D;Rd) ≤ β (Γ̃0 ̸⊂ Ω̄C0)

 .

(9.1.3)

Here, let ∥ϕ∥H2∩C0,1(D;Rd) be defined as max
{
∥ϕ∥H2(D;Rd) , ∥ϕ∥C0,1(D;Rd)

}
, and

σ ∈ (0, 1) and β be positive constants. Norm | · |C0,1(D;Rd) = ∥ · ∥C0,1(D;Rd) −
∥ · ∥C(D;Rd) represents the Lipschitz constant (see Eq. (4.3.2)). The condition
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|ϕ|C0,1(D;Rd) ≤ σ represents that i+ϕ and its inverse mapping (i+ ϕ)
−1

become

Lipschitz mappings (bi-Lipschitz mappings) on Ω0 and Ω (ϕ) respectively (cf.
[59, Proposition 1.41, p. 23], [63]). Indeed, if this condition is satisfied, i+ϕ is
a surjective Lipschitz mapping on Ω0. Moreover, using

∥(i+ ϕ) (x0)− (i+ ϕ) (y0)∥Rd ≥ ∥x0 − y0∥Rd − ∥ϕ (x0)− ϕ (y0)∥Rd

≥ (1− σ) ∥x0 − y0∥Rd

for arbitrary x0,y0 ∈ Ω0, and that when (i+ ϕ) (x0) = (i+ ϕ) (y0), we obtain

that x0 = y0, i+ϕ becomes injective. Then, there exists (i+ ϕ)
−1

with which

∥x1 − y1∥Rd ≥ (1− σ)
∥∥∥(i+ ϕ)−1

(x1)− (i+ ϕ)
−1

(y1)
∥∥∥
Rd

holds for arbitrary x1,y1 ∈ Ω(ϕ). This inequality shows that (i+ ϕ)
−1

is a
Lipschitz mapping on Ω (ϕ). On the other hand, that D is a compact set in X
is assured by the Rellich–Kondrachov compact embedding theorem (Theorem
4.4.15).

In future discussions, we assume that ϕ is in the interior of D (ϕ ∈ D◦),
and a domain perturbed via domain variation φ ∈ Y such as in Fig. 9.4 will be
denoted by Ω (ϕ+φ). In the condition satisfying φ ∈ D, the perturbed domain
will be defined as

(Ω (ϕ)) (φ) = ((i+φ) ◦ (i+ ϕ)) (Ω0) ,

where ◦ denotes the composite mapping. However, in future discussions, we
will define the shape derivatives of function and functional as bounded linear
operators of φ ∈ X (Definitions 9.1.1, 9.1.3, 9.1.4). In the Fréchet derivatives
of functions and functionals with respect to φ ∈ X, (Ω (ϕ)) (φ) is linearized as
Ω (ϕ+φ). Then, in this chapter, we assume that φ is originally an element
of X, check that φ obtained by the proposed methods belongs to Y based on
the problem setting and solution used, and confirm that ϕ+ ϵφ (ϵ is a positive
constant) belongs to D.

9.1.3 Definitions of Shape Derivatives

For problems involving varying domains, the functions and integrals also vary.
Here let us define their shape derivatives.

Let ϕ0 ∈ D◦ be given. For ϕ in a neighborhood B ⊂ Y of ϕ0 ∈ D◦, let
φ ∈ Y be an arbitrary variation of Ω (ϕ). When the domain varies from Ω (ϕ)
to Ω (ϕ+φ), the function defined on it is also assumed to change. In this
case, we write the function at ϕ as u (ϕ) and the value at a point x on the
expanded domain D of Ω (ϕ) as u (ϕ) (x). We use this notation to define the
shape derivative of a function in the following way.

Definition 9.1.1 (Shape derivative of a function) For all ϕ in a
neighborhood B ⊂ Y of ϕ0 ∈ D◦, consider a function u : B → L2 (D;R).
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Fig. 9.4: Domain variation φ ∈ Y from Ω (ϕ).

The value of u (ϕ) at x ∈ D will be written as u (ϕ) (x). If there exists a
bounded linear operator u′ (ϕ) [ · ] : Y → L2 (D;R) which satisfies

lim
∥φ∥Y →0

∥u (ϕ+φ) (x+φ (x))− u (ϕ) (x) + u′ (ϕ) [φ] (x)∥L2(D;R)

∥φ∥X
= 0

with respect to an arbitrary φ ∈ Y , and u′ (ϕ) [ · ] : X → L2 (D;R) is also
a bounded linear operator, u′ (ϕ) [φ] is referred to as the shape derivative
at ϕ ∈ B of u. When u′ (ϕ) [φ] exists for all ϕ ∈ B and belongs to
C
(
B;L

(
X;L2 (D;R)

))
, we write u ∈ C1

S′

(
B;L2 (D;R)

)
. □

In Definition 9.1.1, we remark the following.

Remark 9.1.2 (Shape derivative) In Definition 9.1.1, at the same time that
u′ (ϕ) [ · ] is a bounded linear operator on Y , it is assumed that it is also a
bounded linear operator inX. When Y is compactly embedded inX, a bounded
linear operator in X is automatically a bounded linear operator in Y (Practice
4.4). The reason to define it in such a way is that, in general, Ω (ϕ+φ) varied
by an arbitrary φ ∈ X is not well-defined. Also, by defining it such a way,
stronger regularity is required than when the shape derivatives are defined as
bounded linear operators in Y . In some types of definitions regarding shape
derivatives shown later, the condition to be a bounded linear operator in X will
be needed for the same reason. □

In continuum mechanics, u (ϕ+φ) (x+φ (x)) in Definition 9.1.1 is called
the Lagrangian description of u (ϕ) (x) and u′ (ϕ) [φ] is called the material
derivative.

Figure 9.5 (a) shows u′ (ϕ) [φ]. Here, even if u ∈ L2 (D;R) is a discontinuous
function, if φ is a continuous function, it is apparent that u′ (ϕ) [φ] can be
defined.

Next, let us think about the derivative of u (ϕ+φ) (x) when a point x is
fixed on the expanded domain D of Ω (ϕ) in the case of the perturbed domain.
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(a) When u (ϕ) is a discontinuous function.

(b) When u (ϕ) is a continuous function.

Fig. 9.5: The function u (ϕ) varying with domain.

The Fréchet derivative of u with respect to an arbitrary variation φ is called
the partial shape derivative of a function and is defined as follows.

Definition 9.1.3 (Partial shape derivative of a function) For all ϕ in a
neighborhood B ⊂ Y of ϕ0 ∈ D◦, consider a function u : B → C0,1 (D;R).
The value of u (ϕ) at x ∈ D will be written as u (ϕ) (x). With respect to an
arbitrary φ ∈ Y , when a bounded linear operator u∗ (ϕ) [ · ] : Y → C0,1 (D;R)
which satisfies that

lim
∥φ∥Y →0

∥u (ϕ+φ) (x)− u (ϕ) (x) + u∗ (ϕ) [φ] (x)∥C0,1(D;R)

∥φ∥X
= 0

for almost every x ∈ D exists and when u∗ (ϕ) [ · ] : X → C0,1 (D;R) is also
a bounded linear operator, u∗ (ϕ) [φ] is called the partial shape derivative
of u at ϕ ∈ B. When u∗ (ϕ) [φ] exists for all ϕ ∈ B and belongs to
C
(
B;L

(
X;C0,1 (D;R)

))
, we write u ∈ C1

S∗

(
B;C0,1 (D;R)

)
. □

In Definition 9.1.3, u (ϕ+φ) (x) is called the Euler description of u (ϕ) (x)
in continuum mechanics, and u∗ (ϕ) [φ] is called the spatial derivative.

Figure 9.5 (b) shows u∗ (ϕ) [φ]. Here, it should be noted that since u ∈
H1 (D;R) is a continuous function, the definition of u∗ (ϕ) [φ] is valid. In reality,
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looking at Fig. 9.5 (a), if u is a discontinuous function, u∗ (ϕ) [φ] is not defined
for x such that a discontinuity of u crosses in the domain variation due to φ.

Moreover, when u ∈ C1
S∗

(
B;C0,1 (D;R)

)
,

u (ϕ+φ) (x+φ (x))

= u (ϕ+φ) (x) +∇u (ϕ) ·φ+ o (∥φ (x)∥X)

= u (ϕ) (x) + u∗ (ϕ) [φ] (x) +∇u (ϕ) ·φ+ o (∥φ (x)∥X)

holds. Then, we have

u′ (ϕ) [φ] = u∗ (ϕ) [φ] +∇u (ϕ) ·φ. (9.1.4)

with respect to arbitrary φ ∈ X. Here (∂ ( · ) /x1, . . . , ∂ ( · ) /xd)⊤ is denoted as
∇ ( · ) with respect to x = (xi)i∈{1,...,d} ∈ Rd. The left-hand side of Eq. (9.1.4)

becomes u′ (ϕ) [ · ] : X → L2 (D;R). Then, u ∈ C1
S′

(
B;L2 (D;R)

)
holds.

Furthermore, the shape derivative of a functional defined on a perturbed
domain will be defined as follows. In this chapter, we use the notation
∇z = (∂ ( · ) /z1, . . . , ∂ ( · ) /zd)⊤ with respect to z = (ϕ+φ) (x). Moreover,
let ν (ϕ) be the outward unit normal defined on the boundary ∂Ω(ϕ), ∂ν ( · ) =
ν (ϕ) ·∇ ( · ), µ = (ϕ+φ) (ν) be the outward unit normal on ∂Ω(ϕ+φ), and
∂µ ( · ) = µ ·∇z ( · ). Furthermore, the dual space of X is denoted by X ′.

Definition 9.1.4 (Shape derivative of a functional) For all ϕ in a
neighborhood B ⊂ Y of ϕ0 ∈ D◦, let u : B → U = H3 ∩ C1,1 (D;R) be given,
and h0 ∈ C1

(
R× Rd;R

)
and h1 ∈ C1 (R× R;R) be defined for (u,∇u, ∂νu) ∈

U × G × GΓ(ϕ) (G = {∇u | u ∈ U}, GΓ(ϕ) =
{
∂νu|Γ(ϕ)

∣∣∣ u ∈ U
}
) (Γ (ϕ) ⊆

∂Ω(ϕ) is piecewise H3 ∩ C1,1) as

h0 (u,∇u) , h0u (u,∇u) ∈ L2 (D;R) , h0∇u (u,∇u) ∈ L2
(
D;Rd

)
,

h1 (u, ∂νu) , h1u (u, ∂νu) , h1∂νu (u, ∂νu) ∈ H1 (D;R) .

With respect to an arbitrary φ ∈ Y , let

f (ϕ+φ, u (ϕ+φ) ,∇zu (ϕ+φ) , ∂µu (ϕ+φ))

=

∫
Ω(ϕ+φ)

h0 (u (ϕ+φ) (z) ,∇zu (ϕ+φ) (z)) dz

+

∫
Γ(ϕ+φ)

h1 (u (ϕ+φ) (z) , ∂µu (ϕ+φ) (z)) dζ. (9.1.5)

Here, Γ (ϕ) is taken to be the partial set of ∂Ω(ϕ) (allowing Γ (ϕ) = ∂Ω(ϕ)).
Moreover, dz and dζ represent infinitesimal measures used in domain and
boundary integrals over Ω (ϕ+φ). In this case, if a bounded linear functional
f ′ (ϕ, u (ϕ) ,∇u (ϕ) , ∂νu (ϕ)) [ · ] : Y → R satisfies

f (ϕ+φ, u (ϕ+φ) ,∇zu (ϕ+φ) , ∂µu (ϕ+φ))



14 Chapter 9 Shape Optimization Problems of Domain Variation Type

= f (ϕ, u (ϕ) ,∇u (ϕ) , ∂ν (ϕ))

+ f ′ (ϕ, u (ϕ) ,∇u (ϕ) , ∂ν (ϕ)) [φ] + o (∥φ∥X)

and f ′ (ϕ, u (ϕ) ,∇u (ϕ) , ∂νu (ϕ)) [ · ] : X → R is also a bounded
linear functional, in other words, there exists a g (ϕ) ∈ X ′ such that
f ′ (ϕ, u (ϕ) ,∇u (ϕ) , ∂νu (ϕ)) [φ] = ⟨g (ϕ) ,φ⟩, f is said to be shape
differentiable at ϕ, and g (ϕ) is called the shape gradient of f . Moreover,
when there exists f ′ (ϕ, u (ϕ) ,∇u (ϕ) , ∂ν (ϕ)) [φ] for all ϕ ∈ B and those are
in C (B;L (X;R)), it is expressed as f ∈ C1

S (B;R).
Furthermore, if with respect to an arbitrary φ1, φ2 ∈ Y , a bounded bilinear

functional f ′′ (ϕ, u (ϕ) ,∇u (ϕ) , ∂ν (ϕ)) [φ1,φ2] : Y × Y → R satisfies〈
g (ϕ+φ2) ,φ1 ◦ (i+φ2)

−1
〉

= ⟨g (ϕ) ,φ1⟩+ f ′′ (ϕ, u (ϕ) ,∇u (ϕ) , ∂ν (ϕ)) [φ1,φ2]

+ o (∥φ1∥X , ∥φ2∥X)

and f ′′ (ϕ, u (ϕ) ,∇u (ϕ) , ∂ν (ϕ)) [φ1,φ2] = h (ϕ) [φ1,φ2] : X ×X → R is also
a bounded bilinear functional, f is said to be second-order shape differentiable,
and h (ϕ) [φ1,φ2] is called the second-order shape derivative or shape Hessian
of f . In addition, with respect to all ϕ ∈ B, if there exists a second-order shape
derivative and f ′′ (ϕ, u (ϕ) ,∇u (ϕ) , ∂ν (ϕ)) [φ1,φ2] ∈ C (B;L (X;L (X;R))),
then we write that f ∈ C2

S (B;R). □

According to the definition of the second-order shape derivative,
f ′′ (ϕ, u (ϕ) ,∇u (ϕ) , ∂ν (ϕ)) [φ1,φ2] can be divided into two parts as [86]

f ′′ (ϕ, u (ϕ) ,∇u (ϕ) , ∂ν (ϕ)) [φ1,φ2]

= (f ′)
′
(ϕ, u (ϕ) ,∇u (ϕ) , ∂ν (ϕ)) [φ1,φ2] + ⟨g (ϕ) , t (φ1,φ2)⟩ .

(9.1.6)

Here, the summands on the right side of the above equation are respectively
given as

(f ′)
′
(ϕ, u (ϕ) ,∇u (ϕ) , ∂ν (ϕ)) [φ1,φ2]

= lim
∥φ2∥X→0

1

∥φ2∥X
(⟨g (ϕ+φ2) ,φ1⟩ − ⟨g (ϕ) ,φ1⟩) (9.1.7)

⟨g (ϕ) , t (φ1,φ2)⟩

= lim
∥φ2∥X→0

1

∥φ2∥X

〈
g (ϕ+φ2) ,φ1 ◦ (i+φ2)

−1 −φ1

〉
. (9.1.8)

Equation (9.1.7) represents the derivative of g (ϕ+φ2) by the variation of
φ2, and commonly appears in calculations of the second-order derivative of a
functional in optimization problems. On the other hand, Eq. (9.1.8) is a specific
term in shape optimization problems to correct the variation of φ1 by φ2. The
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term φ1 ◦ (i+φ2)
−1 − φ1 in Eq. (9.1.8) represents the variation of φ1 by the

inverse mapping of i+φ2. When only this item is calculated, we have

t (φ1,φ2) = lim
∥φ2∥X→0

1

∥φ2∥X

(
φ1 ◦ (i+φ2)

−1 −φ1

)
= −

(
φ2 ·∇φ⊤

1

)⊤
= −

(
∇φ⊤

1

)⊤
φ2. (9.1.9)

The above relation can be obtained in the following way. We notice that the
transfer vector of the coordinate system linearizing the inverse mapping of i+φ2

becomes −φ2, and the varying function is φ1. In Eq. (9.1.4), replacing u by
φ⊤

1 and putting φ∗
1 (ϕ) [−φ2] = 0Rd , φ′

1 (ϕ) (ϕ) [−φ2] gives the right-hand side
of Eq. (9.1.9).

It should be noted that Eq. (9.1.9) holds if ∇φ⊤ or ∇ · φ is not used in
the shape derivative ⟨g (ϕ) ,φ⟩. In the cases that ∇φ⊤ or ∇ · φ is used, those
calculations for ∇φ⊤ and ∇ ·φ will be given in Eq. (9.3.11). In that situation,
the inverse mapping of i+φ2 is applied to ∇ too.

9.2 Shape Derivatives of Jacobi Determinants

Since the domain variation and shape derivatives of functions and functionals
have been defined, let us use them to find the shape derivative of the Jacobi
determinant (Jacobian) and the inverse matrix of Jacobi matrix (Jacobi inverse
matrix) with respect to domain variation φ ∈ Y . These are used when seeking
the formulae for the shape derivatives of functionals.

Fix ϕ0 ∈ D◦. For ϕ in a neighborhood B ⊂ Y of ϕ0 ∈ D◦, consider
an arbitrary domain variation φ ∈ Y from Ω (ϕ). In this case, the Jacobi
matrix and Jacobi determinant (Jacobian) with respect to the mapping i + φ
are expressed as

F (φ) = I +
(
∇φ⊤)⊤ , (9.2.1)

ω (φ) = detF (φ) , (9.2.2)

where I represents the unit matrix.3 In this case, ω (φ) becomes a function which
gives dz = ω (φ) dx with respect to an infinitesimal measure dz on Ω (ϕ+φ)
corresponding to the infinitesimal measure dx on Ω (ϕ). Here, taking up two
types of Jacobi determinants defined on the domain and the boundary, let us
look at their shape derivatives.

9.2.1 Shape Derivatives of Domain Jacobi Determinant
and Domain Jacobi Inverse Matrix

Firstly, the shape derivative of ω (φ) defined on Eq. (9.2.2) at φ0 = 0Rd is given
in the following way.

3Although it is usually written as F (i+φ), following the notation for a deformation
gradient tensor in elasticity theory, F (φ) is used.
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Proposition 9.2.1 (Derivative of domain Jacobi determinant) For ϕ in
a neighborhood B ⊂ Y of ϕ0 ∈ D◦, we have

ω′ (φ0) [φ] = ∇ ·φ

with respect to an arbitrary φ ∈ Y . Moreover, ω′ (φ0) [φ] also belongs to
C
(
B;L

(
X;L2 (D;R)

))
. □

Proof For x ∈ D, we have

ω (φ) = det

(
I +

(
∇φ⊤

)⊤
)

= det

1 + φ1,1 · · · φ1,d

...
. . .

...
φd,1 · · · 1 + φd,d


= 1 +∇ ·φ+

∑
(i,j)∈{1,...,d}2

o
(
∥φi,j∥L2(D;R)

)
.

□

Moreover, the shape derivative of the Jacobi inverse matrix F−⊤ (φ) at
φ0 = 0Rd is as follows.

Proposition 9.2.2 (Derivative of domain Jacobi inverse matrix) For
ϕ in a neighborhood B ⊂ Y of ϕ0 ∈ D◦, we have

F−⊤′ (φ0) [φ] = −∇φ⊤

with respect to an arbitrary φ ∈ Y . Moreover, F−⊤′ (φ0) [φ] also belongs to
C
(
B;L

(
X;L2

(
D;Rd×d

)))
. □

Proof For x ∈ D, using the differentiability of the inverse map (i+φ)−1, we have

F−⊤ (φ)
(
I +∇φ⊤

)
= I.

Taking its shape derivative with respect to φ at ϕ, we get

F−⊤′ (φ0) [φ] + F−⊤ (φ0)
(
∇φ⊤

)
= 0Rd×d .

Since F−⊤ (φ0) = I, the proposition follows. □

9.2.2 Shape Derivatives of Boundary Jacobi Determinant
and the Normal

Next let us obtain the formulae for the shape derivatives relating to the
Jacobi determinant on a boundary. In shape optimization problems of domain
variation type, boundary integrals appear in the Lagrange functions of state
determination problems and cost functions. Hence, when obtaining the shape
derivatives of such boundary integrals, the shape derivatives of the boundary
Jacobi determinant and the normal are needed.
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(a) Before variation (b) After variation

Fig. 9.6: Infinitesimal measures dγ (ϕ) and dγ (ϕ+φ).

Let us represent an infinitesimal measure on ∂Ω(ϕ) by dγ (ϕ) and an
outward unit normal by ν (ϕ). Furthermore, the normal on a Lipschitz
boundary is defined by the normal with respect to the graph defining the
boundary as a graph in a local coordinate system around the boundary, and
is assumed to be in L∞ (∂Ω(ϕ) ;Rd

)
[27, 62]. Here, we assume that ∂Ω(ϕ) is

piecewise H2 ∩ C0,1 and ν (ϕ) ∈ H1/2 ∩ L∞ (∂Ω(ϕ) ;Rd
)
.

In this case, with respect to arbitrary φ ∈ Y , the relation

ϖ (φ) =
dγ (ϕ+φ)

dγ (ϕ)
= ω (φ)ν (ϕ+φ) ·

(
F−⊤ (φ)ν (ϕ)

)
(9.2.3)

holds. Here, ϖ (φ) denotes the Jacobi determinant for the boundary. This
relationship can be obtained from the following proposition.

Proposition 9.2.3 (Nanson formula) For ϕ in a neighborhood B ⊂ Y of
ϕ0 ∈ D◦, let ∂Ω(ϕ) be piecewise H2 ∩ C0,1. For an arbitrary φ ∈ Y , the
equation

ν (ϕ+φ) dγ (ϕ+φ) = ω (φ)F−⊤ (φ)ν (ϕ) dγ (ϕ) (9.2.4)

holds. Moreover, ω (φ)F−⊤ (φ)ν (ϕ) belongs to L∞ (∂Ω(ϕ) ;R). □

Proof Let dl (ϕ) ∈ Rd be an arbitrary vector satisfying ν (ϕ) ·dl (ϕ) > 0 on dγ (ϕ)
and dl (ϕ+φ) a vector obtained through the mapping i+φ. In this case, the relation

dl (ϕ+φ) · ν (ϕ+φ) dγ (ϕ+φ) = ω (φ) dl (ϕ) · ν (ϕ) dγ (ϕ)

holds with respect to the volume of a parallelepiped shown in Fig. 9.6. Here, if
dl (ϕ+φ) = F (φ) dl (ϕ) is substituted into the equation above, one obtains

dl (ϕ) ·
(
F⊤ (φ)ν (ϕ+φ)

)
dγ (ϕ+φ) = dl (ϕ) · (ω (φ)ν (ϕ)) dγ (ϕ) .

Since dl (ϕ) is arbitrary, Eq. (9.2.4) follows. □

Equation (9.2.4) can be obtained by using the Piola transformation giving
the correspondence between second-order tensor functions defined over the
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deformed and initial domains [24, Theorem 1.7-1]. The Piola transformation
A (φ) of an arbitrary second-order tensor-valued function A ∈ C1

(
D;Rd×d

)
with respect to an arbitrary φ ∈ Y is defined as

A = ω (φ)A (φ)F−⊤ (φ) ,

where ω (φ)F−⊤ (φ) is the cofactor matrix of the Jacobi matrix F (φ). Letting
z = x + φ (x) = (i+φ) (x) on D be an admissible perturbation φ of a point
x from Ω (ϕ) after deformation, and ∇z represents ∂ ( · ) /∂z, we have∫

Ω(ϕ)

∇ ·Adx =

∫
∂Ω(ϕ)

Aν (ϕ) dγ (ϕ)

=

∫
Ω(ϕ)

∇z ·A (φ)ω (φ) dx

=

∫
Ω(ϕ+φ)

∇z ·A (φ) dz

=

∫
∂Ω(ϕ+φ)

A (φ)ν (ϕ+φ) dγ (ϕ+φ) .

Applying the Piola transformation to the above equality with respect to the
boundary integral equation and putting A (φ) = I, we obtain Eq. (9.2.4).

Taking the inner product of both sides of Eq. (9.2.4) and ν (ϕ+φ) leads
to Eq. (9.2.3). Moreover, from the fact that ν (ϕ+φ) is a unit vector in the
direction of F−⊤ (φ)ν (ϕ), then by Eq. (9.2.4), the following holds:

ν (ϕ+φ) =
F−⊤ (φ)ν (ϕ)∥∥∥F−⊤ (φ)ν (ϕ)

∥∥∥
Rd

. (9.2.5)

Based on these relationships, the shape derivative of ϖ (φ) of Eq. (9.2.3)
can be obtained in Proposition 9.2.4. In the sequel, the tangent (Definition
A.5.3) on ∂Ω(ϕ) will be written as τ 1 (ϕ), . . . , τ d−1 (ϕ). On the Lipschitz
boundary, the tangent is defined as a tangent on the graph defining the
boundary as a graph of the local coordinate system near the boundary, in a
similar way to the normal, and is assumed to be included in L∞ (∂Ω(ϕ) ;Rd

)
.

Moreover, d−1 times of the mean curvature (Definition A.5.5) (sum of principle
curvatures) is given by κ (ϕ) = ∇ · ν (ϕ) on a piecewise C1,1 class boundary in
a similar way to the derivative of the normal, and is assumed to be included in
L∞ (∂Ω(ϕ) ;R). Here, we assume that ∂Ω(ϕ) is piecewiseH3∩C1,1 and κ (ϕ) ∈
H1/2∩L∞ (∂Ω(ϕ) ;R). Moreover, ∇τ ( · ) = (τ j (ϕ) ·∇)j∈{1,...,d−1} ( · ) ∈ Rd−1

and φτ = (τ j (ϕ) ·φ)j∈{1,...,d−1} ∈ Rd−1. From now on, ν (ϕ), τ 1 (ϕ), . . . ,

τ d−1 (ϕ) and κ (ϕ) are to be written simply as ν, τ 1, . . . , τ d−1 and κ.

Proposition 9.2.4 (Derivative of boundary Jacobi determinant) For
ϕ in a neighborhood B ⊂ Y of ϕ0 ∈ D◦, let ∂Ω(ϕ) be piecewise H2 ∩ C0,1. In
this case, we have the identity

ϖ′ (φ0) [φ] = (∇ ·φ)τ = ∇ ·φ− ν ·
(
∇φ⊤ν

)
(9.2.6)
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Fig. 9.7: Distribution of a tangent near a circle.

with respect to an arbitrary φ ∈ Y , where (∇ ·φ)τ is defined by the right-hand
side of Eq. (9.2.6). Furthermore, if ∂Ω(ϕ) is a piecewise H3 ∩ C1,1 boundary,
one has

ϖ′ (φ0) [φ] = κν ·φ+∇τ ·φτ . (9.2.7)

Moreover, ϖ′ (φ0) [φ] belongs to C (B;L (Y ;L∞ (∂Ω(ϕ) ;R))). □

Proof From Eq. (9.2.3) and Eq. (9.2.5), we have

ϖ (φ) = ω (φ)
∥∥∥F−⊤ (φ)ν

∥∥∥
Rd

.

Eq. (9.2.6) can be obtained from Propositions 9.2.1 and 9.2.2 as

ϖ′ (φ0) [φ] = ω′ (φ0) [φ]
∥∥∥F−⊤ (φ0)ν

∥∥∥
Rd

+ ω (φ0)
(
F−⊤ (φ0)ν

)
·
(
F−⊤′ (φ0) [φ]ν

)/∥∥∥F−⊤ (φ0)ν
∥∥∥
Rd

= ∇ ·φ− ν ·
(
∇φ⊤ν

)
.

Furthermore, if its boundary is piecewise H3∩C1,1, we can define κ = ∇ ·ν almost
everywhere and write

∇ ·φ = ∇ ·

(ν ·φ)ν +
∑

j∈{1,...,d−1}

(τ j ·φ) τ j


= ∂ν (ν ·φ) + κ (ν ·φ) +∇τ ·φτ . (9.2.8)

Here, the notation ∇ · τ 1 = 0, . . . , ∇ · τ d−1 = 0 is used. This is because when Ω (ϕ)
is a circle (a two-dimensional domain) with radius r, such as in Fig. 9.7, one has

∇ · τ 1 = ∇ · τ =
∂τ1
∂x1

+
∂τ2
∂x2

= lim
θ→0

cos θ − 1

r tan θ
= 0

at x = (0, r)⊤. A similar relationship holds even when Ω (ϕ) is a three-dimensional
domain.

Moreover,

ν ·
(
∇φ⊤ν

)
= ν ·

∇
(ν ·φ)ν +

∑
j∈{1,...,d−1}

(τ j ·φ) τ j


⊤

ν


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= ∂ν (ν ·φ) (9.2.9)

holds. Here, the following equalities are used:

∇ (ν ·φ)ν⊤ν = ∇ (ν ·φ) , ∇ν⊤ν = 0Rd ,

∇ (τ j ·φ) τ⊤
j ν = 0Rd , ν ·

(
∇τ⊤

j ν
)
= 0.

The fact that ν ·
(
∇τ⊤

1 ν
)
= 0, . . . , ν ·

(
∇τ⊤

d−1ν
)
= 0 holds follows from the fact that

when Ω (ϕ) is a circle with radius r, such as that in Fig. 9.7, at x = (0, r)⊤, we have

ν ·
(
∇τ⊤

j ν
)
=

(
ν1 ν2

)(∂τ1/∂x1 ∂τ2/∂x1

∂τ1/∂x2 ∂τ2/∂x2

)(
ν1
ν2

)
=

(
0 1

)(0 −1/r
0 0

)(
0
1

)
= 0.

Even in a case when Ω (ϕ) is a three-dimensional domain, a similar relationship holds.
Here if Eq. (9.2.8) and Eq. (9.2.9) are substituted into Eq. (9.2.6), then one obtains

Eq. (9.2.7). □

Moreover, the following formula can be obtained with respect to the shape
derivative of a normal.

Proposition 9.2.5 (Derivative of the normal) For ϕ in a neighborhood
B ⊂ Y of ϕ0 ∈ D◦, let ∂Ω(ϕ) be piecewise H2 ∩C0,1. In this case, we have the
identity

ν′ (ϕ) [φ] = −
(
∇φ⊤)ν +

{
ν ·
(
∇φ⊤ν

)}
ν

with respect to an arbitrary φ ∈ Y . Moreover, ν′ (ϕ) [φ] belongs to
C
(
B;L

(
Y ;L∞ (∂Ω(ϕ) ;Rd

)))
. □

Proof The outward unit normal on Ω (ϕ+φ) can be expressed as Eq. (9.2.5); that
is

ν (ϕ+φ) =
F−⊤ (φ)ν∥∥F−⊤ (φ)ν

∥∥
Rd

=
h (φ)

∥h (φ)∥Rd

.

In this case, we have

ν′ (φ0) [φ] =
1

∥h (φ0)∥
2
Rd

{
h′ (φ0) [φ] ∥h (φ0)∥Rd − h (φ0)

⊤ (h′ (φ0) [φ])h (φ0)

∥h (φ0)∥Rd

}
= −

(
∇φ⊤

)
ν +

[
ν ·

{(
∇φ⊤

)
ν
}]

ν.

□

9.3 Shape Derivatives of Functionals

Let us use the results in Sect. 9.2 to obtain the formulae of the shape derivatives
of domain and boundary integrals over a moving domain. In this case, one has
to be cautious with the two types of formulae of the shape derivatives of domain
and boundary integrals: the first one using the shape derivative of a function
and the second one using the partial shape derivative of a function.
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9.3.1 Formulae Using Shape Derivative of a Function

Firstly, let us consider finding the formulae using the shape derivative u′ of
a function u. From Definition 9.1.1, the following proposition holds. Here,
we assume that u (ϕ) denotes a function u when ϕ, and f (ϕ, u (ϕ)) denotes a
functional f when ϕ and u (ϕ). Furthermore, write u′ (ϕ) [φ] based on Definition
9.1.1 as u′.

Proposition 9.3.1 (Derivative of domain integral of u using u′) For all
ϕ in a neighborhood B ⊂ Y of ϕ0 ∈ D◦, suppose u ∈ C1

S′

(
B;L2 (D;R)

)
. For

an arbitrary φ ∈ Y , we set

f (ϕ+φ, u (ϕ+φ)) =

∫
Ω(ϕ+φ)

u (ϕ+φ) dz.

Then,

f ′ (ϕ, u) [φ] =

∫
Ω(ϕ)

(u′ + u∇ ·φ) dx (9.3.1)

holds. Moreover, f ′ (ϕ, u) [φ] also belongs to C (B;L (X;R)). □

Proof If the domain Ω (ϕ+φ) of f is pulled back to Ω (ϕ), we get

f (ϕ+φ, u (ϕ+φ)) =

∫
Ω(ϕ)

u (ϕ+φ) (x+φ (x)) ω (φ) (x) dx.

If Definition 9.1.1 is used, one obtains

f ′ (ϕ, u (ϕ)) [φ] =

∫
Ω(ϕ)

(
u′ (ϕ) [φ]ω (φ0) + u (ϕ)ω′ (φ0) [φ]

)
dx.

Using Proposition 9.2.1, the desired result follows. □

Next, let us think about the domain integral when a derivative of a function
is the integrand. Firstly, let us focus on the following result. Below we
write that the point x on domain D to which Ω (ϕ) is extended moves to
z = x+φ (x) = (i+φ) (x) with respect to an arbitrary φ ∈ Y . Moreover, ∇z

represents ∂ ( · ) /∂z.

Proposition 9.3.2 (Pullback of derivative) For all ϕ in a neighborhood
B ⊂ Y of ϕ0 ∈ D◦, let u ∈ C

(
B;H1 (D;R)

)
. Suppose

u (ϕ+φ) (z) = u (ϕ)
(
(i+φ)

−1
(z)
)
= u (ϕ) (x) (9.3.2)

holds with respect to an arbitrary φ ∈ Y . In this case, we have

∇zu (ϕ+φ) (z) = F−⊤ (φ)∇u (ϕ) (x) ∈ L1
(
D;Rd

)
.

Moreover, F−⊤ (φ)∇u (ϕ) belongs to C
(
B;L

(
X;L1

(
D;Rd

)))
. □
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Proof The chain rule of derivatives gives

∂u (ϕ+φ)

∂z
(z) =

∂x⊤

∂z

∂u (ϕ)

∂x
(x) =

(
∂z

∂x⊤

)−⊤
∂u (ϕ)

∂x
(x) .

□

Here, if the derivative of a function is included in the integrand of a domain
integral, the following formula is obtained [59,60,69].

Proposition 9.3.3 (Derivative of domain integral of ∇u using u′) In a
neighborhood B ⊂ Y of ϕ ∈ D◦, suppose u ∈ C1

S′

(
B;H1 (D;R)

)
. For an

arbitrary φ ∈ Y , let

f (ϕ+φ,∇zu (ϕ+φ)) =

∫
Ω(ϕ+φ)

∇zu (ϕ+φ) dz.

In this case, the shape derivative of f becomes

f ′ (ϕ,∇u) [φ] =

∫
Ω(ϕ)

{
∇u′ −

(
∇φ⊤)∇u+ (∇ ·φ)∇u

}
dx. (9.3.3)

Moreover, f ′ (ϕ,∇u) [φ] also belongs to C (B;L (X;R)). □

Proof In Proposition 9.3.2, if we assume Eq. (9.3.2), then we obtain

f (ϕ+φ,∇zu (ϕ+φ))

=

∫
Ω(ϕ+φ)

[
∇zu (ϕ+φ) (z)|∗

+∇z

{
u (ϕ+φ) (z)− u (ϕ)

(
(i+φ)−1 (z)

)}]
dz

=

∫
Ω(ϕ)

{
F−⊤ (φ)∇u (ϕ) (x) + ux+φ(x) (ϕ+φ) (x+φ (x))

− ux+φ(x) (ϕ) (x)
}
ω (φ) dx.

Here ∇zu (ϕ+φ) (z)|∗ is taken to be∇zu (ϕ+φ) (z) in view of Eq. (9.3.2). From the
definition of the shape derivative of f (Definition 9.1.4) and the definition of u′ (ϕ) [φ]
(Definition 9.1.1), we obtain

f ′ (ϕ,∇u (ϕ)) [φ] =

∫
Ω(ϕ)

{(
F−⊤′ (φ0) [φ]∇u (ϕ) +∇u′ (ϕ) [φ]

)
ω (φ0)

+ F−⊤ (φ0)∇u (ϕ)ω′ (φ0) [φ]
}
dx.

If Propositions 9.2.1 and 9.2.2 are used in this result, then the conclusion follows. □

A comparison of Proposition 9.3.1 and Proposition 9.3.3 suggests the
following. With respect to the terms relating to the shape derivative of the
domain measure (term containing ∇ · φ), since the domain measures are only
multiplied by ∇ · φ, both are treated in the same way. On the other hand,
with respect to the terms relating to the integrands, the treatments of the two
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are different. If the integrand does not contain any differential term, u simply
changes to u′, but if there is a derivative, ∇u changes to ∇u′ −

(
∇φ⊤)∇u. If

attention is given to this point, the following can be obtained if the integrand
is given by a function of u and ∇u.

Proposition 9.3.4 (Derivative of domain integral using u′) For all ϕ in
a neighborhood B ⊂ Y of ϕ0 ∈ D◦, let u ∈ C1

S′ (B;U) (U = H2 (D;R)) and
h ∈ C1

(
R× Rd;R

)
be defined as

h (u,∇u) , hu (u,∇u) ∈ L2 (D;R) , h∇u (u,∇u) ∈ L2
(
D;Rd

)
with respect to (u,∇u) ∈ U × G (G = {∇u | u ∈ U}). Let

f (ϕ+φ, u (ϕ+φ) ,∇zu (ϕ+φ))

=

∫
Ω(ϕ+φ)

h (u (ϕ+φ) ,∇zu (ϕ+φ)) dz.

In this case, the shape derivative of f becomes

f ′ (ϕ, u,∇u) [φ]

=

∫
Ω(ϕ)

{
hu (u,∇u) [u′] + h∇u (u,∇u)

[
∇u′ −

(
∇φ⊤)∇u

]
+ h (u,∇u)∇ ·φ

}
dx. (9.3.4)

Furthermore, f ′ (ϕ, u,∇u) [φ] also belongs to C (B;L (X;R)). □

The formula obtained in Proposition 9.3.4 becomes a key identity used in
seeking the shape derivatives of cost functions in Sect. 9.8.1. From the next
section onward, f (ϕ, u,∇u) will be written as f (ϕ, u) and Eq. (9.3.4) will be
expressed as

f ′ (ϕ, u,∇u) [φ] = f ′ (ϕ, u) [φ, u′] = fϕ′ (ϕ, u) [φ] + fu (ϕ, u) [u
′] . (9.3.5)

Here,

fϕ′ (ϕ, u) [φ]

=

∫
Ω(ϕ)

{
h∇u (u,∇u)

[
−
(
∇φ⊤)∇u

]
+ h (u,∇u)∇ ·φ

}
dx, (9.3.6)

fu (ϕ, u) [u
′] =

∫
Ω(ϕ)

{hu (u,∇u) [u′] + h∇u (u,∇u) [∇u′]} dx. (9.3.7)

In the expression of Eq. (9.3.5), all the terms are divided into the linear forms of
φ and u′. This formulation will be used when we calculate the shape derivative
of the Lagrange function with respect to each cost function. In this situation,
we will obtain the shape derivative of each cost function from the linear form of
φ and the weak form of adjoint problem from linear form of u′. In Eq. (9.3.5),
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the subscript ( · )ϕ′ is used to distinguish the similar partial shape derivative
shown in Sect. 9.3.2, where ( · )ϕ∗ will be used.

Regarding the second-order shape derivative of the domain integral, we will
only check the formulation for the shape derivative of the function to use it
later. Here, we focus only on fϕ′ (ϕ, u) [φ], and will show the formulation of
fϕ′ϕ′ (ϕ, u) [φ1,φ2]. According to Definition 9.1.4, it could be expressed in two
parts and is given by

fϕ′ϕ′ (ϕ, u) [φ1,φ2] =
(
fϕ′
)
ϕ′ (ϕ, u) [φ1,φ2] + ⟨g (ϕ, u) , t (φ1,φ2)⟩ ,

(9.3.8)

where(
fϕ′
)
ϕ′ (ϕ, u) [φ1,φ2]

= lim
∥φ2∥X→0

1

∥φ2∥X
(⟨g (ϕ+φ2, u) ,φ1⟩ − ⟨g (ϕ, u) ,φ1⟩) , (9.3.9)

⟨g (ϕ, u) , t (φ1,φ2)⟩

= lim
∥φ2∥X→0

1

∥φ2∥X

〈
g (ϕ+φ2, u) ,φ1 ◦ (i+φ2)

−1 −φ1

〉
. (9.3.10)

Equation (9.3.9) represents the derivative of ⟨g (ϕ+φ2, u) ,φ1⟩ with respect to
a variation of φ2 fixing φ1. On the other hand, Eq. (9.3.10) is the element
to correct the variation of φ1 by φ2 using the inverse mapping of i + φ2.
The calculation of only the term of φ1 ◦ (i+φ2)

−1 − φ1 yields Eq. (9.1.9).
However, fϕ′ (ϕ, u) [φ] in Eq. (9.3.5) uses ∇φ⊤ and ∇ · φ. Then, we need
another formulation shown in the following.

According to the explanation given after Eq. (9.1.9), with respect to −∇φ⊤

in Eq. (9.3.6), we replace φ by φ1 and add the variation −φ2 which is a
linearization of the inverse mapping of i+φ2. By this variation, −∇φ⊤ becomes(
∇φ⊤

2 −∇ ·φ2

)
∇φ⊤

1 using Proposition 9.3.3 in which φ is changed by −φ2,
and u is replaced by φ⊤

1 . Moreover, we apply the same variation to ∇ · φ in
Eq. (9.3.6). Using Proposition 9.3.3 in which φ is changed by −φ2, and u is

replaced by ·φ1, ∇ ·φ becomes ∇φ⊤
2 ·
(
∇φ⊤

1

)⊤ −∇ ·φ2∇ ·φ1.
Let us confirm this thing to the functional

f (ϕ, u) =

∫
Ω(ϕ)

∇udx.

We put the shape derivative of f (ϕ, u) as

⟨g (ϕ, u) ,φ1⟩ =
∫
Ω(ϕ)

∇φ⊤
1 ∇udx−

∫
Ω(ϕ)

∇ ·φ1∇udx

= f1 (ϕ,φ1) + f2 (ϕ,φ1) .

For the shape derivative, Eq. (9.3.10) is written as

⟨g (ϕ, u) , t (φ1,φ2)⟩ = ⟨g (ϕ, u) ,φ1⟩φ1
[−φ2]
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= f1φ1
(ϕ,φ1) [−φ2] + f2φ1

(ϕ,φ1) [−φ2] .

Each term on the right-hand side is obtained using Proposition 9.3.3 as follows.

f1φ1
(ϕ,φ1) [−φ2] =

∫
Ω(ϕ)

(
∇φ⊤

2 −∇ ·φ2

)
∇φ⊤

1 ∇udx,

f2φ1
(ϕ,φ1) [−φ2] =

∫
Ω(ϕ)

(
∇φ⊤

2 −∇ ·φ2

)
∇ ·φ1∇udx

=

∫
Ω(ϕ)

(
∇φ⊤

2 ·
(
∇φ⊤

1

)⊤ −∇ ·φ2∇ ·φ1

)
∇udx.

Using these relations, we have

⟨g (ϕ, u) , t (φ1,φ2)⟩

=

∫
Ω(ϕ)

{
h∇u (u,∇u)

[(
∇φ⊤

2 −∇ ·φ2

)
∇φ⊤

1 ∇u
]

+ h (u,∇u)
(
∇φ⊤

2 ·
(
∇φ⊤

1

)⊤ −∇ ·φ2∇ ·φ1

)}
dx. (9.3.11)

In calculating the second-order derivatives of cost functions, one has to pay
attention to the term in Eq. (9.3.11) added to the expression given in equation
Eq. (9.3.9).

Next, let us think about the case when the functional is given by a boundary
integral. Suppose Γ (ϕ) is a partial set of ∂Ω(ϕ) (allowing Γ (ϕ) = ∂Ω(ϕ)).
Moreover, let Θ (ϕ) be corner points (when d = 2) or edges (when d = 3) on
∂Ω(ϕ) (Fig. 9.3). Also, let τ be a tangent of Γ (ϕ) (when d = 2) or tangent of
Γ (ϕ) and outward normal of ∂Γ (ϕ) (when d = 3). Note that τ at Θ (ϕ) exists
on both sides of Θ (ϕ) as shown in Fig. 9.3. Lastly, let dς express the measure
of ∂Γ (ϕ) ∪Θ(ϕ).

Proposition 9.3.5 (Derivative of boundary integral of u using u′) For
all ϕ in a neighborhood B ⊂ Y of ϕ0 ∈ D◦, let u ∈ C1

S′

(
B;H1 (D;R)

)
and

Γ (ϕ) be piecewise H2 ∩ C0,1. For an arbitrary φ ∈ Y , let

f (ϕ+φ, u (ϕ+φ)) =

∫
Γ(ϕ+φ)

u (ϕ+φ) dζ.

Then, the shape derivative of f becomes

f ′ (ϕ, u) [φ] =

∫
Γ(ϕ)

{u′ + u (∇ ·φ)τ} dγ,

where (∇ ·φ)τ follows Eq. (9.2.6). Furthermore, if Γ (ϕ) is piecewise H3∩C1,1,

f ′ (ϕ, u) [φ] =

∫
Γ(ϕ)

(u′ + κuν ·φ−∇τu ·φτ ) dγ +

∫
∂Γ(ϕ)∪Θ(ϕ)

uτ ·φdς

holds, where ∇τ ( · ) = (τ j (ϕ) ·∇)j∈{1,...,d−1} ( · ) ∈ Rd−1 and φτ =

(τ j (ϕ) ·φ)j∈{1,...,d−1} ∈ Rd−1. Moreover, f ′ (ϕ, u) [φ] also belongs to

C (B;L (X;R)). □
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Proof If the integral domain Γ (ϕ+φ) of f is pulled back to Γ (ϕ), we get

f (ϕ+φ, u (ϕ+φ)) =

∫
Γ(ϕ)

u (ϕ+φ) (x+φ (x))ϖ (φ) dγ.

From the definition of the shape derivative of f (Definition 9.1.4) and the definition
of u′ (ϕ) [φ] (Definition 9.1.1), we obtain

f ′ (ϕ, u (ϕ)) [φ] =

∫
Γ(ϕ)

{
u′ (ϕ) [φ]ϖ (φ0) + u (ϕ)ϖ′ (φ0) [φ]

}
dγ.

If Proposition 9.2.4 is applied, the first part of the proposition can be obtained.
Furthermore, if Γ (ϕ) is piecewiseH3∩C1,1, and if the Gauss–Green theorem (Theorem
A.8.2) is applied to

∫
Γ(ϕ)

u (ϕ)∇τ ·φτ dγ, the remaining part is established. □

Furthermore, if the integrand of the boundary integral is a derivative in the
direction of the normal, we get the following.

Proposition 9.3.6 (Derivative of boundary integral of ∂νu using u′)
For all ϕ in a neighborhood B ⊂ Y of ϕ0 ∈ D◦, let u ∈ C1

S′

(
B;H2 (D;R)

)
and

Γ (ϕ) be piecewise H2 ∩ C0,1. For an arbitrary φ ∈ Y , let

f (ϕ+φ, ∂µu (ϕ+φ)) =

∫
Γ(ϕ+φ)

∂µu (ϕ+φ) dζ.

In this case, the shape derivative of f becomes

f ′ (ϕ, ∂νu) [φ] =

∫
Γ(ϕ)

{∂νu′ + w (φ, u) + ∂νu (∇ ·φ)τ}dγ,

where

w (φ, u) =
[{
ν ·
(
∇φ⊤ν

)}
ν −

{
(∇φ⊤ +

(
∇φ⊤)⊤}ν] ·∇u, (9.3.12)

and (∇ ·φ)τ follows Eq. (9.2.6). Moreover, if Γ (ϕ) is piecewise H3 ∩ C1,1, the
identity

f ′ (ϕ, ∂νu) [φ] =

∫
Γ(ϕ)

{∂νu′ + w (φ, u) + κ∂νuν ·φ−∇τ (∂νu) ·φτ} dγ

+

∫
∂Γ(ϕ)∪Θ(ϕ)

∂νuτ ·φdς (9.3.13)

holds. Moreover, f ′ (ϕ, ∂νu) [φ] belongs to C (B;L (Y ;R)). □

Proof If we assume Eq. (9.3.2) to hold in Proposition 9.3.2, then we get

f (ϕ+φ, ∂µu (ϕ+φ))

=

∫
Γ(ϕ+φ)

[
∇zu (ϕ+φ) (z)|∗

+∇z

{
u (ϕ+φ) (z)− u (ϕ)

(
(i+φ)−1 (z)

)}]
· ν (ϕ+φ) (z) dζ
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=

∫
Γ(ϕ)

{(
F−⊤ (φ)∇u (ϕ)

)
·
(
ν + ν′ (ϕ) [φ] + o

(
∥φ∥X

))
+ ∂µu (ϕ+φ) (x+φ (x))− ∂µu (x)

}
ϖ (φ) dγ,

where ∇zu (ϕ+φ) (z)|∗ equates to ∇zu (ϕ+φ) (z) under the assumption of
Eq. (9.3.2). From the definition of the shape derivative of f (Definition 9.1.4) and
the definition of u′ (ϕ) [φ] (Definition 9.1.1), we get

f ′ (ϕ, ∂νu (ϕ)) [φ] =

∫
Γ(ϕ)

[{(
F−⊤′ (φ0) [φ]∇u

)
· ν + ∂νu

′ (ϕ) [φ]

+
(
F−⊤ (φ0)∇u (ϕ)

)
· ν′ (ϕ) [φ]

}
ϖ (φ0)

+ F−⊤ (φ0) ∂νu (ϕ)ϖ′ (φ0) [φ]
]
dγ.

Using Propositions 9.2.2, 9.2.4 and 9.2.5, we have

f ′ (ϕ, ∂νu (ϕ)) [φ] =

∫
Γ(ϕ)

[
−
{(

∇φ⊤
)
∇u (ϕ)

}
· ν + ∂νu

′ (ϕ) [φ]

+
[
−
(
∇φ⊤

)
ν +

{
ν ·

(
∇φ⊤

)
ν
}
ν
]
·∇u (ϕ)

+ ∂νu (ϕ)
{
∇ ·φ− ν ·

((
∇φ⊤

)
ν
)}]

dγ.

From this, the first part of the proposition can be obtained. The remaining part can
be obtained in a similar way to the proof of Proposition 9.3.5. □

When the integrand of a boundary integral is given by the function of u and
∂νu, if the chain rule for derivatives is used in the proof of Propositions 9.3.5
and 9.3.6, the following results can be obtained.

Proposition 9.3.7 (Derivative of boundary integral using u′) For all ϕ
in a neighborhood B ⊂ Y of ϕ0 ∈ D◦, let u ∈ C1

S′ (B;U) (U = H2 (D;R)), and
h ∈ C1 (R× R;R) be defined as

h (u, ∂νu) ∈ H2 (D;R) , hu (u, u) , h∂νu (u,∇u) ∈ H1
(
D;Rd

)
with respect to (u, ∂νu) ∈ U × GΓ(ϕ) (GΓ(ϕ) =

{
∂νu|Γ(ϕ)

∣∣∣ u ∈ U
}
) and Γ (ϕ)

be piecewise H2 ∩ C0,1. For an arbitrary φ ∈ Y , let

f (ϕ+φ, u (ϕ+φ) , ∂µu (ϕ+φ))

=

∫
Γ(ϕ+φ)

h (u (ϕ+φ) , ∂µu (ϕ+φ)) dζ.

In this case, the shape derivative of f becomes

f ′ (ϕ, u, ∂νu) [φ]

=

∫
Γ(ϕ)

{
hu (u, ∂νu) [u

′] + h∂νu (u, ∂νu) [∂νu
′ + w (φ, u)]
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+ h (u, ∂νu) (∇ ·φ)τ
}
dγ.

Here, w (φ, u) and (∇ ·φ)τ are given by Eq. (9.3.12) and Eq. (9.2.6),
respectively. Furthermore, if Γ (ϕ) is piecewise H3 ∩ C1,1, we have

f ′ (ϕ, u, ∂νu) [φ]

=

∫
Γ(ϕ)

{
hu (u, ∂νu) [u

′] + h∂νu (u, ∂νu)
[
∂νu

′ + w (φ, u)
]

+ κh (u, ∂νu)ν ·φ−∇τh (u, ∂νu) ·φτ

}
dγ

+

∫
∂Γ(ϕ)∪Θ(ϕ)

h (u, ∂νu) τ ·φdς. (9.3.14)

Moreover, f ′ (ϕ, u, ∂νu) [φ] belongs to C (B;L (Y ;R)). □

In Propositions 9.3.6 and 9.3.7, we remark the following.

Remark 9.3.8 (Derivative of boundary integral of ∂νu using u′) For a
boundary integral that included the derivative of a function, w (φ, u) of
Eq. (9.3.12) was contained in the shape derivatives of the boundary integral
(Eq. (9.3.13) and Eq. (9.3.14)). For that reason, we had f ′ (ϕ, u, ∂νu) [ · ] ∈
L (Y ;R) (/∈ L (X;R)). As shown in Sect. 9.1.3, the shape derivatives were
defined as bounded linear operators with respect to an arbitrary φ ∈ X. Hence
in future discussions, when defining the cost functions, the shape derivatives
of cost functions must be constructed so that w (φ, u) is not left in there. In
actual fact, if the cost function is defined as Eq. (9.6.1), the desired results can
be obtained. □

The formula obtained in Proposition 9.3.7 is the key identity for obtaining
the shape derivative of the cost function in Sect. 9.8.1. From the next section
onward, we will write f (ϕ, u, ∂νu) as f (ϕ, u), and Eq. (9.3.14) as

f ′ (ϕ, u, ∂νu) [φ] = f ′ (ϕ, u) [φ, u′] = fϕ′ (ϕ, u) [φ] + fu (ϕ, u) [u
′] .
(9.3.15)

Here stands

fϕ′ (ϕ, u) [φ] =

∫
Γ(ϕ)

{h∂νu (u, ∂νu) [w (φ, u)] + h (u, ∂νu) (∇ ·φ)τ} dγ,

fu (ϕ, u) [u
′] =

∫
Γ(ϕ)

(hu (u, ∂νu) [u
′] + h∂νu (u, ∂νu) [∂νu

′]) dγ.

Furthermore, if Γ (ϕ) is piecewise H3 ∩ C1,1, we have

fϕ′ (ϕ, u) [φ] =

∫
Γ(ϕ)

(
h∂νu (u, ∂νu) [w (φ, u)]

+ κh (u, ∂νu)ν ·φ−∇τh (u, ∂νu) ·φτ

)
dγ

+

∫
∂Γ(ϕ)∪Θ(ϕ)

h (u, ∂νu) τ ·φ dς.
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Fig. 9.8: Shape derivative of a domain integral when the partial shape derivative
u∗ of a function is used.

9.3.2 Formulae Using Partial Shape Derivative of a
Function

Next, let us use the partial shape derivative u∗ of the function u (Definition
9.1.3) to obtain the formulae for seeking the shape derivatives of domain and
boundary integrals. Again, we express a function and a functional as u (ϕ+φ)
and f (ϕ+φ, u (ϕ+φ)), respectively, when ϕ+φ, and simply by u and f (ϕ, u)
when ϕ. Furthermore, we write u∗ (ϕ) [φ] in Definition 9.1.3 as u∗.

Firstly, in view of Proposition 9.3.1, the following result holds.

Proposition 9.3.9 (Derivative of domain integral of u using u∗) For
all ϕ in a neighborhood B ⊂ Y of ϕ0 ∈ D◦, let u ∈ C1

S∗

(
B;H1 (D;R)

)
. For an

arbitrary φ ∈ Y , let

f (ϕ+φ, u (ϕ+φ)) =

∫
Ω(ϕ+φ)

u (ϕ+φ) dz.

In this case, the shape derivative of f becomes

f ′ (ϕ, u) [φ] =

∫
Ω(ϕ)

u∗dx+

∫
∂Ω(ϕ)

uν ·φ dγ. (9.3.16)

Moreover, f ′ (ϕ, u) [φ] also belongs to C (B;L (X;R)). □

Proof The proposition is easily proved by substituting u′ (ϕ) [φ] in Eq. (9.1.4) of
Proposition 9.3.1 together with the Gauss–Green theorem (Theorem A.8.2). □

Figure 9.8 shows the areas corresponding to each integral on the right-hand
side of Eq. (9.3.16). The first term on the right-hand side corresponds to the
shaded area in Ω (ϕ) ∩ Ω(ϕ+φ), while the second term corresponds to the
shaded areas on the left and right sides of the figure. Here, it should be noted
that since the area on the right side has the outward unit normal ν pointing to
the right, ν · φ > 0, and since the area on the left side has ν pointing to the
left, then ν ·φ < 0.
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Moreover, the formula corresponding to Proposition 9.3.3 which represents
the shape derivative of the domain integral with a differential term as integrand
can be obtained by viewing ∇u ∈ C1

S∗

(
B;H1

(
D;Rd

))
as u in Proposition 9.3.9.

In this case, from the fact that (∇u)
∗
(ϕ) [φ] = ∇u∗ (ϕ) [φ] can be established

based on Definition 9.1.3, if ∇u∗ (ϕ) [φ] is written as ∇u∗, then we have

f ′ (ϕ,∇u) [φ] =

∫
Ω(ϕ)

∇u∗dx+

∫
∂Ω(ϕ)

(ν ·φ)∇udγ. (9.3.17)

Furthermore, Eq. (9.3.17) can be written as

f ′ (ϕ,∇u) [φ] =

∫
Ω(ϕ)

[
∇u∗ +

{
∇⊤ (∇uφ⊤)⊤}⊤

]
dx

=

∫
Ω(ϕ)

(∇u∗ +∇ ·φ∇u+∆uφ) dx (9.3.18)

using the Gauss–Green theorem. Hence, if it is compared with the results of
Proposition 9.3.3, we get the identity

∇u′ (ϕ) [φ] = ∇u∗ (ϕ) [φ] +
(
∇φ⊤)∇u (ϕ) + ∆u (ϕ)φ. (9.3.19)

Equation (9.3.19) can be obtained also from

∇u′ (ϕ) [φ] = ∇u∗ (ϕ) [φ] +∇ (∇u (ϕ) ·φ)

by using Eq. (9.1.4).
If the integrand is given by a function of u and ∇u, then by using the chain

rule for derivatives on Proposition 9.3.9, the following result can be obtained.

Proposition 9.3.10 (Derivative of domain integral using u∗) For all ϕ
in a neighborhood B ⊂ Y of ϕ0 ∈ D◦, let u ∈ C1

S∗ (B;U) (U = H2 (D;R))
and h ∈ C1

(
R× Rd;R

)
be defined as

h (u,∇u) ∈ H1 (D;R) , hu (u,∇u) , h∇u (u,∇u) ∈ L2
(
D;Rd

)
with respect to (u,∇u) ∈ U × G (G = {∇u | u ∈ U}). For an arbitrary φ ∈ Y ,
let

f (ϕ+φ, u (ϕ+φ) ,∇zu (ϕ+φ))

=

∫
Ω(ϕ+φ)

h (u (ϕ+φ) ,∇zu (ϕ+φ)) dz.

Then, the shape derivative of f in this case becomes

f ′ (ϕ, u,∇u) [φ] =

∫
Ω(ϕ)

{hu (u,∇u) [u∗] + h∇u (u,∇u) [∇u∗]} dx

+

∫
∂Ω(ϕ)

h (u,∇u)ν ·φ dγ. (9.3.20)

Moreover, f ′ (ϕ, u,∇u) [φ] also belongs to C (B;L (X;R)). □
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The formula obtained in Proposition 9.3.10 is the key identity for obtaining
the shape derivative of the cost function in Sect. 9.8.4. From now on, we will
write f (ϕ, u,∇u) as f (ϕ, u) and Eq. (9.3.20) as

f ′ (ϕ, u,∇u) [φ] = f ′ (ϕ, u) [φ, u∗] = fϕ∗ (ϕ, u) [φ] + fu (ϕ, u) [u
∗] .
(9.3.21)

Here, stands

fϕ∗ (ϕ, u) [φ] =

∫
∂Ω(ϕ)

h (u,∇u)ν ·φ dγ,

fu (ϕ, u) [u
∗] =

∫
Ω(ϕ)

{hu (u,∇u) [u∗] + h∇u (u,∇u) [∇u∗]}dx.

If a functional is given by a boundary integral, the following formula is
obtained by substituting Eq. (9.1.4) into Proposition 9.3.5.

Proposition 9.3.11 (Derivative of boundary integral of u using u∗)
For all ϕ in a neighborhood B ⊂ Y of ϕ0 ∈ D◦, let u ∈ C1

S∗

(
B;H2 (D;R)

)
.

For an arbitrary φ ∈ Y , let

f (ϕ+φ, u (ϕ+φ)) =

∫
Γ(ϕ+φ)

u (ϕ+φ) dζ.

In this case, the shape derivative of f becomes

f ′ (ϕ, u) [φ] =

∫
Γ(ϕ)

(u∗ +∇u ·φ+ u (∇ ·φ)τ ) dγ, (9.3.22)

where (∇ ·φ)τ obeys Eq. (9.2.6). Furthermore, if Γ (ϕ) is piecewise H3 ∩C1,1,
we have

f ′ (ϕ, u) [φ] =

∫
Γ(ϕ)

{u∗ + (∂ν + κ)uν ·φ} dγ

+

∫
∂Γ(ϕ)∪Θ(ϕ)

uτ ·φdς. (9.3.23)

Moreover, f ′ (ϕ, u) [φ] also belongs to C (B;L (X;R)). □

Moreover, if the integrand of the boundary integral is ∂νu, the following
result is obtained.

Proposition 9.3.12 (Derivative of boundary integral of ∂νu using u∗)
For all ϕ in a neighborhood B ⊂ Y of ϕ0 ∈ D◦, let u ∈ C1

S∗

(
B;H3 (D;R)

)
.

For an arbitrary φ ∈ Y , let

f (ϕ+φ, ∂µu (ϕ+φ)) =

∫
Γ(ϕ+φ)

∂µu (ϕ+φ) dζ.
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In this case, the shape derivative of f becomes

f ′ (ϕ, ∂νu) [φ] =

∫
Γ(ϕ)

(∂νu
∗ + w̄ (φ, u) + ∂νu (∇ ·φ)τ ) dγ,

where

w̄ (φ, u) = −

 ∑
i∈{1,...,d−1}

{
τ i ·

(
∇φ⊤ν

)}
τ i

 ·∇u+ (ν ·φ)∆u, (9.3.24)

and (∇ ·φ)τ obeys Eq. (9.2.6). Furthermore, if Γ (ϕ) is piecewise H3 ∩ C1,1,
we have

f ′ (ϕ, ∂νu) [φ] =

∫
Γ(ϕ)

{
∂νu

∗ + w̄ (φ, u) + κ∂νuν ·φ

−∇τ (∂νu) ·φτ

}
dγ +

∫
∂Γ(ϕ)∪Θ(ϕ)

∂νuτ ·φ dς.

Moreover, f ′ (ϕ, ∂νu) [φ] belongs to C (B;L (Y ;R)). □

Proof From Eq. (9.3.19), we have the equation

∂νu
′ (ϕ) [φ] = ∂νu

∗ (ϕ) [φ] +

{(
∇φ⊤

)⊤
ν

}
·∇u (ϕ) + ∆u (ϕ)ν ·φ. (9.3.25)

Substituting the above equation into the result of Proposition 9.3.6, we arrive at the
desired result. □

Here, if the integrand of a boundary integral is given by a function of u and
∂νu, the following result can be obtained by using the chain rule for derivatives
on Propositions 9.3.11 and 9.3.12.

Proposition 9.3.13 (Derivative of boundary integral using u∗) For all
ϕ in a neighborhood B ⊂ Y of ϕ0 ∈ D◦, let u ∈ C1

S∗ (B;U) (U = H3 (D;R)),
and h ∈ C1 (R× R;R) be defined as

h (u, ∂νu) ∈ H2 (D;R) , hu (u, u) , h∂νu (u,∇u) ∈ H1
(
D;Rd

)
with respect to (u, ∂νu) ∈ U × GΓ(ϕ) (GΓ(ϕ) =

{
∂νu|Γ(ϕ)

∣∣∣ u ∈ U
}
). For an

arbitrary φ ∈ Y , let

f (ϕ+φ, u (ϕ+φ) , ∂µu (ϕ+φ))

=

∫
Γ(ϕ+φ)

h (u (ϕ+φ) , ∂µu (ϕ+φ)) dζ.

In this case, the shape derivative of f becomes

f ′ (ϕ, u, ∂νu) [φ]
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=

∫
Γ(ϕ)

{
hu (u, ∂νu) [u

∗] +∇h (u, ∂νu) ·φ

+ h∂νu (u, ∂νu) [∂νu
∗ + w̄ (φ, u)] + h (u, ∂νu) (∇ ·φ)τ

}
dγ,

where w̄ (φ, u) and (∇ ·φ)τ obey Eq. (9.3.24) and Eq. (9.2.6), respectively.
Furthermore, if Γ (ϕ) is piecewise H3 ∩ C1,1, we have

f ′ (ϕ, u, ∂νu) [φ]

=

∫
Γ(ϕ)

{
hu (u, ∂νu) [u

∗] + h∂νu (u, ∂νu) [∂νu
∗ + w̄ (φ, u)]

+ (∂ν + κ)h (u, ∂νu)ν ·φ
}
dγ

+

∫
∂Γ(ϕ)∪Θ(ϕ)

h (u, ∂νu) τ ·φ dς. (9.3.26)

Moreover, f ′ (ϕ, u, ∂νu) [φ] belongs to C (B;L (Y ;R)). □

In Propositions 9.3.12 and 9.3.13, let us recall the similar situation in Remark
9.3.8.

The formula given in Proposition 9.3.13 is the key identity for obtaining
the shape derivative of the cost function in Sect. 9.8.4. From the next section
onward, by writing f (ϕ, u, ∂νu) as f (ϕ, u), Eq. (9.3.26) is expressed as

f ′ (ϕ, u, ∂νu) [φ] = f ′ (ϕ, u) [φ, u∗] = fϕ∗ (ϕ, u) [φ] + fu (ϕ, u) [u
∗] ,
(9.3.27)

where

fϕ∗ (ϕ, u) [φ] =

∫
Γ(ϕ)

{
hu (u, ∂νu) [∇u (ϕ) ·φ] + h∂νu (u, ∂νu) [w̄ (φ, u)]

+ h (u (ϕ) , ∂νu (ϕ)) (∇ ·φ)τ
}
dγ,

fu (ϕ, u) [u
∗] =

∫
Γ(ϕ)

(hu (u, ∂νu) [u
∗] + h∂νu (u, ∂νu) [∂νu

∗]) dγ.

Furthermore, if Γ (ϕ) is piecewise H3 ∩ C1,1 class,

fϕ∗ (ϕ, u) [φ] =

∫
Γ(ϕ)

{
h∂νu (u, ∂νu) [w̄ (φ, u)]

+ (∂ν + κ)h (u (ϕ) , ∂νu (ϕ))ν ·φ
}
dγ

+

∫
∂Γ(ϕ)∪Θ(ϕ)

h (u (ϕ) , ∂νu (ϕ)) τ ·φdς.

9.4 Variation Rules of Functions

In Sect. 9.5, a state determination problem (boundary value problem of partial
differential equation) will be defined. In this case, one has to be aware of how
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Fig. 9.9: The function u : D → R fixed with material.

Fig. 9.10: The function u : D → R fixed in space.

the known function behaves with respect to the moving domain. Here, let us
define typical variation rules using the results obtained up to the end of Sect.
9.3. Also, in this section, we will fix ϕ0 ∈ D◦ and consider an arbitrary domain
variation φ ∈ Y for ϕ in a neighborhood B ⊂ Y of ϕ0 ∈ D◦.

Firstly, we think about the case when the function value moves along with
the movement of a point on the domain, as shown in Fig. 9.9. The variation
rule for the function in this case is defined as follows.

Definition 9.4.1 (Function fixed with material) For all ϕ in a
neighborhood B ⊂ Y of ϕ0 ∈ D◦, let u ∈ C1

S′

(
B;L2 (D;R)

)
, and suppose

u′ (ϕ) [φ] = 0

with respect to an arbitrary φ ∈ Y . Then, u is referred to as a function fixed
with material. □

Moreover, the variation rule for a function not depending on the domain
variation such as that in Fig. 9.10 is defined as follows.

Definition 9.4.2 (Function fixed in space) For all ϕ in a neighborhood
B ⊂ Y of ϕ0 ∈ D◦, let u ∈ C1

S∗

(
B;H1 (D;R)

)
, and suppose

u′ (ϕ) [φ]−∇u (ϕ) ·φ = u∗ (ϕ) [φ] = 0

with respect to an arbitrary φ ∈ Y . Then, u is referred to as a function fixed
in space. □
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Fig. 9.11: The function u : D → R varying with domain measure.

Furthermore, consider the case when along with the movement of a point on
the domain, its function value changes inversely proportionate to the Jacobian
ω (φ) of the domain. Here, the equation

u (ϕ+φ) (x+φ (x))

=
u (ϕ) (x)

ω (φ) (x+φ (x))

= u (ϕ) (x) (1− ω′ (φ0) [φ] (x) + o (∥φ (x)∥Rd)) (9.4.1)

holds at almost everywhere x ∈ D, see Figure 9.11 for an illustration. Hence,
using Proposition 9.2.1, the variation rule in this case is defined as follows.

Definition 9.4.3 (Function varying with domain measure) For all ϕ in
a neighborhood B ⊂ Y of ϕ0 ∈ D◦, let u ∈ C1

S′

(
B;L2 (D;R)

)
, and suppose

u′ (ϕ) [φ] + u (ϕ)∇ ·φ = 0 (9.4.2)

with respect to an arbitrary φ ∈ Y . Then, u is called a function varying with
domain measure. □

If Eq. (9.4.2) is substituted into Proposition 9.3.1, then we obtain
f ′ (ϕ, u (ϕ)) [φ] = 0. Hence, a function varying with a domain measure indicates
that the domain integral of the function would be fixed even when the domain
varies.

Moreover, if along with the movement of a point on the boundary, its
function takes a value inversely proportional to the Jacobian ϖ (φ) on the
boundary, the equation

u (ϕ+φ) (x+φ (x))

=
u (ϕ) (x)

ϖ (φ) (x+φ (x))

= u (ϕ) (x) (1−ϖ′ (φ0) [φ] (x) + o (∥φ (x)∥Rd)) (9.4.3)

holds. Here, Proposition 9.2.4 is used in order to define the variation rule given
in the following definition.
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(a) p0 is constant (b) p0 is constant (c) p is fixed with space,
fixed with material varying with ν is fixed with material
or fixed in space boundary measure (hydrostatic pressure)

Fig. 9.12: Typical variation patterns of traction p in linear elastic problem.

Definition 9.4.4 (Function varying with boundary measure) For all ϕ
in a neighborhood B ⊂ Y of ϕ0 ∈ D◦, let u ∈ C1

S′

(
B;H1 (D;R)

)
and ∂Ω(ϕ)

be piecewise H2 ∩ C0,1, and suppose

u′ (ϕ) [φ] + u (ϕ) (∇ ·φ)τ = 0 (9.4.4)

with respect to an arbitrary φ ∈ Y at almost every x ∈ ∂Ω(ϕ). Then, u is
referred to as a function varying with boundary measure. Here, ∇τ · φ follows
Eq. (9.2.6). □

If Eq. (9.4.4) is substituted into Proposition 9.3.5, then we obtain
f ′ (ϕ, u (ϕ)) [φ] = 0. In this case, it indicates the fact that the boundary integral
of u remains unchanged.

Let us think about a specific problem using the definition above. Figure 9.12
shows the representative variation patterns when the traction p0 in a linear
elastic problem moves to p along with the movement of the boundary.
Figure 9.12 (c) represents the change in traction on a boundary when the
hydrostatic pressure is acting on it. In this book, although the assumption
of hydrostatic pressure will not be used directly, in order to use it in future
discussion, let us obtain the shape derivative with respect to the boundary
integral of hydrostatic pressure.

Proposition 9.4.5 (Derivative of integral using hydrostatic pressure)
Let p ∈ H2 (D;R) be a function fixed in space. For ϕ in a neighborhood B ⊂ Y
of ϕ0 ∈ D◦, let

f (ϕ+φ, p) =

∫
Γ(ϕ+φ)

pν (ϕ+φ) dζ

where φ ∈ Y is arbitrary. In this case, the shape derivative of f becomes

f ′ (ϕ, p) [φ] =

∫
Γ(ϕ)

{
(∇p ·φ)ν − p

(
∇φ⊤)ν + p (∇ ·φ)ν

}
dγ.

Moreover, f ′ (ϕ, p) [φ] belongs to C (B;L (Y ;R)). □
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Proof If Γ (ϕ+φ) is pulled back to Γ (ϕ), then we have

f (ϕ+φ, p) =

∫
Γ(ϕ)

p (x+φ (x))ν (ϕ+φ) (x+φ (x))ϖ (φ) (x) dγ.

From the definition of the shape derivative of f ,

f ′ (ϕ, p) [φ] =

∫
Γ(ϕ)

{(
p′ (ϕ) [φ]ν + pν′ (ϕ) [φ]

)
ϖ (φ0) + pνϖ′ (φ0) [φ]

}
dγ

can be obtained. Here, since p is fixed in space (Definition 9.4.2), then the equation
p′ (ϕ) [φ] = ∇p ·φ holds and if Propositions 9.2.4 and 9.2.5 are used, the desired result
then follows. □

9.5 State Determination Problem

Since the definitions and formulas of shape derivatives of functions and
functionals have been obtained, let us use them to define a boundary value
problem of a partial differential equation which would be a state determination
problem. In this chapter, a Poisson problem will be considered first for ease.

In a shape optimization problem of domain variation type, the domains of
known functions and the solution function vary along with each other. Let
b0 : D → R, pN0 : D → R, uD0 : D → R be known functions over the reference
domain Ω0, which can then be recovered through a specified variation rule with
the functions b (ϕ) : D → R, pN (ϕ) : D → R, uD (ϕ) : D → R defined over
the perturbed domain Ω (ϕ). We shall use their respective variation rules when
we eventually deal with computing the shape derivative of an associated cost
function.

With respect to the solution function, since it is a function of H1 class,
the Calderón extension theorem (Theorem 4.4.4) can be used to view it as a
function defined on D. Hence, we define the real Hilbert space (linear space of
state variables in optimal design problem) containing the homogeneous solution
(given by ũ = u−uD with a known function uD providing the Dirichlet condition)
for the solution of a state determination problem by

U (ϕ) =
{
u ∈ H1 (D;R)

∣∣ u = 0 on ΓD (ϕ)
}

(9.5.1)

with respect to ϕ ∈ D. Furthermore, in order for the domain variation obtained
from the gradient method shown later to be in D of Eq. (9.1.3), the admissible
set of state variables for the homogeneous solution ũ with respect to a state
determination problem is taken to be

S (ϕ) = U (ϕ) ∩W 2,4 (D;R) . (9.5.2)

The regularity which is needed in addition to the condition of S (ϕ) will be
specified when required.

The following two types of hypotheses are set with respect to regularity of
known functions. When the shape derivatives are sought using formulae based
on the shape derivative of a function, the following hypothesis is used later.
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Hypothesis 9.5.1 (Known functions (shape derivative)) With respect
to the given known functions, in a neighborhood B ⊂ Y of ϕ ∈ D◦, we assume

b ∈ C1
S′

(
B;C0,1 (D;R)

)
, pN ∈ C1

S′

(
B;C1,1 (D;R)

)
,

uD ∈ C1
S′

(
B;W 2,4 (D;R)

)
and denote their shape derivatives as ( · )′ (ϕ) [φ]. □

On the other hand, the following hypothesis is used when seeking the shape
derivatives using the formulae based on the partial shape derivative of a function.

Hypothesis 9.5.2 (Known functions (partial shape derivative)) With
respect to the given known functions, in a neighborhood B ⊂ Y of ϕ ∈ D◦, we
assume

b ∈ C1
S∗

(
B;C0,1 (D;R)

)
, pN ∈ C1

S∗

(
B;C1,1 (D;R)

)
,

uD ∈ C1
S′

(
B;W 2,2qR (D;R)

)
where qR > d, and denote their partial shape derivatives as ( · )∗ (ϕ) [φ]. □

The following hypothesis is established with respect to regularity of the
boundary.

Hypothesis 9.5.3 (Opening angle of corner point) Let Ω (ϕ) be a
two-dimensional domain and consider a corner point on the boundary. When
Ω (ϕ) is a three-dimensional domain, we consider a plane which is perpendicular
to the corner line on the boundary and the corner point on the boundary in the
plane. Let β be the opening angle of the corner point between two boundaries
that are a Dirichlet boundary or Neumann boundary,

(1) if the boundaries are same of the type, assume β < 2π/3,

(2) if the boundaries are of mixed type, assume β < π/3.

□

If Hypotheses 9.5.1 and 9.5.3 hold, the fact that u is in S is shown by
Proposition 5.3.1.

Using the hypotheses above, a Poisson problem of domain variation type will
be defined as follows. Here, we write ∂ν = ν ·∇.

Problem 9.5.4 (Poisson problem of domain variation type) Let ϕ ∈ D
and b (ϕ), pN (ϕ), uD (ϕ) be given. Find u : Ω (ϕ) → R which satisfies

−∆u = b (ϕ) in Ω (ϕ) ,

∂νu = pN (ϕ) on Γp (ϕ) ,

∂νu = 0 on ΓN (ϕ) \ Γ̄p (ϕ) ,

u = uD (ϕ) on ΓD (ϕ) .

□
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Here and in what follows, b (ϕ) or uD (ϕ) and U (ϕ) or S (ϕ), etc. will be
written respectively as b or uD and U or S, etc.

Problem 9.5.4 will be used as an equality constraint in the shape optimization
problem (Problem 9.6.3) of domain variation type shown later. In a later
argument, an equality constraint will be replaced with stationary conditions
for a Lagrange function. Here, as a preparation for this, we define the Lagrange
function of Problem 9.5.4 as

LS (ϕ, u, v) =

∫
Ω(ϕ)

(−∇u ·∇v + bv) dx+

∫
Γp(ϕ)

pNv dγ

+

∫
ΓD(ϕ)

{(u− uD) ∂νv + v∂νu}dγ, (9.5.3)

where u is not necessarily the solution of Problem 9.5.4 and v is an element
of S introduced as a Lagrange multiplier. In Eq. (9.5.3), the third term on
the right-hand side was added in order to make the later discussions easier in a
similar way to Eq. (8.2.4) in Chap. 8 defining the Lagrange function with respect
to a θ-type Poisson problem. Moreover, in a similar manner to Eq. (7.2.3)
defining the Lagrange function with respect to the abstract variational problem
in Chap. 7, using ũ = u− uD, we write

LS (ϕ, u, v) = −a (ϕ) (u, v) + l (ϕ) (v) = −a (ϕ) (ũ, v) + l̂ (ϕ) (v) , (9.5.4)

where

a (ϕ) (u, v) =

∫
Ω(ϕ)

∇u ·∇v dx, (9.5.5)

l (ϕ) (v) =

∫
Ω(ϕ)

bv dx+

∫
Γp(ϕ)

pNv dγ, (9.5.6)

l̂ (ϕ) (v) = l (ϕ) (v) + a (ϕ) (uD, v) . (9.5.7)

When u is the solution to Problem 9.5.4,

LS (ϕ, u, v) = 0

holds for all v ∈ U . This equation is equivalent to the weak form of Problem
9.5.4.

Following the notation in Sect. 9.3, LS (ϕ, u, v) should be written as
LS (ϕ, u,∇u, ∂νu, v,∇v, ∂νv). However, from now on, it will be written as
LS (ϕ, u, v).

9.6 Shape Optimization Problem of Domain
Variation Type

In Sect. 9.5, we saw how the state variable ũ = u − uD ∈ S is determined as
the solution of a state determination problem when a design variable ϕ ∈ D is
given. These variables are used to define a shape optimization problem.
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Here, the cost functions are set to

fi (ϕ, u) =

∫
Ω(ϕ)

ζi (ϕ, u,∇u) dx+

∫
Γηi(ϕ)

ηNi (ϕ, u) dγ

−
∫
ΓD(ϕ)

ηDi (ϕ, ∂νu) dγ − ci, (9.6.1)

for every i ∈ {0, 1, . . . ,m}, respectively. Here c1, . . . , cm are constants and have
to be determined such that there exists some (ϕ, ũ) ∈ D × S which satisfies
fi ≤ 0 for all i ∈ {1, . . . ,m}. Moreover, ζi, ηNi and ηDi are assumed to be
given and satisfy two types of hypotheses as follows. Those hypotheses will be
needed to obtain an appropriate regularity in the solution of a adjoint problem
(Problem 9.8.1) shown later. To calculate the second-order shape derivatives
of cost functions, additional hypotheses are required. However, details of these
conditions will be omitted and we shall only tacitly assume that they were
already satisfied to carry out a second-order differentiation of the costs.

The following assumption is used when employing the formulae based on the
shape derivative of a function.

Hypothesis 9.6.1 (Cost functions (shape derivative)) With respect to
cost function fi (i ∈ {0, 1, . . . ,m}) of Eq. (9.6.1), let ζi ∈ C1

(
R× R× Rd;R

)
,

ηNi ∈ C1 (R;R), ηDi ∈ C1 (R;R) be functions fixed with material satisfying

ζi (ϕ, u,∇u) , ζiϕ′ (ϕ, u,∇u) [φ] ∈ H1 ∩ L∞ (D;R) ,
ζiu (ϕ, u,∇u) [û] ∈ L4 (D;R) , ζi(∇u)⊤ (ϕ, u,∇u) [∇û] ∈W 1,4

(
D;Rd

)
,

ηNi (ϕ, u) , ηNiϕ′ (ϕ, u) [φ] ∈W 2,qR (D;R) , ηNiu (ϕ, u) [û] ∈W 1,4 (D;R) ,
ηDi (ϕ, ∂νu) , ηDiϕ′ (ϕ, ∂νu) [φ] ∈W 1,qR (D;R) ,
ηDi∂νu (ϕ, ∂νu) [∂ν û] ∈W 2,4 (D;R)

with respect to (ϕ, u,∇u, ∂νu) ∈ D × S × G × GΓD
(G = {∇u | u ∈ D},

GΓD =
{
∂νu|ΓD

∣∣ u ∈ D
}
) and arbitrary (φ, û) ∈ Y × U . Let ηDi (ϕ, ∂νu)

be a linear function of ∂νu. When ηDi (ϕ, ∂νu) is a nonlinear function of ∂νu,
we assume (∇ ·φ)τ = 0 on ΓD (ϕ). Moreover, ( · )ϕ′ (ϕ, · ) [φ] represents the
shape derivatives of functions (Definition 9.1.1). □

Moreover, if the formulae based on the partial shape derivative of a function
are used, the following hypothesis will be used.

Hypothesis 9.6.2 (Cost functions (partial shape derivative)) With
respect to cost function fi (i ∈ {0, 1, . . . ,m}) of Eq. (9.6.1), let
ζi ∈ C1

(
R× R× Rd;R

)
, ηNi ∈ C1 (R;R), ηDi ∈ C1 (R;R) be functions

fixed in space satisfying

ζi (ϕ, u,∇u) , ζiϕ∗ (ϕ, u,∇u) [φ] ∈W 1,qR(D;R),

ζiu (ϕ, u,∇u) [û] ∈ L2qR (D;R) ,
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ζi(∇u)⊤ (ϕ, u,∇u) [∇û] ∈W 1,2qR
(
D;Rd

)
,

ηNi (ϕ, u) , ηNiϕ∗ (ϕ, u) [φ] ∈W 2,qR (D;R) , ηNiu (ϕ, u) [û] ∈W 1,2qR (D;R) ,
ηDi (ϕ, ∂νu) , ηDiϕ∗ (ϕ, ∂νu) [φ] ∈W 1,qR (D;R) ,
ηDi∂νu (ϕ, ∂νu) [∂ν û] ∈W 2,2qR (D;R)

with respect to (ϕ, u,∇u, ∂νu) ∈ D × S × G × GΓD
(G = {∇u | u ∈ D},

GΓD
=
{
∂νu|ΓD

∣∣ u ∈ D
}
) and arbitrary (φ, û) ∈ Y × U . Let ηDi (ϕ, ∂νu)

be a linear function of ∂νu and be written as ηDi∂νu (ϕ, ∂νu) = vDi. Moreover,
( · )ϕ∗ (ϕ, · ) [φ] represents the partial shape derivatives of functions (Definition
9.1.3). □

These cost functions are used to define a shape optimization problem of
domain variation type as follows.

Problem 9.6.3 (Shape optimization of domain variation type) Let D
and S be defined as Eq. (9.1.3) and Eq. (9.5.2), respectively. Also, let f0,
. . . , fm is defined by Eq. (9.6.1). Find Ω (ϕ) which satisfies

min
(ϕ,u−uD)∈D×S

{
f0 (ϕ, u) | f1 (ϕ, u) ≤ 0, . . . , fm (ϕ, u) ≤ 0,

Problem 9.5.4
}
.

□

In what follows, we will look at the Fréchet derivatives of cost functions and
the KKT conditions with respect to a shape optimization problem (Problem
9.6.3) of domain variation type. In this respect, Lagrange functions based on
several definitions will be used. Here, their relationships are summarized in
order to avoid confusion. Let the Lagrange function with respect to the shape
optimization problem (Problem 9.6.3) of domain variation type be

L (ϕ, u, v0, v1, . . . , vm, λ1, . . . , λm)

= L0 (ϕ, u, v0) +
∑

i∈{1,...,m}

λiLi (ϕ, u, vi) , (9.6.2)

where λ = {λ1, . . . , λm}⊤ ∈ Rm is a Lagrange multiplier with respect to
f1 (ϕ, u) ≤ 0, . . . , fm (ϕ, u) ≤ 0. Furthermore, if fi is a functional of u for all
i ∈ {0, 1, . . . ,m}, and in view of the fact that the state determination problem
(Problem 9.5.4) is an equality constraint, the functional

Li (ϕ, u, vi)

= fi (ϕ, u) + LS (ϕ, u, vi)

=

∫
Ω(ϕ)

(ζi (ϕ, u,∇u)−∇u ·∇vi + bvi) dx

+

∫
Γηi(ϕ)

ηNi (ϕ, u) dγ +

∫
Γp(ϕ)

pNvi dγ
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+

∫
ΓD(ϕ)

{(u− uD) ∂νvi + vi∂νu− ηDi (ϕ, ∂νu)}dγ − ci (9.6.3)

is called the Lagrange function of fi (ϕ, u). Here, LS is the Lagrange function
of the state determination problem defined by Eq. (9.5.3). Moreover, vi is
introduced as a Lagrange multiplier with respect to the state determination
problem corresponding to fi and ṽi = vi − ηDi∂νu is assumed to be an element
of S. Similarly to u, if a variation v̂i of ṽi is to be considered, v̂i is contained in
U .

9.7 Existence of an Optimum Solution

The existence of an optimum solution of Problem 9.6.3 can be confirmed in the
same fashion as in Chap. 8. To use Theorem 7.4.4 in Chap. 7, we will show the
compactness of

F = {(ϕ, u (ϕ)) ∈ D × S | Problem 9.5.4} (9.7.1)

and the continuity of f0. Hereinafter, we let ũ = u− uD ∈ U .
The compactness of F is presented in the following lemma [29, Lemma 2.5,

p. 27, Lemma 2.15, p. 55, Lemma 2.20, p. 63].

Lemma 9.7.1 (Compactness of F) Suppose that Hypothesis 9.5.1 and
Hypothesis 9.5.3 are satisfied. Moreover, Γ̃0 = Γp0 ∪ Γη00 ∪ Γη10 ∪ · · · ∪ Γηm0 is
(not piecewise) H3 ∩C1,1 class. With respect to an arbitrary Cauchy sequence
ϕn → ϕ which is uniformly convergent in D and their solutions ũn = ũ (ϕn) ∈ U
(n→ ∞) of Problem 9.5.4, the convergence

ũn → ũ strongly in U

holds, and ũ = ũ (ϕ) ∈ U solves Problem 9.5.4. □

Proof Concerning the solution ũn of Problem 9.5.4 for ϕn,

αn ∥ũn∥2U ≤ a (ϕn) (ũn, ũn) = l̂ (ϕn) (ũn) ≤
∥∥∥l̂ (ϕn)

∥∥∥
U′

∥ũn∥U

holds, where a (ϕn) and l̂ (ϕn) are defined in Eq. (9.5.4), and αn is a positive constant
used in the definition of coerciveness for a (ϕn) (see (1) in the answer to Exercise
5.2.5). When ϕn → ϕ is uniformly convergent in D, αn can be replaced by a positive

constant α not depending on n. The norm
∥∥∥l̂ (ϕn)

∥∥∥
U′

= ∥l (ϕn) + a (ϕn) (uD, · )∥U′

(l (ϕn) defined in Eq. (9.5.4)) being bounded can be shown using (3) in the answer
to Exercise 5.2.5 by replacing l̂ (v) and Ω in Exercise 5.2.5 by l̂ (ϕn) (v) and Ω (ϕn),
respectively. Hence, there exists a subsequence such that ũn → ũ weakly in U .

Next, we will show that ũ solves Problem 9.5.4 for ϕ. From the definition of
Problem 9.5.4,

lim
n→∞

a (ϕn) (ũn, v) = lim
n→∞

l̂ (ϕn) (v) (9.7.2)
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holds with respect to an arbitrary v ∈ U . From Hypothesis 9.5.2, the right-hand side
of Eq. (9.7.2) becomes

lim
n→∞

l̂ (ϕn) (v) = l̂ (ϕ) (v) . (9.7.3)

Indeed,∣∣∣l̂ (ϕn) (v)− l̂ (ϕ) (v)
∣∣∣

≤

∣∣∣∣∣
∫
Ω(ϕn)

b (ϕn) v dx−
∫
Ω(ϕ)

b (ϕ) v dx

∣∣∣∣∣
+

∣∣∣∣∣
∫
Γp(ϕn)

pN (ϕn) v dγ −
∫
Γp(ϕ)

pN (ϕ) v dγ

∣∣∣∣∣
+

∣∣∣∣∣
∫
Ω(ϕn)

∇uD (ϕn) ·∇v dx−
∫
Ω(ϕ)

∇uD (ϕ) ·∇v dx

∣∣∣∣∣ (9.7.4)

holds. The first term in the right-hand side of Eq. (9.7.4) becomes∣∣∣∣∫
D

(
χΩ(ϕn)b (ϕn)− χΩ(ϕ)b (ϕ)

)
v dx

∣∣∣∣
≤

∣∣∣∣∫
D

χΩ(ϕ) (b (ϕn)− b (ϕ)) v dx

∣∣∣∣+ ∣∣∣∣∫
D

(
χΩ(ϕn) − χΩ(ϕ)

)
b (ϕn) v dx

∣∣∣∣ ,
where χΩ denotes the characteristic function such that χΩ : D → R (χΩ (Ω) = 1,
χΩ

(
D \ Ω̄

)
= 0). Using b ∈ C1

S′
(
B;C0,1 (D;R)

)
in Hypothesis 9.5.1 and the property

[34, Proposition 2.2.28, p. 45]

χΩ(ϕn) → χΩ(ϕ) in L∞ (D;R)-weak∗, (9.7.5)

the first term in the right-hand side of Eq. (9.7.4) converges to zero. It can also be
shown that the third term in the right-hand side of Eq. (9.7.4) converges to zero using
uD ∈ C1

S′
(
B;W 2,4 (D;R)

)
and Eq. (9.7.5).

The convergence to zero of the second term in the right-hand side of Eq. (9.7.4)
can be confirmed in the following way. Here, we modify the condition for Γp (ϕn) in
D defined in Eq. (9.1.3) (a class of H3 ∩C1,1) as follows. Γp (ϕn) can be defined using
a function σ (ϕn) (ξ) = σn (ξ) of a parameter ξ ∈ Ξ = (0, 1)d−1 as

Γp (ϕn) = Γ̃p (σn)

=

{
σn ∈ H3 ∩ C1,1

(
Ξ;Rd

) ∣∣∣∣ ∥σn∥Rd ≤ c0,

c1 ≤
∥∥∥∇ξσ

⊤
n

∥∥∥
R(d−1)×d

≤ c2,∥∥∥∇|β|
ξ σ⊤

n

∥∥∥
R(d−1)2×d

≤ c3 (|β| = 2) a.e. in Ξ

}
, (9.7.6)

where ∇ξ = (∂/∂ξi)i and c0, . . ., c3 are positive constants. Hereafter, ωΞn and ωΞ

denote
∥∥∇ξσ

⊤
n

∥∥
R(d−1)×d and

∥∥∇ξσ
⊤∥∥

R(d−1)×d , respectively. Moreover, let p̃N (t) =
pN (tϕn + (1− t)ϕ) (t ∈ [0, 1]). Here, using ϕn → ϕ (uniformly convergent in D),
boundedness of the trace operator

∥∥γΓp(ϕ)

∥∥ (Eq. (5.2.4)), the result in [15, Corollary
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1] and pN ∈ C1
S′
(
B;C1,1 (D;R)

)
in Hypothesis 9.5.1, the second term of the right-hand

side of Eq. (9.7.4) becomes∣∣∣∣∣
∫
Γ̃p(σn)

pN (ϕn) v dγ −
∫
Γ̃p(σ)

pN (ϕ) v dγ

∣∣∣∣∣
≤

∣∣∣∣∫
Ξ

{(pN (ϕn) ◦ σn) (v ◦ σn)ωΞn − (pN (ϕ) ◦ σ) (v ◦ σ)ωΞ}dσ
∣∣∣∣

≤
∣∣∣∣∫

Ξ

{(pN (ϕn) ◦ σn)− (pN (ϕn) ◦ σ)} (v ◦ σn)ωΞn dσ

∣∣∣∣
+

∣∣∣∣∫
Ξ

{(pN (ϕn) ◦ σ)− (pN (ϕ) ◦ σ)} (v ◦ σn)ωΞn dσ

∣∣∣∣
+

∣∣∣∣∫
Ξ

(pN (ϕ) ◦ σ) (v ◦ σn − v ◦ σ)ωΞn dσ

∣∣∣∣
+

∣∣∣∣∫
Ξ

(pN (ϕ) ◦ σ) (v ◦ σ) (ωΞn − ωΞ) dσ

∣∣∣∣
≤

√
c2 ∥v∥L2(Γp(ϕn);R) ∥(pN (ϕn) ◦ σn)− (pN (ϕn) ◦ σ)∥L2(Ξ;R)

+

√
c2
c1

∥v∥L2(Γp(ϕn);R) ∥pN (ϕn)− pN (ϕ)∥L2(Γp(ϕ);R)

+
√
c2 ∥pN (ϕ)∥L2(Γp(ϕ);R) ∥v ◦ σn − v ◦ σ∥L2(Ξ;R)

+
1

c1
∥ωΞn − ωΞ∥H2∩C0,1(Ξ;Rd) ∥pN (ϕ)∥L2(Γp(ϕ);R) ∥v∥L2(Γp(ϕ);R)

≤
√
c2

∥∥γΓp(ϕ)

∥∥2 ∥v∥U ∥pN (ϕn)∥C1,1(D;R) ∥σn − σ∥H3∩C1,1(Ξ;Rd)

+

√
c2
c1

∥∥γΓp(ϕ)

∥∥2 ∥v∥U sup
t∈[0,1]

∥∥p̃′N (t)
∥∥
C1,1(D;R) ∥ϕn − ϕ∥X

+
√
c2

∥∥γΓp(ϕ)

∥∥2 ∥pN (ϕ)∥C1,1(D;R) ∥v∥U ∥σn − σ∥H3∩C1,1(Ξ;Rd)

+
1

c1

∥∥γΓp(ϕ)

∥∥2 ∥ωΞn − ωΞ∥H2∩C0,1(Ξ;Rd) ∥pN (ϕ)∥C1,1(D;R) ∥v∥U

→ 0 (n → ∞). (9.7.7)

In Eq. (9.7.7), we used the relations∣∣∣∣∫
Ξ

(v ◦ σ)ωΞ dσ

∣∣∣∣ ≤ √
c2

(∫
Ξ

(v ◦ σ)2 ωΞ dσ

)1/2

=
√
c2 ∥v∥L2(Γp(ϕn);R) ,∣∣∣∣∫

Ξ

{(pN (ϕn) ◦ σ)− (pN (ϕ) ◦ σ)} dσ
∣∣∣∣

≤ 1√
c1

(∫
Ξ

{(pN (ϕn) ◦ σ)− (pN (ϕ) ◦ σ)}2 ωΞ dσ

)1/2

=
1√
c1

∥pN (ϕn)− pN (ϕ)∥L2(Γp(ϕ);R) .

Using the results above, Eq. (9.7.3) is proved.
The left-hand side of Eq. (9.7.2) becomes

lim
n→∞

a (ϕn) (un, v) = a (ϕ) (u, v) . (9.7.8)
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It can be confirmed by

|a (ϕn) (ũn, v)− a (ϕ) (ũ, v)|

=

∣∣∣∣∣
∫
Ω(ϕn)

∇ũn ·∇v dx−
∫
Ω(ϕ)

∇ũ ·∇v dx

∣∣∣∣∣
=

∣∣∣∣∫
D

(
χΩ(ϕn)∇ũn − χΩ(ϕ)∇ũ

)
·∇v dx

∣∣∣∣
≤

∣∣∣∣∫
D

χΩ(ϕ) (∇ũn −∇ũ) ·∇v dx

∣∣∣∣
+

∣∣∣∣∫
D

(
χΩ(ϕn) − χΩ(ϕ)

)
∇ũn ·∇v dx

∣∣∣∣ . (9.7.9)

To the right-hand side of Eq. (9.7.9), we adopt ũn → ũ weakly in U and the property
Eq. (9.7.5) for the characteristic function, and obtain Eq. (9.7.8). Substituting
Eq. (9.7.3) and Eq. (9.7.8) into Eq. (9.7.2), the weak form of Problem 9.5.4 can be
obtained. Namely, ũ = ũ (ϕ) ∈ U is the solution of Problem 9.5.4.

Since the weak convergence was shown, then to prove the strong convergence of
{un}n∈N to u, it is sufficient to show that

∥un∥U → ∥u∥U (n → ∞). (9.7.10)

Indeed, when using a (ϕ) in Eq. (9.5.5) and taking

|||v||| = a (ϕ) (v, v)

as a norm on U , we have

|||un||| = a (ϕ) (un, un) =

∫
D

(
χΩ(ϕ) − χΩ(ϕn)

)
∇un ·∇un dx+ a (ϕn) (un, un)

=

∫
D

(
χΩ(ϕ) − χΩ(ϕn)

)
∇un ·∇un dx+ l (ϕn) (un)

→ l (ϕ) (u) = |||u||| (n → ∞). (9.7.11)

Then, un → u strongly in U is proved. □

We consider that the condition of ũ (ϕ) included in S is guaranteed in the
setting of Problem 9.5.4 satisfying Hypotheses 9.5.1 and 9.5.3.

The latter assumption in Theorem 7.4.4 (continuity of f0) means that f0 is
continuous on

S =
{
(ϕ, ũ (ϕ)) ∈ F | f1 (ϕ, u (ϕ)) ≤ 0, · · · , fm (ϕ, u (ϕ)) ≤ 0

}
. (9.7.12)

S depends on the problem setting. Then, we will confirm the continuity of f0
by showing the continuity of fi (i ∈ {0, 1, . . . ,m}) by the following lemma and
assuming that S is not empty.

Lemma 9.7.2 (Continuity of fi) Let fi be defined as in Eq. (9.6.1) under
Hypothesis 9.6.1. Let un → u strongly in U be determined by Lemma 9.7.1
with respect to an arbitrary Cauchy sequence ϕn → ϕ in X which is uniformly
convergent in D, and satisfy ∥∂νun − ∂νu∥L2(ΓD;R) → 0 (n→ ∞) on ΓD. Then,
fi is continuous with respect to ϕ ∈ D. □
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Proof The proof will be completed when

|fi (ϕn, un)− fi (ϕ, u)|

≤

∣∣∣∣∣
∫
Ω(ϕn)

ζi (ϕn, un,∇un) dx−
∫
Ω(ϕ)

ζi (ϕ, u,∇u) dx

∣∣∣∣∣
+

∣∣∣∣∣
∫
Γηi(ϕn)

ηNi (ϕn, un) dγ −
∫
Γηi(ϕ)

ηNi (ϕ, u) dγ

∣∣∣∣∣
+

∣∣∣∣∣
∫
ΓD(ϕn)

ηDi (ϕn, ∂νun) dγ −
∫
ΓD(ϕ)

ηDi (ϕ, ∂νu) dγ

∣∣∣∣∣
= eΩ + eΓη + eΓD → 0 (n → ∞) (9.7.13)

is shown with respect to ϕn → ϕ which is uniformly convergent in D. For eΩ,

eΩ ≤
∣∣∣∣∫

D

(
χΩ(ϕn) − χΩ(ϕ)

)
ζi (ϕn, un,∇un) dx

∣∣∣∣
+

∣∣∣∣∫
D

χΩ(ϕ) (ζi (ϕn, un,∇un)− ζi (ϕ, u,∇u)) dx

∣∣∣∣
= eΩ1 + eΩ2

holds. eΩ1 converges to zero by Eq. (9.7.5). For eΩ2, using ũn → ũ weakly in U and
ζi, notation ζ̃i (t) = ζi (tϕn + (1− t)ϕ, tun + (1− t)n, t∇un + (1− t)∇u) (t ∈ [0, 1])
and ζi ∈ C1

(
R× R× Rd;R

)
in Hypothesis 9.6.1,

eΩ2 ≤ sup
t∈[0,1]

∣∣∣∣∣
∫
Ω(ϕ)

ζ̃iϕ′ (t) [ϕn − ϕ] dx

∣∣∣∣∣+ sup
t∈[0,1]

∣∣∣∣∣
∫
Ω(ϕ)

ζ̃iu (t) [un − u] dx

∣∣∣∣∣
+ sup

t∈[0,1]

∣∣∣∣∣
∫
Ω(ϕ)

ζ̃i∇u (t) [∇un −∇u] dx

∣∣∣∣∣
≤ sup

t∈[0,1]

∥∥∥ζ̃iϕ′ (t)
∥∥∥
H1∩L∞(D;R)

∥ϕn − ϕ∥X

+ sup
t∈[0,1]

∥∥∥ζ̃iu (t)
∥∥∥
L4(D;R)

∥un − u∥U

+ sup
t∈[0,1]

∥∥∥ζ̃i∇u (t)
∥∥∥
W1,4(D;R)

∥∇un −∇u∥L2(D;R)

→ 0 (n → ∞)

holds. The convergence of eΓη to zero can be shown as follows. Assuming a
similar condition to Eq. (9.7.6) for Γηi (ϕn), Γηi (ϕn) can be represented with the
parameter σn (ξ) (ξ ∈ Ξ = (0, 1)d−1) as Γ̃ηi (σn). Using notation η̃Ni (t) =
ηNi (tϕn + (1− t)ϕ, tun + (1− t)u) (t ∈ [0, 1]), ũn → ũ weakly in U , boundedness of
the trace operator, the result in [15, Corollary 1] and ηNi ∈ W 2,qR (D;R) in Hypothesis
9.6.1, we have

eΓη =

∣∣∣∣∣
∫
Γ̃ηi(σn)

ηNi (ϕn, un) dγ −
∫
Γ̃ηi(σ)

ηNi (ϕ, u) dγ

∣∣∣∣∣
≤

∣∣∣∣∫
Ξ

{(ηNi (ϕn, un) ◦ σn)ωΞn − (ηNi (ϕ, u) ◦ σ)ωΞ} dσ
∣∣∣∣
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≤
∣∣∣∣∫

Ξ

{(ηNi (ϕn, un) ◦ σn)− (ηNi (ϕn, un) ◦ σ)}ωΞn dσ

∣∣∣∣
+

∣∣∣∣∫
Ξ

{(ηNi (ϕn, un) ◦ σ)− (ηNi (ϕ, un) ◦ σ)}ωΞn dσ

∣∣∣∣
+

∣∣∣∣∫
Ξ

{(ηNi (ϕ, un) ◦ σ)− (ηNi (ϕ, u) ◦ σ)}ωΞn dσ

∣∣∣∣
+

∣∣∣∣∫
Ξ

(ηNi (ϕ, u) ◦ σ) (ωΞn − ωΞ) dσ

∣∣∣∣
≤

√
c2 ∥(ηNi (ϕn, un) ◦ σn)− (ηNi (ϕn, un) ◦ σ)∥L2(Ξ;R)

+

√
c2
c1

∥ηNi (ϕn, un)− ηNi (ϕ, u)∥L2(Γηi(ϕ);R)

+

√
c2
c1

∥ηNi (ϕn, un)− ηNi (ϕ, u)∥L2(Γηi(ϕ);R)

+
1

c1
∥ωΞn − ωΞ∥H2∩C0,1(Ξ;Rd) ∥ηNi (ϕ, u)∥L2(Γηi(ϕ);R)

≤
√
c2

∥∥γΓηi(ϕ)

∥∥ ∥ηNi (ϕn, un)∥W2,qR (D;R) ∥σn − σ∥C1,1(Ξ;Rd)

+

√
c2
c1

∥∥γΓηi(ϕ)

∥∥ sup
t∈[0,1]

∥η̃Niϕ (t)∥W2,qR (D;R) ∥ϕn − ϕ∥X

+

√
c2
c1

∥∥γΓηi(ϕ)

∥∥ sup
t∈[0,1]

∥η̃Niu (t)∥W2,qR (D;R) ∥un − u∥U

+
1

c1

∥∥γΓηi(ϕ)

∥∥ ∥ωΞn − ωΞ∥H2∩C0,1(Ξ;Rd) ∥ηNi (ϕ, u)∥W2,qR (D;R)

→ 0 (n → ∞), (9.7.14)

where c1 and c2 are positive constants when Eq. (9.7.6) is rewritten for Γηi (ϕn).
eΓD → 0 (n → ∞) can be shown using ∥∂νun − ∂νu∥L2(ΓD;R) → 0 (n → ∞) in a
similar way. Based on the results above, Eq. (9.7.13) is shown. □

In Theorem 7.4.4 showing the existence of a solution in the abstract optimum
design problem, the first assumption (compactness of F) was confirmed by
Lemma 9.7.1. The second assumption (continuity of f0) can be satisfied with
the conditions for Lemma 9.7.2 and the assumption that S is not empty. Then,
under the conditions, it can be assured that there exists an optimum solution
of Problem 9.6.3.

Regarding the solution of Problem 9.6.3, let us recall the similar situation
of Remark 8.4.3 in Chap. 8. In the definition of D shown in Eq. (9.1.3), a
side constraint ∥ϕ∥H2∩C0,1(D;Rd) ≤ β is added. When this condition becomes
active, we have to deal this condition as an inequality condition. Depending
on the setting of the problem, we may meet a situation such that a boundary
converges to a shape with sharp corners which is not a Lipschitz boundary. In
this case, a converged shape can be obtained by activating the side constraint.
Moreover, regarding the selection of X and D, the same situation as Remark
8.4.4 holds.
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9.8 Derivatives of Cost Functions

In this chapter, we consider the solution of the shape optimization problem
(Problem 9.6.3) of domain variation type using a gradient method and a Newton
method. In order to use the gradient method, the first-order shape derivatives of
cost functions are necessary. Moreover, if the Newton method is to be used, the
second-order shape derivatives (Hessians) of the cost functions are required.
Here, let us obtain the first and second-order shape derivatives of the cost
functions fi using the Lagrange multiplier method shown in Section 7.5.2 and
the method shown in 7.5.3, respectively. In this case, let us look at the methods
using the formulae based on the shape derivative of a function separately from
the method using the formulae based on the partial shape derivative of a
function shown in Sect. 9.3. However, with respect to the second-order shape
derivatives, only the results using the method with the formulae based on the
shape derivative of a function will be shown.

9.8.1 Shape Derivative of fi Using Formulae Based on
Shape Derivative of a Function

Firstly, let us use the formulae based on the shape derivative of a function (Sect.
9.3.1) to obtain the Fréchet derivative of Li and use its stationary conditions
to seek the shape derivative of fi.

The Fréchet derivative of Li (ϕ, u, vi) is written as

L ′
i (ϕ, u, vi) [φ, û, v̂i]

= Liϕ′ (ϕ, u, vi) [φ] + Liu (ϕ, u, vi) [û] + Livi
(ϕ, u, vi) [v̂i] (9.8.1)

with respect to an arbitrary (φ, û, v̂i) ∈ X × U × U . Here, the notations in
Eq. (9.3.5) and Eq. (9.3.15) are used. In this case, the shape derivative u′ used
in Eq. (9.3.5) and Eq. (9.3.15) following Definition 9.1.1 was replaced with an
arbitrary û ∈ X, because it was assumed that u is not necessarily the solution
of Problem 9.5.4 in the definition of the Lagrange function. Let us look at each
term in detail below.

The third term on the right-hand side of Eq. (9.8.1) becomes

Livi (ϕ, u, vi) [v̂i] = LSvi (ϕ, u, vi) [v̂i] = LS (ϕ, u, v̂i) . (9.8.2)

Equation (9.8.2) is the Lagrange function of the state determination problem
(Problem 9.5.4). Hence, if u is a weak solution of the state determination
problem, its term is zero.

Moreover, the second term on the right-hand side of Eq. (9.8.1) becomes

Liu (ϕ, u, vi) [û]

=

∫
Ω(ϕ)

(
−∇û ·∇vi + ζiu (ϕ, u,∇u) û+ ζi(∇u)⊤ (ϕ, u,∇u)∇û

)
dx

+

∫
Γηi(ϕ)

ηNiu (ϕ, u) ûdγ
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+

∫
ΓD(ϕ)

{û∂νvi + (vi − ηDi∂νu (ϕ, ∂νu)) ∂ν û} dγ. (9.8.3)

Here, if vi can be determined so that Eq. (9.8.3) equates to zero with respect to
an arbitrary û ∈ U , the second term on the right-hand side of Eq. (9.8.1) also
vanishes. From the fact that∫

Ω(ϕ)

(
ζi(∇u)⊤ (u,∇u)∇û−∇û ·∇vi

)
dx

=

∫
∂Ω(ϕ)

û
(
ζi(∇u)⊤ −∇vi

)
· ν dγ −

∫
Ω(ϕ)

û∇ ·
(
ζi(∇u)⊤ −∇vi

)
dx

holds if vi ∈W 2,4 (D;R) is assumed, its strong form can be written as follows.

Problem 9.8.1 (Adjoint problem with respect to fi) When the solution
u to Problem 9.5.4 with respect to ϕ ∈ D is obtained, find vi : Ω (ϕ) → R which
satisfies

−∆vi = ζiu (ϕ, u,∇u)−∇ · ζi(∇u)⊤ (ϕ, u,∇u) in Ω (ϕ) ,

∂νvi = ηNiu (ϕ, u) + ζi(∇u)⊤ (ϕ, u,∇u) · ν on Γηi (ϕ) ,

∂νvi = ζi(∇u)⊤ (ϕ, u,∇u) · ν on ΓN (ϕ) \ Γ̄ηi (ϕ) ,

vi = ηDi∂νu (ϕ, ∂νu) on ΓD (ϕ) .

□

Here, the admissible set of adjoint variables for vi−ηDi∂νu is taken to be S in
order to obtain a regular solution of the shape optimization problem of domain
variation type. In Hypothesis 9.6.1, the regularities for ζiu, ζi(∇u)⊤ , ηNiu and
ηDi∂νu were given to obtain this result.

Furthermore, the first term on the right-hand side of Eq. (9.8.1) becomes

Liϕ′ (ϕ, u, vi) [φ]

=

∫
Ω(ϕ)

[
∇u ·

{(
∇φ⊤)∇vi

}
+∇vi ·

{(
∇φ⊤)∇u

}
− ζi(∇u)⊤ ·

{(
∇φ⊤)∇u

}
+ (ζi −∇u ·∇vi + bvi)∇ ·φ

+
(
ζiϕ′ + ub′

)
·φ
]
dx

+

∫
Γηi(ϕ)

(
κηNiν ·φ−∇τηNi ·φτ + ηNiϕ′ ·φ

)
dγ

+

∫
∂Γηi(ϕ)∪Θηi(ϕ)

ηNiτ ·φdς

+

∫
Γp(ϕ)

{κpNviν ·φ−∇τ (pNvi) ·φτ + vip
′
N ·φ}dγ

+

∫
∂Γp(ϕ)∪Θp(ϕ)

pNviτ ·φdς
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+

∫
ΓD(ϕ)

[
{(u− uD)w (φ, vi) + (vi − ηDi∂νu)w (φ, u)}

+ {(u− uD) ∂νvi + vi∂νu− ηDi (ϕ, ∂νu)} (∇ ·φ)τ + ηDiϕ′ ·φ
]
dγ

(9.8.4)

using the formulae of Eq. (9.3.5), representing the result of Proposition 9.3.4,
and Eq. (9.3.15), representing the result of Proposition 9.3.7. Here, w (φ, u)
and (∇ ·φ)τ follow Eq. (9.3.12) and Eq. (9.2.6), respectively. Moreover, the
fact that Γp (ϕ) and Γηi (ϕ) are piecewise H3 ∩C1,1 (assumed in the definition
of D) was used to obtain the integral on Γp (ϕ) and Γηi (ϕ).

Bearing the above results in mind, when u and vi are the weak solutions
of Problem 9.5.4 and Problem 9.8.1, respectively, and the Dirichlet conditions
corresponding to these problems, as well as the condition for ηDi in Hypothesis
9.6.1 hold, the integral on ΓD (ϕ) on Eq. (9.8.4) will be zero except the term of
ηDiϕ′ ·φ. Hence, using the notation of Eq. (7.5.15) for f̃i, we obtain

f̃ ′i (ϕ) [φ] = Liϕ′ (ϕ, u, vi) [φ] = ⟨gi,φ⟩

=

∫
Ω(ϕ)

{
GΩi ·

(
∇φ⊤)+ gΩi∇ ·φ+ gζbi ·φ

}
dx

+

∫
Γp(ϕ)

gpi ·φ dγ +

∫
∂Γp(ϕ)∪Θp(ϕ)

g∂pi ·φ dς

+

∫
Γηi(ϕ)

gηi ·φ dγ +

∫
∂Γηi(ϕ)∪Θηi(ϕ)

g∂ηi ·φ dς

+

∫
ΓD(ϕ)

gDi ·φ dγ, (9.8.5)

where

GΩi = ∇u (∇vi)
⊤
+∇vi (∇u)

⊤ − ζi(∇u)⊤ (∇u)
⊤
, (9.8.6)

gΩi = ζi −∇u ·∇vi + bvi, (9.8.7)

gζbi = ζiϕ′ + ub′, (9.8.8)

gpi = κpNviν −
∑

j∈{1,...,d−1}

{τ j ·∇ (pNvi)} τ j + vip
′
N, (9.8.9)

g∂pi = pNviτ , (9.8.10)

gηi = κηNiν −
∑

j∈{1,...,d−1}

(τ j ·∇ηNi) τ j + ηNiϕ′ , (9.8.11)

g∂ηi = ηNiτ , (9.8.12)

gDi = ηDiϕ′ . (9.8.13)

In this book, the scalar product of A = (aij) ∈ Rd×d and B = (bij) ∈ Rd×d,∑
(i,j)∈{1,...,d}2 aijbij is written as A ·B. Moreover, in deriving Eq. (9.8.5), the

identity

a · (Bc) =
(
B⊤a

)
· c =

(
ac⊤

)
·B (9.8.14)
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with respect to a ∈ Rd, B ∈ Rd×d and c ∈ Rd was used. Hereinafter, these
relationships will be used without explanation.

Using the results above, the following results regarding gi of Eq. (9.8.5) can
be obtained.

Theorem 9.8.2 (Shape derivative gi of fi) Let ϕ ∈ D, b, pN, uD, ζi, ηNi

and ηDi be given as functions fixed with the material satisfying Hypotheses
9.5.1, 9.5.3 and 9.6.1. Moreover, let u and vi be the weak solutions of the state
determination problem (Problem 9.5.4) and the adjoint problem (Problem 9.8.1)
with respect to fi, respectively, and are both in S of Eq. (9.5.2). When g∂pi and
g∂ηi in Eq. (9.8.10) and Eq. (9.8.12), respectively, are zero, the shape derivative
of fi becomes Eq. (9.8.5) and gi is in X

′. Furthermore, we have

GΩi ∈ H1 ∩ L∞ (Ω(ϕ) ;Rd×d
)
,

gΩi ∈ H1 ∩ L∞ (Ω (ϕ) ;R) ,
gζbi ∈ H1 ∩ L∞ (Ω(ϕ) ;Rd

)
,

gpi ∈ H1/2 ∩ L∞ (Γp (ϕ) ;Rd
)
,

gηi ∈ H1/2 ∩ L∞ (Γηi (ϕ) ;Rd
)
,

gDi ∈ H1/2 ∩ L∞ (ΓD (ϕ) ;Rd
)
.

□

Proof The fact that the shape derivative of fi becomes gi of Eq. (9.8.5) is as seen
above. The following holds with respect to the regularity of gi. With respect to
the first term on GΩi, from Hölder’s inequality (Theorem A.9.1) and the corollary of
Poincaré inequality (Corollary A.9.4), the inequalities∥∥∥{∇u (∇vi)

⊤
}
·
(
∇φ⊤

)∥∥∥
L1(Ω(ϕ);R)

≤
∥∥∥∇u (∇vi)

⊤
∥∥∥
L2(Ω(ϕ);Rd×d)

∥∥∥∇φ⊤
∥∥∥
L2(Ω(ϕ);Rd×d)

≤ ∥∇u∥L4(Ω(ϕ);Rd) ∥∇vi∥L4(Ω(ϕ);Rd)

∥∥∥∇φ⊤
∥∥∥
L2(Ω(ϕ);Rd×d)

≤ ∥u∥W1,4(D;R) ∥vi∥W1,4(D;R) ∥φ∥X
≤ ∥u∥W2,4(D;R) ∥vi∥W2,4(D;R) ∥φ∥X

hold. From the assumptions, the right-hand side is finite. Hence, ∇u (∇vi)
⊤ is in

X ′. Moreover, in view of the inequalities above, ∇u (∇vi)
⊤ is also contained in

H1 ∩L∞ (
Ω(ϕ) ;Rd×d

)
. A similar result can be obtained with respect to other terms

of GΩi. A similar result is also obtained with respect to gΩi. The result for gζbi is
obvious from Hypotheses 9.5.1 and 9.6.1.

The regularity of gpi depends on the regularity of ν and κ in addition to regularities
of vi and pN. With respect to the first term on the right-hand side of Eq. (9.8.9), we
have

∥κpNviν ·φ∥L1(Γp(ϕ);R)
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≤ ∥κpNviν∥L2(Γp(ϕ);Rd) ∥φ∥L2(Γp(ϕ);Rd)

≤ ∥κ∥H1/2∩L∞(Γp(ϕ);R) ∥pN∥L4(Γp(ϕ);R) ∥vi∥L4(Γp(ϕ);R)

× ∥ν∥H3/2∩C0,1(Γp(ϕ);Rd) ∥φ∥L2(Γp(ϕ);Rd)

≤ ∥γ∂Ω∥3 ∥pN∥W1,4(Ω(ϕ);R) ∥vi∥W1,4(Ω(ϕ);R)

× ∥κ∥H1/2∩L∞(Γp(ϕ);R) ∥ν∥H3/2∩C0,1(Γp(ϕ);Rd) ∥φ∥X
≤ ∥γ∂Ω∥3 ∥pN∥C1,1(Ω(ϕ);R) ∥vi∥W2,4(Ω(ϕ);R)

× ∥κ∥H1/2∩L∞(Γp(ϕ);R) ∥ν∥H3/2∩C0,1(Γp(ϕ);Rd) ∥φ∥X

using Hölder’s inequality (Theorem A.9.1) and the trace theorem (Theorem 4.4.2).
Here,

γ∂Ω : H1
(
Ω(ϕ) ;Rd

)
→ H1/2

(
∂Ω(ϕ) ;Rd

)
is a trace operator and its operator norm ∥γ∂Ω∥ is bounded from the fact that the
boundary ∂Ω(ϕ) is Lipschitz. Moreover, Γp (ϕ) is defined to be piecewise H3 ∩ C1,1

in D of Eq. (9.1.3). Hence, ν is in the class of H3/2 ∩ C0,1 and κ is in the
class of H1/2 ∩ L∞ on Γp (ϕ). Therefore, κpNviν is an element of X ′ and is in
H1/2 ∩H1/2

(
Γp (ϕ) ;Rd

)
∩ L∞ (

Γp (ϕ) ;Rd
)
. The second term on the right-hand side

of Eq. (9.8.9) belongs to H1/2∩L∞ (
Γp (ϕ) ;Rd

)
because τ 1 (ϕ), . . . , τ d−1 (ϕ) is in the

class H3/2 ∩C0,1, pN ∈ C1,1 (D;R) (Hypothesis 9.5.1) and vi ∈ W 2,4 (D;R) on Γp (ϕ)
(Practice 9.1). The third term of Eq. (9.8.9) becomes vip

′
N ∈ W 2,4 (D;R). Hence,

gpi ∈ H1/2 ∩ L∞ (
Γp (ϕ) ;Rd

)
is shown.

For the regularities of gηi, the same result as for gpi can be obtained from

∇ηNi ∈ W 1,qR (D;R). Moreover, the result for gDi is obvious from Hypotheses 9.6.1.
Therefore, the result of the theorem is established.

In addition, we assumed g∂pi = 0Rd because the trace of φ ∈ X on ∂Γp (ϕ)∪Θp (ϕ)
can not be defined. Similarly, g∂ηi = 0Rd was assumed. □

9.8.2 Second-Order Shape Derivative of fi Using Formulae
Based on Shape Derivative of a Function

Let us obtain the second-order shape derivative of the cost function based on the
method shown in Section 7.5.3. Here, the formulae using the shape derivative
of a function is used.

In order to obtain the second-order shape derivative of f̃i, the following
assumptions are established.

Hypothesis 9.8.3 (Second-order shape derivative of f̃i) With respect to
the state determination problem (Problem 9.5.4) and the cost function fi defined
in Eq. (9.6.1), the following assumptions are made, respectively:

(1) b = 0, ζiϕ′ (ϕ, u,∇u) [φ] = 0.

(2) ζi is not a function of ϕ and u, but is a bilinear form of ∇u.
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(3) Equations (9.8.9) to (9.8.13) are zero, or Γ̃0 = Γp0 ∪ Γηi0 ∈ Ω̄C0 in
Eq. (9.1.1).

□

The Lagrange function Li of fi is defined by Eq. (9.6.3). Viewing (ϕ, u) as
a design variable and putting its admissible set and admissible direction set as

S = {(ϕ, u) ∈ D × S | LS (ϕ, u, v) = 0 for all v ∈ U } ,
TS (ϕ, u) = {(φ, υ̂) ∈ X × U | LSϕu (ϕ, u, v) [φ, υ̂] = 0 for all v ∈ U } ,

the second-order Fréchet partial derivative of Li with respect to arbitrary
variations (φ1, υ̂1) , (φ2, υ̂2) ∈ TS (ϕ, u) of (ϕ, u) ∈ S, similarly to Eq. (7.5.21),
and considering Eq. (9.1.6), becomes

Li(ϕ′,u)(ϕ′,u) (ϕ, u, vi) [(φ1, υ̂1) , (φ2, υ̂2)]

=
(
L0(ϕ′,u)

)
(ϕ′,u)

(ϕ, u, vi) [(φ1, υ̂1) , (φ2, υ̂2)] + ⟨g0 (ϕ) , t (φ1,φ2)⟩

=
(
Liϕ′ (ϕ, u, vi) [φ1] + Liu (ϕ, u, vi) [υ̂1]

)
ϕ′ [φ2]

+
(
Liϕ′ (ϕ, u, vi) [φ1] + Liu (ϕ, u, vi) [υ̂1]

)
u
[υ̂2]

+ ⟨g0 (ϕ) , t (φ1,φ2)⟩
=
(
Liϕ′

)
ϕ′ (ϕ, u, vi) [φ1,φ2] + Liϕ′u (ϕ, u, vi) [φ1, υ̂2]

+ Liϕ′u (ϕ, u, vi) [φ2, υ̂1] + Liuu (ϕ, u, vi) [υ̂1, υ̂2]

+ ⟨g0 (ϕ) , t (φ1,φ2)⟩ , (9.8.15)

where ⟨g0 (ϕ) , t (φ1,φ2)⟩ follows the definition given in Eq. (9.1.8) (or
Eq. (9.3.10)).

The first and fifth terms on the right-hand side of Eq. (9.8.15) become(
Liϕ′

)
ϕ′ (ϕ, u, vi) [φ1,φ2] + ⟨g0 (ϕ) , t (φ1,φ2)⟩

=

∫
Ω(ϕ)

[{
∇u ·

(
∇φ⊤

1 ∇vi
)}

ϕ′ [φ2]

+
{
∇vi ·

(
∇φ⊤

1 ∇u
)}

ϕ′ [φ2]−
{
ζi(∇u)⊤ ·

(
∇φ⊤

1 ∇u
)}

ϕ′
[φ2]

+ (ζi −∇u ·∇vi) (∇ ·φ1)ϕ′ [φ2]

+
{
∇u (∇vi)

⊤
+∇vi (∇u)

⊤ − ζi(∇u)⊤ (∇u)
⊤
}

·
{
∇φ⊤

2 ∇φ⊤
1 −∇φ⊤

1 (∇ ·φ2)
}

+ (ζi −∇u ·∇vi)
{(

∇φ⊤
2

)⊤ ·∇φ⊤
1 − (∇ ·φ2) (∇ ·φ1)

}]
dx,

(9.8.16)

by using the first term on the right-hand side of Eq. (9.8.4) and Eq. (9.3.11).
The first integrand on the right-hand side of Eq. (9.8.16) can be expressed as
follows:{

∇u ·
(
∇φ⊤

1 ∇vi
)}

ϕ′ [φ2]
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= −
{
∇u ·

(
∇φ⊤

1 ∇vi
)}

∇u
·
(
∇φ⊤

2 ∇u
)

−
{
∇u ·

(
∇φ⊤

1 ∇vi
)}

∇φ⊤
1
·
(
∇φ⊤

2 ∇φ⊤
1

)
−
{
∇u ·

(
∇φ⊤

1 ∇vi
)}

∇vi
·
(
∇φ⊤

2 ∇vi
)

+
{
∇u ·

(
∇φ⊤

1 ∇vi
)}

(∇ ·φ2)

= −
(
∇φ⊤

2 ∇u
)
·
(
∇φ⊤

1 ∇vi
)
−∇u ·

(
∇φ⊤

2 ∇φ⊤
1 ∇vi

)
−∇u ·

(
∇φ⊤

1 ∇φ⊤
2 ∇vi

)
+
{
∇u ·

(
∇φ⊤

1 ∇vi
)}

∇ ·φ2

= −
{
∇u (∇vi)

⊤
}
·
{(

∇φ⊤
2

)⊤ ∇φ⊤
1

}
−
{
∇u (∇vi)

⊤
}
·
(
∇φ⊤

2 ∇φ⊤
1

)
−
{
∇u (∇vi)

⊤
}
·
(
∇φ⊤

1 ∇φ⊤
2

)
+
{
∇u (∇vi)

⊤
}
·∇φ⊤

1 (∇ ·φ2) .

(9.8.17)

In Eq. (9.8.17), the identities in Eq. (9.8.14) and

A · (BC) =
(
B⊤A

)
·C =

(
AC⊤

)
·B,

(AB) ·C = B ·
(
A⊤C

)
= A ·

(
CB⊤

)
, (9.8.18)

where A ∈ Rd×d, B ∈ Rd×d and C ∈ Rd×d, were used. In the remaining part,
those identities will be used frequently.

Similarly, the second integrand on the right-hand side of Eq. (9.8.16) is
similar to Eq. (9.8.17) with u and vi interchanged. Meanwhile, the third
integrand on the right-hand side of Eq. (9.8.16) becomes similar to Eq. (9.8.17)
with u and vi interchanged and vi and ζi(∇u)⊤ interchanged. Lastly, the fourth

integrand on the right-hand side of Eq. (9.8.16) becomes

(ζi −∇u ·∇vi) (∇ ·φ1)ϕ′ [φ2]

= (ζi −∇u ·∇vi)
{
−
(
∇φ⊤

2

)⊤ ·∇φ⊤
1 + (∇ ·φ2) (∇ ·φ1)

}
.

Hence, Eq. (9.8.16) becomes(
Liϕ′

)
ϕ′ (ϕ, u, vi) [φ1,φ2] + ⟨g0 (ϕ) , t (φ1,φ2)⟩

=

∫
Ω(ϕ)

[
−
{
∇u (∇vi)

⊤
+∇vi (∇u)

⊤ − ζi(∇u)⊤ (∇u)
⊤
}

·
{
∇φ⊤

1 ∇φ⊤
2 +

(
∇φ⊤

2

)⊤ ∇φ⊤
1

}]
dx. (9.8.19)

Next, we look at the second term on the right-hand side of Eq. (9.8.15). If
the first term on the right-hand side of Eq. (9.8.4) is used, we get

Liϕ′u (ϕ, u, vi) [φ1, υ̂2]

=

∫
Ω(ϕ)

{
∇υ̂2 ·

(
∇φ⊤

1 ∇vi
)
+
(
∇vi − ζi(∇u)⊤

)
·
(
∇φ⊤

1 ∇υ̂2
)
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− (∇υ̂2 ·∇vi)∇ ·φ1

}
dx. (9.8.20)

On the other hand, the variation of u satisfying the state determination
problem with respect to an arbitrary domain variation φj ∈ Y for j ∈ {1, 2}
is given as υ̂j = υ′ (ϕ)

[
φj

]
. If the Fréchet partial derivative of the Lagrange

function LS of the state determination problem defined by Eq. (9.5.3) is taken,
we obtain

LSϕ′u (ϕ, u, v)
[
φj , υ̂j

]
=

∫
Ω(ϕ)

{
∇u ·

(
∇φ⊤

j ∇v
)
+∇v ·

(
∇φ⊤

j ∇u
)

− (∇u ·∇v)∇ ·φj −∇υ̂j ·∇v
}
dx

=

∫
Ω(ϕ)

[{((
∇φ⊤

j

)⊤
+∇φ⊤

j −∇ ·φj

)
∇u−∇υ̂j

}
·∇v

]
dx

= 0 (9.8.21)

for all v ∈ U . Here, Hypothesis 9.8.3 and the fact that v and υ̂j are both zero
on ΓD were used. From Eq. (9.8.21), we get

∇υ̂j =
{(

∇φ⊤
j

)⊤
+∇φ⊤

j −∇ ·φj

}
∇u. (9.8.22)

This relation becomes possible by the following argument. Substituting
Eq. (9.8.22) into Eq. (9.8.20), the second term on the right-hand side of
Eq. (9.8.15) becomes

Liϕ′u (ϕ, u, vi) [φ1, υ̂2]

=

∫
Ω(ϕ)

[{((
∇φ⊤

2

)⊤
+∇φ⊤

2 −∇ ·φ2

)
∇u (∇vi)

⊤

+
(
∇vi − ζi(∇u)⊤

)
(∇u)

⊤
((

∇φ⊤
2

)⊤
+∇φ⊤

2 −∇ ·φ2

)}
·∇φ⊤

1

−
{(((

∇φ⊤
2

)⊤
+∇φ⊤

2 −∇ ·φ2

)
∇u
)
·∇vi

}
∇ ·φ1

]
dx

=

∫
Ω(ϕ)

[{
∇u (∇vi)

⊤
+∇vi (∇u)

⊤ − ζi(∇u)⊤ (∇u)
⊤
}

·
{
∇φ⊤

1 ∇φ⊤
2 +∇φ⊤

1

(
∇φ⊤

2

)⊤ −∇φ⊤
1 (∇ ·φ2)

}
−
{
∇u (∇vi)

⊤
}
·
{
∇φ⊤

2 (∇ ·φ1) +
(
∇φ⊤

2

)⊤
(∇ ·φ1)

}
+∇u ·∇vi (∇ ·φ1) (∇ ·φ2)

]
dx. (9.8.23)

Similarly, the third term on the right-hand side of Eq. (9.8.15) becomes
Liuϕ′ (ϕ, u, vi) [φ2,∇υ̂1] similar to Eq. (9.8.23) with φ1 and φ2 interchanged.
Lastly, the fourth term on the right-hand side of Eq. (9.8.15) vanishes.
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Summarizing the results above, the second-order shape derivative of f̃i
becomes

hi (ϕ,u,u) [φ1,φ2]

=

∫
Ω(ϕ)

[
2∇u ·∇vi (u) (∇ ·φ2) (∇ ·φ1)

+
{
∇u (∇vi)

⊤
+∇vi (∇u)

⊤ − ζi(∇u)⊤ (∇u)
⊤
}

·
{
∇φ⊤

1

(
∇φ⊤

2

)⊤
+∇φ⊤

2 ∇φ⊤
1 −∇φ⊤

1 ∇ ·φ2 −∇φ⊤
2 (∇ ·φ1)

}
−
{
∇u (∇vi)

⊤
}

·
{
∇φ⊤

2 (∇ ·φ1) +
(
∇φ⊤

2

)⊤
(∇ ·φ1)

+∇φ⊤
1 (∇ ·φ2) +

(
∇φ⊤

1

)⊤
(∇ ·φ2)

}]
dx. (9.8.24)

9.8.3 Second-Order Shape Derivative of Cost Function
Using Lagrange Multiplier Method

When the Lagrange multiplier method is used to obtain the second-order shape
derivative of a cost function, we use the same idea given in Section 7.5.4. Fixing
φ1, we define the Lagrange function with respect to f̃ ′i (ϕ) [φ1] = ⟨gi,φ1⟩ in
Eq. (9.8.5) by

LIi (ϕ, u, vi, wi, zi) = ⟨gi,φ1⟩+ LS (ϕ, u, wi) + LAi (ϕ, vi, zi) , (9.8.25)

where LS is given by Eq. (9.5.3), and

LAi (ϕ, vi, zi)

=

∫
Ω(ϕ)

(
−∇vi ·∇zi + ζiuzi + ζi(∇u)⊤ ·∇zi

)
dx

+

∫
Γηi(ϕ)

ηNiuzidγ +

∫
ΓD(ϕ)

{zi∂νvi + (vi − ηDi∂νu) ∂νzi} dγ

(9.8.26)

is the Lagrange function with respect to the adjoint problem (Problem 9.8.1).
wi ∈ U and zi ∈ U are the adjoint variables provided for u and vi in gi.

With respect to arbitrary variations (φ2, û, v̂i, ŵi, ẑi) ∈ D × U4 of
(ϕ, u, vi, wi, zi), considering Eq. (9.1.6), the Fréchet derivative of LIi is written
as

L ′
Ii (ϕ, u, vi, wi, zi) [φ2, û, v̂i, ŵi, ẑi]

= LIiϕ′ (ϕ, u, vi, wi, zi) [φ2] + ⟨g0 (ϕ) , t (φ1,φ2)⟩
+ LIiu (ϕ, u, vi, wi, zi) [û] + LIivi (ϕ, u, vi, wi, zi) [v̂i]

+ LIiwi (ϕ, u, vi, wi, zi) [ŵi] + LIizi (ϕ, u, vi, wi, zi) [ẑi] . (9.8.27)
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The fifth term on the right-hand side of Eq. (9.8.27) vanishes if u is the solution
of the state determination problem. If vi can be determined as the solution of
the adjoint problem, the sixth term of Eq. (9.8.27) also vanishes.

Applying Proposition 9.3.7, the third term on the right-hand side of
Eq. (9.8.27) is obtained as

LIiu (ϕ, u, vi, wi, zi) [û]

=

∫
Ω(ϕ)

[{(
∇φ⊤

1 +
(
∇φ⊤

1

)⊤)∇vi −
(
∇φ⊤

1

)⊤
ζi(∇u)⊤

− (∇ ·φ1)∇vi

}
·∇û

−
{((

∇φ⊤)⊤ ζi(∇u)⊤ u

)
·∇u+ (∇ ·φ1) ζiu

}
û−∇wi ·∇û

]
dx

+

∫
Γηi(ϕ)

ηNiu (∇ ·φ1)τ û dγ. (9.8.28)

Here, the condition that Eq. (9.8.28) is zero for arbitrary û ∈ U is equivalent to
setting wi to be the solution of the following adjoint problem.

Problem 9.8.4 (Adjoint problem of wi with respect to ⟨gi,φ1⟩) Under
the assumption of Problem 9.6.3, letting φ1 ∈ Y be given, find wi = wi (φ1) ∈ U
satisfying

−∆wi = −∇⊤
{(

∇φ⊤
1 +

(
∇φ⊤

1

)⊤)∇vi −
(
∇φ⊤

1

)⊤
ζi(∇u)⊤

− (∇ ·φ1)∇vi

}
−
((

∇φ⊤)⊤ ζi(∇u)⊤ u

)
·∇u− (∇ ·φ1) ζiu in Ω (ϕ) ,

∂νwi = ηNiu (∇ ·φ1)τ +
{(

∇φ⊤
1 +

(
∇φ⊤

1

)⊤)∇vi −
(
∇φ⊤

1

)⊤
ζi(∇u)⊤

− (∇ ·φ1)∇vi

}
· ν on Γηi (ϕ) ,

∂νwi = 0 on ΓN (ϕ) \ Γ̄ηi (ϕ) ,

wi = 0 on ΓD (ϕ) .

□

The fourth term on the right-hand side of Eq. (9.8.27) is

LIivi (ϕ, u, vi, wi, zi) [v̂i]

=

∫
Ω(ϕ)

[{(
∇φ⊤

1 +
(
∇φ⊤

1

)⊤)∇u− (∇ ·φ1)∇u
}
·∇v̂i

+ bv̂i −∇zi ·∇v̂i

]
dx+

∫
Γp(ϕ)

pN (∇ ·φ1)τ v̂i dγ, (9.8.29)
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where φ1 is assumed to be an H2 class function in the neighborhood of Γηi (ϕ).
Here, the condition that Eq. (9.8.29) is zero for arbitrary v̂i ∈ U is equivalent
to setting zi to be the solution of the following adjoint problem.

Problem 9.8.5 (Adjoint problem of zi with respect to ⟨gi,φ1⟩) Under
the assumption of Problem 9.6.3, letting φ1 ∈ Y be given, find zi = zi (φ1) ∈ U
satisfying

−∆zi = b−∇⊤
{(

∇φ⊤
1 +

(
∇φ⊤

1

)⊤)∇u− (∇ ·φ1)∇u
}

in Ω (ϕ) ,

∂νzi = pN (∇ ·φ1)τ

+
{(

∇φ⊤
1 +

(
∇φ⊤

1

)⊤)∇u− (∇ ·φ1)∇u
}
· ν on Γp (ϕ) ,

∂νzi = 0 on ΓN (ϕ) \ Γ̄p (ϕ) ,

zi = 0 on ΓD.

□

Finally, the first and second terms on the right-hand side of Eq. (9.8.27)
become

LIiϕ′ (ϕ, u, vi, wi (φ1) , zi (φ1)) [φ2] + ⟨g0 (ϕ) , t (φ1,φ2)⟩
= Liϕ′ϕ′ (ϕ, u, vi) [φ1,φ2] + ⟨g0 (ϕ) , t (φ1,φ2)⟩
+ LSϕ′ (ϕ, u, wi) [φ2] + LAiϕ′ (ϕ, vi, zi) [φ2] . (9.8.30)

The first and second terms of Eq. (9.8.30) are given by Eq. (9.8.19). The third
and fourth terms become

LSϕ′ (ϕ, u, wi) [φ2]

=

∫
Ω(ϕ)

[
∇u ·

{(
∇φ⊤

2

)
∇wi (φ1)

}
+∇wi (φ1) ·

{(
∇φ⊤

2

)
∇u
}

+ (bwi (φ1)−∇u ·∇wi (φ1))∇ ·φ2

]
dx

+

∫
Γηi(ϕ)

ηNi (∇ ·φ1)τ (∇ ·φ2)τ dγ

+

∫
Γp(ϕ)

pNwi (φ1) (∇ ·φ2)τ dγ,

LAiϕ′ (ϕ, vi, zi) [φ2]

=

∫
Ω(ϕ)

[(
∇vi − ζi(∇u)⊤

)
·
{(

∇φ⊤
2

)
∇zi (φ1)

}
+∇zi (φ1) ·

{(
∇φ⊤

2

)
∇vi

}
+ (ζiuzi (φ1)−∇u ·∇zi (φ1))∇ ·φ2

]
dx

+

∫
Γηi(ϕ)

ηNiuzi (φ1) (∇ ·φ2)τ dγ
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+

∫
Γp(ϕ)

pNvi (∇ ·φ1)τ (∇ ·φ2)τ dγ

with respect to an arbitrary variation φ1 ∈ Y .
Here, u, vi, wi (φ1) and zi (φ1) are assumed to be the weak solutions of

Problems 9.5.4, 9.8.1, 9.8.4 and 9.8.5, respectively. If we denote fi (ϕ, u) by
f̃i (ϕ), then we obtain the relation

LIiϕ′ (ϕ, u, vi, wi (φ1) , zi (φ1)) [φ2] + ⟨g0 (ϕ) , t (φ1,φ2)⟩
= f̃ ′′i (ϕ) [φ1,φ2] = ⟨gHi (ϕ,φ1) ,φ2⟩

=

∫
Ω(ϕ)

[
−
{
∇u (∇vi)

⊤
+∇vi (∇u)

⊤ − ζi(∇u)⊤ (∇u)
⊤
}

·
{
∇φ⊤

1 ∇φ⊤
2 +

(
∇φ⊤

2

)⊤ ∇φ⊤
1

}
+
{
∇u (∇wi (φ1))

⊤
+∇wi (φ1) (∇u)

⊤

+
(
∇vi − ζi(∇u)⊤

)
(∇zi (φ1))

⊤
}
·∇φ⊤

2

+ (bwi (φ1) + ζiuzi (φ1)−∇u ·∇wi (φ1)−∇u ·∇zi (φ1))∇ ·φ2

+ ζiϕ′ϕ′ (ϕ, u,∇u) [φ1,φ2] + ub′′ (ϕ) [φ1,φ2]
]
dx

+

∫
Γηi(ϕ)

[
{ηNi (∇ ·φ1)τ + ηNiuzi (φ1)} (∇ ·φ2)τ

+ ηNiϕ′ϕ′ (ϕ, u) [φ1,φ2]
]
dγ

+

∫
Γp(ϕ)

[{pNvi (∇ ·φ1)τ + pNwi (φ1)} (∇ ·φ2)τ + p′′ (ϕ) [φ1,φ2]] dγ

+

∫
ΓD(ϕ)

ηDiϕ′ϕ′ (ϕ, ∂νu) [φ1,φ2] dγ, (9.8.31)

where gHi (ϕ,φ1) is the Hesse gradient of fi.

9.8.4 Shape Derivative of fi Using Formulae Based on
Partial Shape Derivative of a Function

Next, we compute the shape derivative of fi by computing the shape derivative
of Li using the formulae for the partial shape derivative of a function shown in
Sect. 9.3.2.

Here, we assume that u and vi are elements such that u−uD and vi−ηDi∂νu

belong to U (ϕ) ∩W 2,2qR (D;R) (qR > d). Hypotheses 9.5.2 and 9.6.2 give the
conditions for these.

Under these assumptions, the Fréchet derivative of Li (ϕ, u, vi), with respect
to an arbitrary (φ, û, v̂i) ∈ X × U × U can be written as

L ′
i (ϕ, u, vi) [φ, û, v̂i]

= Liϕ∗ (ϕ, u, vi) [φ] + Liu (ϕ, u, vi) [û] + Livi
(ϕ, u, vi) [v̂i] (9.8.32)
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using the notation of Eq. (9.3.21) and Eq. (9.3.27). Unlike Sect. 9.8.1, since
Eq. (9.3.21) and Eq. (9.3.27) were used here, u∗ was replaced by arbitrary û ∈ X.
Let us look at the detail of each term below.

The last term on the right-hand side of Eq. (9.8.32) becomes

Livi
(ϕ, u, vi) [v̂i] = LSvi

(ϕ, u, vi) [v̂i] = LS (ϕ, u, v̂i) . (9.8.33)

Equation (9.8.33) is the Lagrange function of the state determination problem
(Problem 9.5.4). Hence, if u is the weak solution of the state determination
problem, this expression vanishes.

Meanwhile, the second term on the right-hand side of Eq. (9.8.32) is the
same as Eq. (9.8.3). Hence, if vi is such that Eq. (9.8.3) is zero with respect
to an arbitrary û ∈ U , the second term on the right-hand side of Eq. (9.8.32)
also vanishes. This relationship holds when vi is the weak solution of an adjoint
problem (Problem 9.8.1) with respect to fi. The regularities for ζiu, ζi(∇u)⊤ ,
ηNiu, ηDi∂νu in Hypothesis 9.6.2 give the conditions that vi − ηDi∂νu belongs to
U (ϕ) ∩W 2,2qR (D;R) (qR > d).

Lastly, the first term on the right-hand side of Eq. (9.8.32) is manipulated
as follows. Applying the formulae of Eq. (9.3.21), representing the result of
Proposition 9.3.10, and Eq. (9.3.27), representing the result of Proposition
9.3.13, to the first term, we have

Liϕ∗ (ϕ, u, vi) [φ]

=

∫
Ω(ϕ)

(ζiϕ∗ + ub∗) ·φdx

+

∫
∂Ω(ϕ)

(ζi (u,∇u)−∇u ·∇vi + bvi)ν ·φ dγ

+

∫
Γηi(ϕ)

{(∂ν + κ) ηNi (u)ν ·φ+ ηNiϕ∗ ·φ} dγ

+

∫
∂Γηi(ϕ)∪Θηi(ϕ)

ηNi (u) τ ·φdς

+

∫
Γp(ϕ)

{(∂ν + κ) (pNvi)ν ·φ+ vip
∗
N ·φ}dγ

+

∫
∂Γp(ϕ)∪Θp(ϕ)

pNviτ ·φ dς

+

∫
ΓD(ϕ)

[
{(u− uD) w̄ (φ, vi) + (vi − ηDi∂νu) w̄ (φ, u)}

+ (∂ν + κ) {(u− uD) ∂νvi + vi∂νu− ηDi}ν ·φ+ ηDiϕ∗ ·φ
]
dγ

+

∫
∂ΓD(ϕ)∪ΘD

{(u− uD) ∂νvi + vi∂νu− ηDi}ν ·φ dς, (9.8.34)

where w̄ (φ, u) and (∇ ·φ)τ obey Eq. (9.3.24) and Eq. (9.2.6), respectively.
With the above results in mind, we assume that u and vi are the weak

solutions to Problem 9.5.4 and Problem 9.8.1, respectively. In addition, we also



9.8 Derivatives of Cost Functions 61

assume that the condition for ηDi in Hypothesis 9.6.2 holds. Then, the notation
in Eq. (7.5.15) for f̃i can be used to write

f̃ ′i (ϕ) [φ] = Liϕ∗ (ϕ, u, vi) [φ] = ⟨ḡi,φ⟩

=

∫
Ω(ϕ)

ḡζbi ·φ dx+

∫
∂Ω(ϕ)

ḡ∂Ωi ·φ dγ +

∫
Γp(ϕ)

ḡpi ·φ dγ

+

∫
∂Γp(ϕ)∪Θp(ϕ)

ḡ∂pi ·φ dς +

∫
Γηi(ϕ)

ḡηi ·φ dγ

+

∫
∂Γηi(ϕ)∪Θηi(ϕ)

ḡ∂ηi ·φ dς +

∫
ΓD(ϕ)

ḡDi ·φ dγ, (9.8.35)

where

ḡζbi = ζiϕ∗ + ub∗, (9.8.36)

ḡ∂Ωi = (ζi −∇u ·∇vi + bvi)ν, (9.8.37)

ḡpi = {∂ν (pNvi) + κpNvi}ν + vip
∗
N, (9.8.38)

ḡ∂pi = pNviτ , (9.8.39)

ḡηi = (∂νηNi + κηNi)ν + ηNiϕ∗ , (9.8.40)

ḡ∂ηi = ηNiτ , (9.8.41)

ḡDi = {∂ν (u− uD) ∂νvi + ∂ν (vi − vDi) ∂νu}ν + ηDiϕ∗ . (9.8.42)

If gi of Eq. (9.8.5) and ḡi of Eq. (9.8.35) are compared in the case ηDiϕ′ =
0Rd , although the term with ḡD of Eq. (9.8.42) appears on ΓD (ϕ) in ḡi, there
is no such component in gi. This result shows that if gi is used, and even when
ΓD (ϕ) varies, no additional treatment is needed.

Based on the results above, the following results can be obtained with respect
to the function space containing ḡi of Eq. (9.8.35).

Theorem 9.8.6 (Shape derivative ḡi of fi) Let ϕ ∈ D, b, pN, uD, ζi, ηNi

and ηDi be given functions fixed in space satisfying Hypotheses 9.5.2 and 9.6.2,
and ∂Ω(ϕ) be in the class of H3 ∩ C1,1. Moreover, let u and vi be the weak
solutions of the state determination problem (Problem 9.5.4) and the adjoint
problem (Problem 9.8.1) with respect to fi, respectively, such that u− uD and
vi − ηDi∂νu belong to U (ϕ) ∩W 2,2qR (D;R) (qR > d). When ḡ∂pi and ḡ∂ηi in
Eq. (9.8.39) and Eq. (9.8.41), respectively, are zero, the shape derivative of fi
becomes ḡi in Eq. (9.8.35) and is an element of X ′. Furthermore, we have

ḡζbi, ḡ∂Ωi ∈ H1/2 ∩ L∞ (∂Ω(ϕ) ;Rd
)
,

ḡpi ∈ H1/2 ∩ L∞ (Γp (ϕ) ;Rd
)
,

ḡηi ∈ H1/2 ∩ L∞ (Γηi (ϕ) ;Rd
)
,

ḡD ∈ H1/2 ∩ L∞ (ΓD (ϕ) ;Rd
)
.

□
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Proof The fact that the shape derivative of fi becomes Eq. (9.8.35) is as shown
above. The regularity of ḡi can be shown by using relationships similar to the proof of
Theorem 9.8.2 using the fact that u and vi are in W 2,2qR (D;R) and Hypothesis 9.6.2.

□

From the results of Theorem 9.8.2 and Theorem 9.8.6 the following can be
said about the regularity of the shape optimization problem.

Remark 9.8.7 (Irregularity of shape optimization problem) From
Theorem 9.8.2 and Theorem 9.8.6, it was confirmed that gi and ḡi are both
in X ′ with respect to X defined in Eq. (9.1.1). In other words, it is possible
to define the Fréchet derivatives of cost functions with respect to the domain
variation. However, it is not necessarily the case that gi and ḡi are in the linear
space H2 ∩C0,1

(
D;Rd

)
containing the admissible set of design variables. This

result indicates the fact that if φ is obtained by the gradient method substituting
−gi into φ, ϕ+φ is not guaranteed to be contained in H2∩C0,1

(
D;Rd

)
, which

is the linear space for the admissible set of design variables. This is thought to
be a reason for the numerically unstable phenomena such as the rippling shapes
explained at the start of this chapter. □

9.9 Descent Directions of Cost Functions

Remark 9.8.7 points out the irregularity of the shape optimization problem
of domain variation type. Hence, let us think about the gradient method and
Newton method which both have the feature of regularizing the shape derivatives
of cost functions in the framework of the abstract gradient and Newton methods
on the linear space X of design variable. Here, let us assume that the gradient
gi ∈ X ′ of Eq. (9.8.5) and the Hessian hi ∈ L2 (X ×X;R) of Eq. (9.8.24) with
respect to the i ∈ {0, . . . ,m}th cost function fi are given and think about the
way to obtain the descent direction of fi using the gradient method and Newton
method on the linear space X of design variables.

9.9.1 H1 Gradient Method

Choose a cost function fi (ϕ, u) among i ∈ {0, . . . ,m} and assume that the
shape derivative gi ∈ X ′ or ḡi ∈ X ′ at ϕ ∈ D◦ is given. From now on,
f̃i (ϕ) = fi (ϕ, u (ϕ)) will be denoted as fi (ϕ). The method for obtaining the
decent direction vector φgi ∈ X (domain variation) of fi as the solution to the
next problem is called an H1 gradient method of domain variation type.

Problem 9.9.1 (H1 gradient method of domain variation type)
Define X as in Eq. (9.1.1). Choose a coercive and bounded bilinear form
aX : X ×X → R on X. In other words, suppose that there exist some positive
constants αX and βX such that the inequalities

aX (φ,φ) ≥ αX ∥φ∥2X , |aX (φ,ψ)| ≤ βX ∥φ∥X ∥ψ∥X (9.9.1)
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hold with respect to arbitrary φ ∈ X and ψ ∈ X. Moreover, suppose gi ∈ X ′

is given at ϕ ∈ D◦. In this case, obtain φgi ∈ X which satisfies

aX
(
φgi,ψ

)
= −⟨gi,ψ⟩ (9.9.2)

for any ψ ∈ X. □

The way to choose aX : X × X → R as in Problem 9.9.1 has arbitrary
properties. Several specific examples will be shown in the section below.

Method Using the Inner Product in H1 Space

Consider a method using the inner product on a real Hilbert space in a similar
way to the H1 gradient method of density variation type. In this case, it is
allowed to assume that Ω̄C0 = ∅ on Eq. (9.1.1).

The inner product on X = H1
(
D;Rd

)
is defined as

(φ,ψ)X =

∫
Ω(ϕ)

{(
∇φ⊤) · (∇ψ⊤

)
+φ ·ψ

}
dx

with respect to φ ∈ X and ψ ∈ X. Let cΩ be some positive-valued function
contained in L∞ (D;R) such that

aX (φ,ψ) =

∫
Ω(ϕ)

{(
∇φ⊤) · (∇ψ⊤

)
+ cΩφ ·ψ

}
dx (9.9.3)

is a bounded and coercive bilinear form on X. Here, cΩ controls the weight of
the first and second terms in the integrand. If cΩ is taken to be small and the
first term is made dominant, the smoothing function is prioritized. However,
setting cΩ = 0 is not allowed, since the coercivity of the bilinear form will be
lost, which is a requirement of the H1 gradient method for it to hold. Moreover,
if we write the symmetrical component of ∇φ⊤ as

E (φ) = (eij (φ))ij =
1

2

{
∇φ⊤ +

(
∇φ⊤)⊤} ,

the following bilinear form on X:

aX (φ,ψ) =

∫
Ω(ϕ)

(E (φ) ·E (ψ) + cΩφ ·ψ) dx (9.9.4)

is also bounded and coercive. Excluding antisymmetric components of ∇φ⊤

indicates rotational motion which does not generate deformation.
Furthermore, C = (cijkl)ijkl ∈ L∞ (D;Rd×d×d×d

)
is taken to be a stiffness

tensor used in a linear elastic problem. In other words, we assume that there
exist positive constants αX and βX such that the bounds

A · (CA) ≥ αX ∥A∥2 , |A · (CB)| ≤ βX ∥A∥ ∥B∥ (9.9.5)
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(a) When using gi (b) When using ḡi

Fig. 9.13: The H1 gradient method using an inner product of H1
(
D;Rd

)
.

hold for any symmetric tensors A ∈ Rd×d and B ∈ Rd×d and that the
symmetricity condition cijkl = cklij also holds. Using these, let the stress tensor
be

S (φ) = CE (φ) =

 ∑
(k,l)∈{1,...,d}2

cijklekl (φ)


ij

. (9.9.6)

In this case, we have that

aX (φ,ψ) =

∫
Ω(ϕ)

(S (φ) ·E (ψ) + cΩφ ·ψ) dx (9.9.7)

is a bounded and coercive bilinear form on X. aX (φ,ψ) of Eq. (9.9.7) is a
bilinear form providing the variation of strain energy in a linear elastic problem
when φ and ψ are viewed as the displacement and its variation. In this case, cΩ
indicates the spring constant of the distributed spring placed in D. Figure 9.13
provides an illustration of Problem 9.9.1 in this case.

Figure 9.13 (a) represents the case when gi of Eq. (9.8.5) is used as the
shape derivative of fi. Problem 9.9.1 in this case is given by a weak-form
equation. Hence, if we dare to rewrite this problem in its strong form, the
following assumptions are needed. When u and vi are elements of W 2,2qR , the
first term on the right-hand side of Eq. (9.8.5) is written as∫

Ω(ϕ)

{
GΩi ·

(
∇φ⊤)+ gΩi∇ ·φ+ gζbi ·φ

}
dx

=

∫
Ω(ϕ)

{
∇ · (GΩiφ)−

(
∇⊤GΩi

)⊤
·φ+∇ · (gΩiφ)

− (∇gΩi) ·φ+ gζbi ·φ
}
dx

=

∫
Ω(ϕ)

g̃Ωi ·φdx+

∫
∂Ω(ϕ)

g̃∂Ωi ·φ dγ, (9.9.8)
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where

g̃Ωi = −
(
∇⊤GΩi

)⊤
−∇gΩi + gζbi, (9.9.9)

g̃∂Ωi = (GΩi + gΩi)ν. (9.9.10)

Moreover, χΓp(ϕ) : ∂Ω(ϕ) → R represents the characteristic function which
takes the value 1 on Γp (ϕ) ⊂ ∂Ω(ϕ) and value 0 on ∂Ω(ϕ) \ Γ̄p (ϕ). In this
case, the strong form of Problem 9.9.1 using Eq. (9.9.7) for aX (φ,ψ) is given
as follows.

Problem 9.9.2 (H1 gradient method using H1 inner product and gi)
Let gpi, g∂pi, gηi, g∂ηi and gDi of Eq. (9.8.5) as well as g̃Ωi and g̃∂Ωi

of Eq. (9.9.9) and Eq. (9.9.10), respectively, be given at ϕ ∈ D◦. Find
φgi : Ω (ϕ) → R which satisfies

−∇⊤S
(
φgi

)
+ cΩφ

⊤
gi = −g̃⊤Ωi in Ω (ϕ) , (9.9.11)

S
(
φgi

)
ν = −χΓp(ϕ)gpi − χΓηi(ϕ)gηi − χΓD(ϕ)gDi − g̃∂Ωi

on ∂Ω(ϕ) , (9.9.12)

S
(
φgi

)
τ = −χ∂Γp(ϕ)∪Θp(ϕ)g∂pi − χ∂Γηi(ϕ)∪Θηi(ϕ)g∂ηi

on ∂Ω(ϕ) . (9.9.13)

□

Figure 9.13 (b) shows the case when the shape gradient ḡi of fi is given by
Eq. (9.8.35). The strong form in this case is given as follows.

Problem 9.9.3 (H1 gradient method using H1 inner product and ḡi)
Let ḡζbi, ḡ∂Ωi, ḡpi, ḡ∂pi, ḡηi, ḡ∂ηi and ḡDi as in Eq. (9.8.35) be given at
ϕ ∈ D◦, obtain φgi which satisfies

−∇⊤S
(
φgi

)
+ cΩφ

⊤
gi = −ḡ⊤ζbi in Ω (ϕ) ,

S
(
φgi

)
ν = −χΓp(ϕ)ḡpi − χΓηi(ϕ)ḡηi − χΓD(ϕ)ḡDi − ḡ∂Ωi

on ∂Ω(ϕ) ,

S
(
φgi

)
τ = −χ∂Γp(ϕ)∪Θp(ϕ)ḡ∂pi − χ∂Γηi(ϕ)∪Θηi(ϕ)ḡ∂ηi

on ∂Ω(ϕ) .

□

Method Using Boundary Condition

Moreover, as with the H1 gradient method of varying density type, the bilinear
form aX : X ×X → R can be made coercive by adding a boundary condition.
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Firstly, think about using a Dirichlet boundary condition. In Eq. (9.1.1),
Ω̄C0 ⊂ Ω̄0 was defined as a boundary or a closure of domain on which the domain
variation is fixed as a design demand. Here,

∣∣Ω̄C0

∣∣ > 0 is assumed. In this case,

aX (φ,ψ) =

∫
Ω(ϕ)\Ω̄C0

S (φ) ·E (ψ) dx (9.9.14)

is a bounded and coercive bilinear form onX. This is because, when the measure
of Ω̄C0 is positive and φ = 0Rd on Ω̄C0, Korn’s inequality implies that there
exists a positive constant c which depends only on Ω (ϕ) \ Ω̄C0 such that the
inequality

aX (φ,φ) ≥ αX ∥E (φ)∥2L2(Ω(ϕ)\Ω̄C0;Rd×d) ≥ c ∥φ∥2H1(Ω(ϕ)\Ω̄C0;Rd)

holds. Here αX is a positive constant satisfying Eq. (9.9.5). The strong form in
this case is shown as follows. Here, the situation when the shape gradient of fi
is given by ḡi in Eq. (9.8.35) is shown.

Problem 9.9.4 (H1 gradient method using Dirichlet condition and ḡi)
Let ḡζbi, ḡ∂Ωi, ḡpi, ḡ∂pi, ḡηi, ḡ∂ηi and ḡDi as in Eq. (9.8.35) be given at

ϕ ∈ D◦. Obtain φgi : Ω (ϕ) \ Ω̄C0 → Rd which satisfies

−∇⊤S
(
φgi

)
+ cΩφ

⊤
gi = −ḡ⊤ζbi in Ω (ϕ) \ Ω̄C0,

S
(
φgi

)
ν = −χΓp(ϕ)ḡpi − χΓηi(ϕ)ḡηi − χΓD(ϕ)ḡDi − ḡ∂Ωi

on ∂Ω(ϕ) \ Ω̄C0,

S
(
φgi

)
τ = −χ∂Γp(ϕ)∪Θp(ϕ)ḡ∂pi − χ∂Γηi(ϕ)∪Θηi(ϕ)ḡ∂ηi

on ∂Ω(ϕ) \ Ω̄C0,

φgi = 0Rd on Ω̄C0.

□

Figure 9.14 (a) illustrates Problem 9.9.4. This problem assumes that Ω (ϕ)
is a linear elastic body and obtains the displacement φgi when Ω̄C0 is fixed,
the remaining boundaries are applied with the traction containing −ḡ∂Ωi, −ḡpi,
−ḡ∂pi, −ḡηi, −ḡ∂ηi and −ḡDi, and the volume force −ḡζbi is applied. From this
sort of interpretation, Problem 9.9.4 is known as the traction method [2].

Furthermore, if the Robin condition is used, even if Ω̄C0 = ∅ is assumed
in Eq. (9.1.1), coerciveness of aX (φ,ψ) can be obtained. Choose some
positive-valued function c∂Ω ∈ L∞ (∂Ω(ϕ) ;R) and let

aX (φ,ψ) =

∫
Ω(ϕ)

S(φ) ·E(ψ) dx+

∫
∂Ω(ϕ)

c∂Ω (φ · ν) (ψ · ν) dγ.

(9.9.15)

The strong form in this case is shown below. Here too, let us show only the case
when the shape gradient of fi is given by ḡi in Eq. (9.8.35).
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(a) Dirichlet condition (b) Robin condition

Fig. 9.14: The H1 gradient method (when Γp (ϕ) = Γηi (ϕ)).

Problem 9.9.5 (H1 gradient method using Robin condition and ḡi)
Let ḡζbi, ḡ∂Ωi, ḡpi, ḡ∂pi, ḡηi, ḡ∂ηi and ḡDi as in Eq. (9.8.35) be given at
ϕ ∈ D◦. Find φgi which satisfies

−∇⊤S
(
φgi

)
= −ḡ⊤ζbi in Ω (ϕ) ,

S
(
φgi

)
ν + c∂Ω (φ · ν)ν = −χΓp(ϕ)ḡpi − χΓηi(ϕ)ḡηi

− χΓD(ϕ)ḡDi − ḡ∂Ωi on ∂Ω(ϕ) ,

S
(
φgi

)
τ = −χ∂Γp(ϕ)∪Θp(ϕ)ḡ∂pi − χ∂Γηi(ϕ)∪Θηi(ϕ)ḡ∂ηi

on ∂Ω(ϕ) .

□

Figure 9.14 (b) illustrates Problem 9.9.5. This problem assumes that Ω (ϕ)
is a linear elastic body and that a distribution spring with spring constant c∂Ω
is placed on ∂Ω(ϕ), then seeks the displacement φgi when Ω̄C0 is fixed, the
remaining boundaries are applied with the traction containing −ḡ∂Ωi, −ḡpi,
−ḡ∂pi, −ḡηi, −ḡ∂ηi and −ḡDi, and the volume force −ḡζbi is applied. From
this sort of interpretation, Problem 9.9.5 has been referred to as the traction
method with spring, or traction method of Robin type [7].

Regularity of the H1 Gradient Method

From the weak solutions of Problem 9.9.1 and its specific examples (Problems
9.9.3 to 9.9.5), the results below can be obtained. Here, we call the neighborhood
of points or edges such that u does not belong to S (or U (ϕ) ∩W 2,2qR (D;R)
when ḡi in Theorem 9.8.6 is used) a neighborhood of singular points and will
write it as B (ϕ) (refer to Hypothesis 9.5.3). Also, we let fi (ϕ, u) be denoted
by f̃i (ϕ) when u is the solution to Problem 9.5.4.

Theorem 9.9.6 (Regularity of the H1 gradient method) There exists a
unique weak solution φgi ∈ X for each Problem 9.9.2 to 9.9.5 using gi of
Theorem 9.8.2 or ḡi of Theorem 9.8.6. φgi is a function of class H2 ∩ C0,1 on
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Ω(ϕ) \ B̄ (ϕ). Moreover, φgi points to the direction of the domain variation

which decreases the value of f̃i (ϕ). □

Proof Let us think about the weak solution φgi of Problem 9.9.2. Problem 9.9.2
is a boundary value problem of an elliptic partial differential equation with GΩi and
gΩi of class H1 ∩ L∞ in Theorem 9.8.2 given in the domain, and gpi, g∂pi, gηi and

g∂ηi of class H1/2 ∩ L∞ in Theorem 9.8.2 given as Neumann boundary conditions.
Hence, φgi ∈ X exists uniquely from the Lax-Milgram theorem. Moreover, φgi is of

class H2 ∩ C0,1 on Ω (ϕ) \ B̄ (ϕ). This is due to the fact that GΩi and S
(
φgi

)
in

Eq. (9.9.11) have the same regularity, and thus GΩi being of class H1∩L∞ means φgi

is of class H2 ∩ C0,1. In fact, using Eq. (9.9.12) and Eq. (9.9.13), one can also infer
that φgi is of class H

2 ∩ C0,1.
Similarly, the weak solution φgi of Problem 9.9.3 satisfies an elliptic partial

differential equation with ḡ∂Ωi, ḡpi, ḡ∂pi, ḡηi, ḡ∂ηi and ḡDi of class H1/2 ∩ L∞

in Theorem 9.8.6 as Neumann boundary conditions. Here, there exists a unique
weak solution φgi ∈ X from the Lax–Milgram theorem being of class H2 ∩ C0,1

on Ω (ϕ) \ B̄ (ϕ). Similar results can be obtained for the weak solutions of Problem
9.9.4 and Problem 9.9.5.

Furthermore, with respect to the weak solutions φgi of Problems 9.9.3 to 9.9.5, we
have the estimate

f̃i
(
ϕ+ ϵ̄φgi

)
− f̃i (ϕ) = ϵ̄

〈
gi,φgi

〉
+ o (|ϵ̄|)

= −ϵ̄aX

(
φgi,φgi

)
+ o (|ϵ̄|) ≤ −ϵ̄αX

∥∥φgi

∥∥2

X
+ o (|ϵ̄|)

for some positive constant ϵ̄. Hence, if
∥∥φgi

∥∥
X

is taken to be sufficiently small, f̃i (ϕ)
is reduced. □

The following remark can be maid about the relationship between the result
of Theorem 9.9.6 and the admissible set D of domain variations defined by
Eq. (9.1.3).

Remark 9.9.7 (H1 gradient method for shape optimization problem)
From Theorem 9.9.6, it was confirmed that the domain variation φgi obtained
by the H1 gradient method with respect to the shape optimization problem
is contained in the linear space H2 ∩ C0,1

(
D;Rd

)
for the admissible

set D of design variables excepting the neighborhood of singular points.
From this, the domain can be moved via continuous mapping excluding
the neighborhood of singular points. However, one cannot guarantee to
have the bound

∣∣ϕ+φgi

∣∣
C0,1(D;Rd)

≤ σ or the condition that Γ̃
(
ϕ+φgi

)
(Γ̃0 = Γp0 ∪ Γη00 ∪ Γη10 ∪ · · · ∪ Γηm0 \ Ω̄C0) is of class H3 ∩ C1,1 which are
sufficient conditions for the inverse mapping of ϕ + φgi to become bijective.
If a numerically unstable phenomenon caused by these conditions not being
satisfied occurs, there is a need to consider additional requirements in order to
satisfy the said conditions. □

As one of methods to improve the regularity of the boundary, an iterative
method of the H1 gradient method can be considered. This method is the
following algorithm.
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Algorithm 9.9.8 (Iterative method of the H1 gradient method) Let a
domain Ω (ϕ) be given. Obtain a domain variation in the following way:

(1) Calculate a shape gradient gi (or ḡi).

(2) By the first H1 gradient method, obtain φgi = φgi1 using −gi (or −ḡi).
Here, φgi1 is not used for domain variation.

(3) Using the trace φgi1

∣∣
∂Ω(ϕ)

of the solution φgi1 of the first H1 gradient

method on ∂Ω(ϕ) instead of−ḡi, calculate φgi2 by the secondH1 gradient
method. Vary the domain Ω (ϕ) with the φgi2.

□

For the boundary of the new domain Ω
(
ϕ+φgi2

)
obtained in the above

way, it is expected that the differentiability improves by one order higher than
Ω
(
ϕ+φgi1

)
.

9.9.2 H1 Newton Method

Now, if the second-order derivative (Hessian) hi ∈ L2 (X ×X;R) of the cost
function fi is computable, a Newton method on X = H1

(
D;Rd

)
can be

considered. This method is called an H1 Newton method of domain variation
type.

Problem 9.9.9 (H1 Newton method of domain variation type) Let X
and D be given by Eq. (9.1.1) and Eq. (9.1.3), respectively. Let the shape
derivative and second-order shape derivative of fi ∈ C2 (D;R) at ϕk ∈ D◦

which is not a local minimizer be gi (ϕk) ∈ X ′ and hi (ϕk) ∈ L2 (X ×X;R),
respectively. Moreover, assume that aX : X ×X → R is a bilinear form which
assures coercivity and sufficient regularity of hi (ϕk) on X. In this case, obtain
φgi ∈ X which satisfies

hi (ϕk)
[
φgi,ψ

]
+ aX

(
φgi,ψ

)
= −⟨gi (ϕk) ,ψ⟩ (9.9.16)

with respect to an arbitrary ψ ∈ X. □

In Problem 9.9.9, if the Newton method is considered with only the
expression for hi appearing on the left-hand side of Eq. (9.9.16), there may
be cases when the coerciveness of hi on X may not be guaranteed. In reality, hi
calculated by Eq. (9.8.24) contains a negative term, hence, the addition of the
bilinear form aX which is bounded and coercive on X to the left-hand side of
Eq. (9.9.16) in Problem 9.9.9. For instance, in the case using the inner product
on X such as Eq. (9.9.3), we can assume

aX (φ,ψ) =

∫
Ω(ϕ)

{
cΩ1

(
∇φ⊤) · (∇ψ⊤

)
+ cΩ0φ ·ψ

}
dx. (9.9.17)
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Table 9.1: Correspondence between abstract optimal design problem and shape
optimization problem of domain variation type.

Abstract problem Domain variation type problem

Design variable ϕ ∈ X ϕ ∈ X = H1
(
D;Rd

)
State variable u ∈ U u ∈ U = H1 (D;R)
Fréchet derivative of fi gi ∈ X ′ gi ∈ X ′ = H1′ (D;Rd

)
Solution of gradient method φgi ∈ X φgi ∈ X = H1

(
D;Rd

)

Here, cΩ0 and cΩ1 are positive constants for achieving coercivity for aX and
desired regularity for φgi in Eq. (9.9.16), respectively. cΩ0 has the same meaning
as that explained after Eq. (8.6.3) in Chap. 8.

Furthermore, in the case of the Newton method when the second-order shape
derivative of fi (ϕ) is given by the Hesse gradient, Problem 9.9.9 is replaced with
the following problem.

Problem 9.9.10 (Newton method using Hesse gradient) Under the
assumption of Problem 9.9.9, the gradient of the shape derivative of fi, a search
vector and the Hesse gradient of fi at a non-local minimum point ϕk ∈ D◦ are
denoted by gi (ϕk) ∈ X ′, φ̄gi ∈ X and gHi

(
ϕk, φ̄gi

)
∈ X ′, respectively. Given

a coercive and bounded bilinear form aX : X ×X → R on X, find a φgi ∈ X
which satisfies

aX
(
φgi,ψ

)
= −

〈(
gi (ϕk) + gHi

(
ϕk, φ̄gi

))
,ψ
〉

(9.9.18)

with respect to an arbitrary ψ ∈ X. □

9.10 Solution to Shape Optimization Problem
of Domain Variation Type

The shape optimization problem (Problem 9.6.3) of domain variation type has a
correspondence with the abstract optimal design problem, as shown in Table 9.1.
Therefore, the gradient method with respect to constrained problems shown in
Section 7.7.1 (Section 3.7) and the Newton method with respect to a constrained
problem shown in Section 7.7.2 (Section 3.8) are applicable as similarly shown
in Chap. 8.

9.10.1 Gradient Method for Constrained Problems

The gradient method with respect to constrained problems employs a simple
numerical procedure such as that given in Algorithm 3.7.2 shown in Section
3.7.1 with only a few modifications as follows:
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(1) The design variable x and its variation y are replaced by ϕ and φ,
respectively.

(2) The equation (Eq. (3.7.10)) that describes the gradient method is replaced
with a condition such that there holds the equation

caaX
(
φgi,ψ

)
= −⟨gi,ψ⟩ (9.10.1)

for any ψ ∈ X, where aX
(
φgi,ψ

)
is a bilinear form on X used in the

weak form of one of Problems 9.9.2 to 9.9.5.

(3) The equation (Eq. (3.7.11)) used to seek for the search vector is replaced
with

φg = φg0 +
∑
i∈IA

λiφgi. (9.10.2)

(4) The equation (Eq. (3.7.12)) used to seek for the Lagrange multiplier is
replaced with(〈

gi,φgj

〉)
(i,j)∈I2

A

(λj)j∈IA
= −

(
fi +

〈
gi,φg0

〉)
i∈IA

. (9.10.3)

Furthermore, if instead a complicated numerical procedure such as that given
by Algorithm 3.7.6 is used, the following changes are added in addition to (1)
to (4) above:

(5) Replace the Armijo criteria Eq. (3.7.26) with

L
(
ϕ+φg,λk+1

)
− L (ϕ,λ) ≤ ξ

〈
g0 +

∑
i∈IA

λigi,φg

〉
, (9.10.4)

where ξ ∈ (0, 1).

(6) Replace the Wolfe criteria Eq. (3.7.27) with

µ

〈
g0 +

∑
i∈IA

λigi,φg

〉

≤

〈
g0
(
ϕ+φg

)
+
∑
i∈IA

λi k+1gi
(
ϕ+φg

)
,φg

〉
, (9.10.5)

where µ is such that 0 < ξ < µ < 1.

(7) Replace the update equation for λ from the Newton–Raphson method
given in Eq. (3.7.21) with

(δλj)j∈IA
= −

(〈
gi (λ) ,φgj

〉)−1

(i,j)∈I2
A

(fi (λ))i∈IA
. (9.10.6)
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9.10.2 Newton Method for Constrained Problems

If, in addition to the first-order shape derivative, the corresponding second-order
shape derivative of a cost function is also computable, the gradient method
can be improved to the Newton method to numerically solve the associated
constrained problem. In this case, we substitute hi (ϕk)

[
φgi,ψ

]
in Eq. (9.9.16)

with the Hessian of the Lagrange function L with respect to the shape
optimization problem (Problem 9.6.3) with

hL (ϕk)
[
φgi,ψ

]
= h0 (ϕk)

[
φgi,ψ

]
+

∑
i∈IA(ϕk)

λikhi (ϕk)
[
φgi,ψ

]
.

(9.10.7)

In other words, we let Eq. (9.9.16) be replaced with

chhL (ϕk)
[
φgi,ψ

]
+ aX

(
φgi,ψ

)
= −⟨gi (ϕk) ,ψ⟩ , (9.10.8)

where ch and ca are constants to control the step size. In this case, the simple
Algorithm 3.8.4 shown in Section 3.8.1 can be used by applying the following
substitution:

(1) Replace the design variable x and its variation y by ϕ and φ, respectively.

(2) Replace Eq. (3.7.10) with the solution of Eq. (9.10.8).

(3) Replace Eq. (3.7.11) with Eq. (9.10.2).

(4) Replace Eq. (3.7.12) with Eq. (9.10.3).

When the second-order shape derivative of fi (ϕ) is obtained as a Hesse
gradient, Eq. (9.10.7) and Eq. (9.10.8) are replaced with

gHL

(
ϕk, φ̄g

)
= gH0

(
ϕk, φ̄g

)
+

∑
i∈IA(ϕk)

λikgHi

(
ϕk, φ̄g

)
(9.10.9)

aX
(
φgi,ψ

)
= −

〈(
gi (ϕk) + chgHL

(
ϕk, φ̄g

))
,ψ
〉
, (9.10.10)

respectively. Using the definitions, the following step is added:

(5) Replace Eq. (3.8.11) with Eq. (9.10.10).

If instead one wishes to implement a more complicated numerical procedure
such as that shown in Section 3.8.2, then several additional requirements
are needed in response to the added functionality and characteristics of such
problems as those examined in Chap. 8.

9.11 Error Estimation

When the shape optimization problem (Problem 9.6.3) of domain variation type
is to be solved using an algorithm such as that shown in Sect. 9.10, the search
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vector φg can be obtained by Eq. (9.10.2). For this purpose, there is a need to
seek the numerical solutions of u for the state determination problem (Problem
9.5.4), the numerical solutions of v0, vi1 , . . . , vi|IA| for the adjoint problems

with respect to f0, fi1 , . . . , fi|IA| (Problem 9.8.1), as well as the numerical

solutions of φ0, φi1 , . . . , φi|IA|
for the H1 gradient method (Problem 9.9.1).

The Lagrange multipliers λi1 , . . . , λi|IA| are calculated using these numerical

solutions. As in Chap. 8, we assume here too that a finite element method is
used to obtain the numerical solutions for the three types of boundary value
problems. We then use the estimated error from the numerical solutions via the
finite element method seen in Section 6.6 in order to conduct an error estimation
for the search vector φg [66, 67].

In the case of the shape optimization problem of domain variation type, the
defined domain of the boundary value problem is perturbed. Here, a situation
is considered in which Ω (ϕ) is assumed to be given and Ω (ϕ+φ) is sought.
In this section, for simplicity, we write Ω (ϕ) as Ω. Similarly, ( · ) (ϕ) is denoted
by ( · ). Assume that Ω is a polyhedron (Section 6.6.1) and consider a regular
finite element division T = {Ωi}i∈E with respect to Ω. Moreover, define the
diameter h of the finite element as h (T ) of Eq. (6.6.2) and consider the finite
element division sequence {Th}h→0. The notations we give below will be used
in the rest of the discussion:

(1) The exact solution of the state determination problem (Problem 9.5.4)
and the adjoint problems with respect to fi (Problem 9.8.1) are written
as u and v0, vi1 , . . . , vi|IA| , respectively. These numerical solutions from

the finite element method are written as

uh = u+ δuh, (9.11.1)

vih = vi + δvih (9.11.2)

for all i ∈ IA ∪ {0}.

(2) Regarding the shape derivatives of f0, fi1 , . . . , fi|IA| , we write the

numerical solutions of gi for each i ∈ IA ∪ {0} in Eq. (9.8.5) obtained
using the formulae based on the shape derivative of a function as

gih = gi + δgih. (9.11.3)

Moreover, the numerical solutions of ḡi for each i ∈ IA∪{0} in Eq. (9.8.35)
obtained using the formulae based on the partial shape derivative of a
function is written as

ḡih = ḡi + δḡih. (9.11.4)

Here, gi and ḡi are functions of u, v0, vi1 , . . . , vi|IA| and gih and ḡih are

functions of uh, v0h, vi1h, . . . , vi|IA|h , respectively.
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(3) We write the exact solutions of the H1 gradient method (for example,
Problem 9.9.3) calculated using g0, gi1 , . . . , gi|IA|

as φg0, φgi1 , . . . ,

φgi|IA|
. Moreover, the exact solutions of the H1 gradient method

calculated using g0h, gi1h, . . . , gi|IA|h
are written as

φ̂gi = φgi + δφ̂gi (9.11.5)

for all i ∈ IA∪{0}. With respect to (2), the exact solutions and numerical
solutions obtained via the formulae using the partial shape derivative of
a function will have ¯( · ) attached. The exact solutions of the H1 gradient
method in this case will be written as

ˆ̄φgi = φ̄gi + δ ˆ̄φgi. (9.11.6)

(4) The numerical solutions of the H1 gradient method calculated using g0h,
gi1h, . . . , gi|IA|h

are written as

φgih = φ̂gi + δφ̂gih = φgi + δφgih (9.11.7)

for all i ∈ IA ∪ {0}. Moreover, the numerical solutions of the H1 gradient
method obtained using the formulae based on the partial shape derivative
of a function are written as

φ̄gih = ˆ̄φgi + δ ˆ̄φgih = φ̄gi + δφ̄gih. (9.11.8)

(5) The coefficient matrix
(〈
gi,φgj

〉)
(i,j)∈I2

A

of Eq. (9.10.3) constructed from

g0, gi1 , . . . , gi|IA|
and φg0, φgi1 , . . . , φgi|IA|

is written as A. Moreover,

the coefficient matrix
(〈
gih,φgjh

〉)
(i,j)∈I2

A

of Eq. (9.10.3) constructed

using g0h, gi1h, . . . , gi|IA|h
and φg0h, φgi1h, . . . , φgi|IA|h

is written

as Ah = A+ δAh. Furthermore, assuming fi = 0 for all i ∈ IA, we write
−
(〈
gi,φg0

〉)
i∈IA

as b. Moreover, the expression −
(〈
gih,φg0h

〉)
i∈IA

is

written as bh = b+ δbh. In addition, the exact solutions for the Lagrange
multipliers are written as λ = A−1b. On the other hand, its numerical
solution is written as

λh = (λih)i∈IA
= A−1

h bh = λ+ δλh. (9.11.9)

Additionally, the exact solutions and numerical solutions obtained using
the formulae based on the partial shape derivative of a function will have
¯( · ) attached. The numerical solutions for the Lagrange multipliers in this
case are written as

λ̄h =
(
λ̄ih
)
i∈IA

= Ā
−1
h b̄h = λ̄+ δλ̄h. (9.11.10)
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(6) Equation (9.10.2) constructed from φg0h, φgi1h, . . . , φgi|IA|h
and λi1h,

. . . , λi|IA|h is written as

φgh = φg0h +
∑
i∈IA

λihφgih = φg + δφgh. (9.11.11)

Moreover, Eq. (9.10.2) obtained using the formulae based on the partial
shape derivative of a function is written as

φ̄gh = φ̄g0h +
∑
i∈IA

λ̄ihφ̄gih = φ̄g + δφ̄gh. (9.11.12)

In the above definitions, the error for the search vector is given by δφgh and
δφ̄gh of Eq. (9.11.11) and Eq. (9.11.12), respectively. Hence, the aim of this
section is to conduct an order evaluation of h with respect to their norms. If
such a result can be obtained, the way to select the order of the basis function
such that the numerical solution for the search vector converging to the exact
solution will be apparent. Here, the following assumptions are essential.

Hypothesis 9.11.1 (Error estimation of φg and φ̄g) For qR > d and
k1, k2, j ∈ {1, 2, . . .}, we assume the following conditions hold:

(1) The homogeneous forms of the exact solutions u of the state determination
problem and v0, vi1 , . . . , vi|IA| of the adjoint problem with respect to f0,

fi1 , . . . , fi|IA| are elements of

S = U ∩Wmax{k1,k2}+1,2qR (D;R) . (9.11.13)

If necessary, Hypotheses 9.5.1, 9.6.1, 9.5.2, 9.6.2 and 9.5.3 will be amended
so that this assumption holds. Also, we let ∂Ω be of class H2∩C0,1 where
Γ̃0 = Γp0∪Γη00∪Γη10∪· · ·∪Γηm0 belongs to a class of piecewise H3∩C1,1,
and X1 = X ∩W 1,qR

(
D;Rd

)
be the linear space of ϕ.

(2) If the formulae based on the shape derivative of a function are used, the
integrands of the cost function fi for each i ∈ IA ∪ {0} satisfy

ζiu∇u ∈ L∞ (D;Rd
)
, (9.11.14)

ζi∇u(∇u)⊤ ∈ L∞ (D;Rd×d
)
. (9.11.15)

(3) There exist some positive constants c1, c2, c3 and c̄3 which do not depend
on h such that

∥δuh∥W j,2qR (Ω;R) ≤ c1h
k1+1−j |u|Wk1+1,2qR (Ω;R) , (9.11.16)

∥δvih∥W j,2qR (Ω;R) ≤ c2h
k1+1−j |vi|Wk1+1,2qR (Ω;R) , (9.11.17)∥∥δφ̂gih

∥∥
W j,2qR (Ω;Rd)

≤ c3h
k2+1−j

∣∣φ̂gi

∣∣
Wk2+1,2qR (Ω;Rd)

, (9.11.18)∥∥δ ˆ̄φgih

∥∥
W j,2qR (Ω;Rd)

≤ c̄3h
k2+1−j

∣∣ ˆ̄φgi

∣∣
Wk2+1,2qR (Ω;Rd)

(9.11.19)

for all i ∈ IA ∪ {0}.
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(4) With respect to the coefficient matrices Ah and Āh of Eq. (9.11.9) and
Eq. (9.11.10), respectively, there exist positive constants c4 and c̄4 that
satisfy∥∥A−1

h

∥∥
R|IA|×|IA| ≤ c4, (9.11.20)∥∥∥Ā−1

h

∥∥∥
R|IA|×|IA| ≤ c̄4, (9.11.21)

where ∥ · ∥R|IA|×|IA| represents the norm of the matrix (see Eq. (4.4.3)).

□

Since k1 ∈ {1, 2, . . .}, Hypothesis 9.11.1 (1) is a stronger condition than S
defined in Eq. (9.5.2). The reason for this is because in Hypothesis 9.11.1 (3),
the right-hand side of Eq. (9.11.17) and Eq. (9.11.16) require u and v0, vi1 ,
. . . , vi|IA| to be of class W k1+1,2qR . Hypothesis 9.11.1 (3) is based on Corollary

6.6.4. Hypothesis 9.11.1 (4) is a condition which holds when gi1 , . . . , gi|IA|
are

linearly independent.
We shall give the result of the error estimation in Theorem 9.11.5 after we

have proved the following lemmas.

Lemma 9.11.2 (Error estimation of gi and ḡi) Suppose Hypothesis
9.11.1 (1) and (2) as well as Eq. (9.11.16) and Eq. (9.11.17) are satisfied. Then,
there exist positive constants c5 and c̄5 which do not depend on h with respect
to δgih and δḡih of Eq. (9.11.3) and Eq. (9.11.4), respectively, and the estimates

⟨δgih,φ⟩ ≤ c5h
k1−1 ∥φ∥X1

, (9.11.22)

⟨δḡih,φ⟩ ≤ c̄5h
k1−1 ∥φ∥X1

(9.11.23)

hold for all φ ∈ X1. Furthermore, when Hypothesis 9.8.3 (3) is satisfied, we
also have the estimate

⟨δgih,φ⟩ ≤ c5h
k1 ∥φ∥X1

. (9.11.24)

□

Proof The numerical error δgih of gi using the formulae based on the shape
derivative of a function is a numerical error due to δuh and δvih. Hence, from
Eq. (9.8.5),

|⟨δgih,φ⟩| ≤ |Liϕ′uvi (ϕ, u, vi) [φ, δuh, δvih]| (9.11.25)

is established. If the Hölder inequality (Theorem A.9.1), the Poincaré inequality
(Corollary A.9.4) and the trace theorem (Theorem 4.4.2) are used, the right-hand
side of Eq. (9.11.25) is suppressed as

|Liϕ′uvi (ϕ, u, vi) [φ, δuh, δvih]|

≤ ∥δGΩih∥LqR(Ω;Rd×d)

∥∥∥∇φ⊤
∥∥∥
L2(Ω;Rd×d)
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+ ∥δgΩih∥LqR (Ω;R) ∥∇ ·φ∥L2(Ω;R)

+
∥∥δgζbih

∥∥
LqR(Ω;Rd)

∥φ∥L2(Ω;Rd)

+
∥∥δgpih

∥∥
L∞(Γp;Rd)

∥φ∥L2(Γp;Rd)

+
∥∥δg∂pih

∥∥
L∞(∂Γp∪Θp;Rd)

∥φ∥L2(∂Γp∪Θp;Rd)

+
∥∥δgηih

∥∥
L∞(Γηi;Rd)

∥φ∥L2(Γηi;Rd)

+
∥∥δg∂ηih

∥∥
L∞(∂Γηi∪Θηi;Rd)

∥φ∥L2(∂Γηi∪Θηi;Rd)

≤
{
∥δGΩih∥L∞(Ω;Rd×d) + ∥δgΩih∥L∞(Ω;R) +

∥∥δgζbih

∥∥
L∞(Ω;Rd)

+ ∥γ∂Ω∥
(∥∥δgpih

∥∥
L∞(Γp;Rd)

+
∥∥γ∂Γp

∥∥∥∥δg∂pih

∥∥
L∞(∂Γp∪Θp;Rd)

+
∥∥δgηih

∥∥
L∞(Γηi;Rd)

+
∥∥γ∂Γηi

∥∥∥∥δg∂ηih

∥∥
L∞(∂Γηi∪Θηi;Rd)

)}
∥φ∥X1

.

(9.11.26)

Here, ∥γ∂Ω∥,
∥∥γ∂Γp

∥∥ and
∥∥γ∂Γηi

∥∥, respectively, represent the norms of the following
trace operators for φ ∈ X1:

γ∂Ω : W 1,qR
(
Ω;Rd

)
→ W 1−1/qR,qR

(
∂Ω;Rd

)
,

γ∂Γp : W 1−1/qR,qR
(
∂Ω;Rd

)
→ W 1−2/qR,qR

(
∂Γp ∪Θp;Rd

)
,

γ∂Γηi : W
1−1/qR,qR

(
∂Ω;Rd

)
→ W 1−2/qR,qR

(
∂Γηi ∪Θηi;Rd

)
and are bounded from the trace theorem because ∂Ω was assumed to be of class
H2 ∩ C0,1 in Hypothesis 9.11.1 (1). Moreover, we have the following estimates:

∥δGΩih∥LqR(Ω;Rd×d)

≤ 2
(
∥∇δuh∥L2qR(Ω;Rd) ∥∇vi∥L2qR(Ω;Rd)

+ ∥∇u∥L2qR(Ω;Rd) ∥∇δvih∥L2qR(Ω;Rd)

)
+ ∥ζiu∇u∥L∞(Ω;Rd) ∥δuh∥L2qR (Ω;R) ∥∇u∥L2qR(Ω;Rd)

+
∥∥∥ζi∇u(∇u)⊤

∥∥∥
L∞(Ω;Rd×d)

∥∇δuh∥L2qR(Ω;Rd) ∥∇u∥L2qR(Ω;Rd)

+
∥∥∥ζi(∇u)⊤

∥∥∥
W1,2qR(Ω;Rd)

∥∇δuh∥L2qR(Ω;Rd)

≤ 2
(
∥δuh∥W1,2qR (Ω;R) ∥vi∥W1,2qR (Ω;R)

+ ∥u∥W1,2qR (Ω;R) ∥δvih∥W1,2qR (Ω;R)

)
+ ∥ζiu∇u∥L∞(Ω;Rd) ∥δuh∥W1,2qR (Ω;R) ∥u∥W1,2qR (Ω;R)

+
∥∥∥ζi∇u(∇u)⊤

∥∥∥
L∞(Ω;Rd×d)

∥δuh∥W1,2qR (Ω;R) ∥u∥W1,2qR (Ω;R)

+
∥∥∥ζi(∇u)⊤

∥∥∥
W1,2qR(Ω;Rd)

∥δuh∥W1,2qR (Ω;R) , (9.11.27)

∥δgΩih∥LqR (Ω;R)
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≤ ∥ζiu∥L2qR (Ω;R) ∥δuh∥L2qR (Ω;R)

+
∥∥∥ζi(∇u)⊤

∥∥∥
L2qR(Ω;Rd)

∥∇δuh∥L2qR(Ω;Rd)

+ ∥∇δuh∥L2qR(Ω;Rd) ∥∇vi∥L2qR(Ω;Rd)

+ ∥∇u∥L2qR(Ω;Rd) ∥∇δvih∥L2qR(Ω;Rd)

+ ∥b∥L2qR (Ω;R) ∥δvih∥L2qR (Ω;R)

≤ ∥ζiu∥L2qR (Ω;R) ∥δuh∥W1,2qR (Ω;R)

+
∥∥∥ζi(∇u)⊤

∥∥∥
L2qR(Ω;Rd)

∥δuh∥W1,2qR (Ω;R)

+ ∥δuh∥W1,2qR (Ω;R) ∥vi∥W1,2qR (Ω;R)

+ ∥u∥W1,2qR (Ω;R) ∥δvih∥W1,2qR (Ω;R)

+ ∥b∥L2qR (Ω;R) ∥δvih∥W1,2qR (Ω;R) , (9.11.28)∥∥δgζbih

∥∥
LqR(Ω;Rd)

≤
∥∥b′∥∥

L2qR (Ω;R) ∥δvih∥L2qR (Ω;R) ≤
∥∥b′∥∥

W1,2qR (Ω;R) ∥δvih∥W1,2qR (Ω;R) ,

(9.11.29)∥∥δgpih

∥∥
L∞(Γp;Rd)

≤ ∥κ∥C0(Γp;R) ∥ν∥L∞(Γp;Rd) ∥pN∥L2qR(Γp;R) ∥δvih∥L2qR(Γp;R)

+ (d− 1) max
i∈{1,...,d−1}

∥τ i∥L∞(Γp;Rd)

(
∥∇pN∥L2qR(Γp;Rd) ∥δvih∥L2qR(Γp;R)

+ ∥pN∥L2qR(Γp;R) ∥∇δvih∥L2qR(Γp;Rd)

)
+

∥∥p′N∥∥L2qR(Γp;R)
∥δvih∥L2qR(Γp;R)

≤ ∥κ∥C0(Γp;R) ∥ν∥L∞(Γp;Rd) ∥γ∂Ω∥
2 ∥pN∥W1,2qR (Ω;R) ∥δvih∥W1,2qR (Ω;R)

+ (d− 1) max
i∈{1,...,d−1}

∥τ i∥L∞(Γp;Rd) ∥γ∂Ω∥
2

×
(
∥pN∥W2,2qR (Ω;R) ∥δvih∥W1,2qR (Ω;R) + ∥pN∥W1,2qR (Ω;R) ∥δvih∥W2,2qR (Ω;R)

)
+ ∥γ∂Ω∥2

∥∥p′N∥∥W1,2qR (Ω;R) ∥δvih∥W1,2qR (Ω;R) , (9.11.30)∥∥δg∂pih

∥∥
L∞(∂Γp∪Θp;Rd)

≤ ∥τ∥L∞(∂Γp∪Θp;Rd) ∥pN∥L2qR(∂Γp∪Θ;R) ∥δvih∥L2qR(∂Γp∪Θp;R)

≤ ∥τ∥L∞(∂Γp∪Θp;Rd) ∥γ∂Ω∥
2 ∥γ∂Γ∥2 ∥pN∥W1,2qR (Ω;R) ∥δvih∥W1,2qR (Ω;R) .

(9.11.31)

A similar result is obtained for
∥∥δgηih

∥∥
L∞(Γηi;Rd)

∥∥δg∂ηih

∥∥
L∞(∂Γηi∪Θηi;Rd)

. Here, if

Hypothesis 9.11.1 (1) and (2) are satisfied, all the expressions without the terms with
δ are bounded. Moreover, if we focus on the terms with δ, there is a term containing
∥δvih∥W2,2qR(Ω;Rd) in Eq. (9.11.30). Similarly, ∥δuh∥W2,2qR (Ω;R) is contained in the

inequality equation for
∥∥δgηih

∥∥
L∞(Γηi;Rd)

. Hence, if Eq. (9.11.16) and Eq. (9.11.17)

with j = 2 are substituted in for the terms with δ, these terms become bounded.
Hence, we can obtain Eq. (9.11.22).

Furthermore, if Hypothesis 9.8.3 (3) (Eq. (9.8.9) to Eq. (9.8.13) are zero, or Γ̃0 =
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Γp0∪Γηi0 ⊂ Ω̄C0 in Eq. (9.1.1)) is satisfied, since the terms with τ disappear, there are
no terms which contain ∥δuh∥W2,2qR (Ω;R) and ∥δvih∥W2,2qR(Ω;Rd). Hence, Eq. (9.11.16)

and Eq. (9.11.17) with j = 1 can be substituted into the terms with δ to obtain
Eq. (9.11.24).

On the other hand, the numerical error δḡih using the formulae based on the partial
shape derivative of a function satisfies

|⟨δḡih,φ⟩| ≤ |Liϕ∗uvi (ϕ, u, vi) [φ, δuh, δvih]| (9.11.32)

from Eq. (9.8.35). If the Hölder inequality (Theorem A.9.1), the Poincaré inequality
(Corollary A.9.4) and the trace theorem (Theorem 4.4.2) are used, the right-hand side
of Eq. (9.11.32) is suppressed as

|Liϕ∗uvi (ϕ, u, vi) [φ, δuh, δvih]|
≤

∥∥δḡζbih

∥∥
LqR(Ω;Rd)

∥φ∥L2(Ω;Rd)

+ ∥δḡ∂Ωih∥L∞(∂Ω;Rd) ∥φ∥L2(∂Ω;Rd)

+
∥∥δḡpih

∥∥
L∞(Γp;Rd)

∥φ∥L2(Γp;Rd)

+
∥∥δḡ∂pih

∥∥
L∞(∂Γp∪Θp;Rd)

∥φ∥L2(∂Γp∪Θp;Rd)

+
∥∥δḡηih

∥∥
L∞(Γηi;Rd)

∥φ∥L2(Γηi;Rd)

+
∥∥δḡ∂ηih

∥∥
L∞(∂Γηi∪Θηi;Rd)

∥φ∥L2(∂Γηi∪Θηi;Rd)

+ ∥δḡDh∥L∞(ΓD;Rd) ∥φ∥L2(ΓD;Rd)

≤
{∥∥δḡζbih

∥∥
LqR(Ω;Rd)

+ ∥γ∂Ω∥2
(
∥δḡ∂Ωih∥L∞(∂Ω;Rd) +

∥∥δḡpih

∥∥
L∞(Γp;Rd)

+ ∥γ∂Γ∥
∥∥δḡ∂pih

∥∥
L∞(∂Γp∪Θp;Rd)

+
∥∥δḡηih

∥∥
L∞(Γηi;Rd)

+ ∥γ∂Γ∥
∥∥δḡ∂ηih

∥∥
L∞(∂Γηi∪Θηi;Rd)

+ ∥δḡDh∥L∞(ΓD;Rd)

)}
∥φ∥X1

,

where ∥∥δḡζbih

∥∥
LqR(Ω;Rd)

≤ ∥b∥W1,2qR (Ω;R) ∥δvih∥W2,2qR (Ω;R)

∥δḡ∂Ωih∥L∞(∂Ω;Rd)

≤
(
∥ζiu∥L2qR (∂Ω;R) ∥δuh∥L2qR (∂Ω;R)

+ ∥∇δuh∥L2qR(∂Ω;Rd) ∥∇vi∥L2qR(∂Ω;Rd)

+ ∥∇u∥L2qR(∂Ω;Rd) ∥∇δvih∥L2qR(∂Ω;Rd)

+ ∥b∥L2qR (∂Ω;R) ∥δuh∥L2qR (∂Ω;R)

)
∥ν∥L∞(∂Ω;Rd)

≤
(
∥ζiu∥W1,2qR (Ω;R) ∥δuh∥W1,2qR (Ω;R)

+ ∥δuh∥W2,2qR (Ω;R) ∥vi∥W2,2qR (Ω;R)

+ ∥u∥W2,2qR (Ω;R) ∥δvih∥W2,2qR (Ω;R)

+ ∥b∥W1,2qR (Ω;R) ∥δuh∥W1,2qR (Ω;R)

)
∥ν∥L∞(∂Ω;Rd) ,
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∥∥δḡpih

∥∥
L∞(Γp;Rd)

≤ ∥κ∥C0(Γp;R) ∥ν∥L∞(Γp;Rd) ∥pN∥L2qR(Γp;R) ∥δvih∥L2qR(Γp;R)

+ ∥ν∥2
L∞(Γp;Rd)

(
∥∇pN∥L2qR(Γp;Rd) ∥δvih∥L2qR(Γp;R)

+ ∥pN∥L2qR(Γp;R) ∥∇δvih∥L2qR(Γp;Rd)

)
+ ∥p∗N∥L2qR(Γp;R) ∥δvih∥L2qR(Γp;R)

≤ ∥κ∥C0(Γp;R) ∥ν∥L∞(Γp;Rd) ∥γ∂Ω∥
2 ∥pN∥W1,2qR (Ω;R) ∥δvih∥W1,2qR (Ω;R)

+ ∥ν∥2
L∞(Γp;Rd) ∥γ∂Ω∥

2
(
∥pN∥W2,2qR (Ω;R) ∥δvih∥W1,2qR (Ω;R)

+ ∥pN∥W1,2qR (Ω;R) ∥δvih∥W2,2qR (Ω;R)

)
+ ∥γ∂Ω∥2 ∥p∗N∥W1,2qR (Ω;R) ∥δvih∥W1,2qR (Ω;R) ,∥∥δḡ∂pih

∥∥
L∞(∂Γp∪Θp;Rd)

=
∥∥δg∂pih

∥∥
L∞(∂Γp∪Θp;Rd)

,

∥δḡDh∥L∞(ΓD;Rd)

≤ ∥ν∥2
L∞(ΓD;Rd)

(
∥∇δuh∥L2qR(ΓD;Rd) ∥∇vi∥L2qR(ΓD;Rd)

+ ∥∇ (u− uD)∥L2qR(ΓD;Rd) ∥∇δvih∥L2qR(ΓD;Rd)

+ ∥∇δvih∥L2qR(ΓD;Rd) ∥∇u∥L2qR(ΓD;Rd)

+ ∥∇ (vi − vDi)∥L2qR(ΓD;Rd) ∥∇δuh∥L2qR(ΓD;Rd)

)
≤ ∥γ∂Ω∥2 ∥ν∥2L∞(ΓD;Rd)

(
∥δuh∥W2,2qR (Ω;R) ∥vi∥W2,2qR (Ω;R)

+ ∥(u− uD)∥W2,2qR (Ω;R) ∥δvih∥W2,2qR (Ω;R)

+ ∥δvih∥W2,2qR (Ω;R) ∥u∥W2,2qR (Ω;R)

+ ∥(vi − vDi)∥W2,2qR (Ω;R) ∥δuh∥W2,2qR (Ω;R)

)
.

Similar results can be obtained for
∥∥δḡηih

∥∥
L∞(Γηi;Rd)

and
∥∥δḡ∂ηih

∥∥
L∞(∂Γηi∪Θηi;Rd)

.

Here, if Hypothesis 9.11.1 (1) is satisfied, all expressions without the term with δ are
bounded. Moreover, if Eq. (9.11.16) and Eq. (9.11.17) with j = 2 are substituted into
the terms with δ, Eq. (9.11.23) can be obtained, completing the proof of the lemma.

□

Lemma 9.11.3 (Error estimation of φgi and φ̄gi) Suppose Hypothesis
9.11.1 (1), (2) and Eq. (9.11.16) and Eq. (9.11.17) hold. Then, there exist
positive constants c6 and c̄6 which do not depend on h such that∥∥δφgih

∥∥
X1

≤ c6h
min{k1−1,k2}, (9.11.33)∥∥δφ̄gih

∥∥
X1

≤ c̄6h
min{k1−1,k2} (9.11.34)

holds with respect to δφgih and δφ̄gih of Eq. (9.11.7) and Eq. (9.11.8),
respectively. Furthermore, if Hypothesis 9.8.3 (3) is satisfied, then we also have∥∥δφgih

∥∥
X1

≤ c6h
min{k1,k2}. (9.11.35)
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□

Proof When the formulae of the shape derivative of a function are used,∥∥δφgih

∥∥
X1

≤
∥∥δφ̂gi

∥∥
X1

+
∥∥δφ̂gih

∥∥
X1

(9.11.36)

holds because of Eq. (9.11.5) and Eq. (9.11.7). Here,
∥∥δφ̂gi

∥∥
X1

shows the error in the

exact solution of the H1 gradient method (see, for example, Problem 9.9.3) caused by
δgih of Lemma 9.11.2.

∥∥δφ̂gih

∥∥
X1

shows the error in the numerical solution of the H1

gradient method.
∥∥δφ̂gi

∥∥
X1

of Eq. (9.11.36) satisfies

aX

(
δφ̂gi,φ

)
= −⟨δgih,φ⟩

for all φ ∈ X1. Hence, if we let φ = δφ̂gi,

αX

∥∥δφ̂gi

∥∥2

X1
≤

∣∣〈δgih, δφ̂gi

〉∣∣ (9.11.37)

holds, where αX is a positive constant used in Eq. (9.9.1). With respect to δgih of
Eq. (9.11.37), if Eq. (9.11.22) of Lemma 9.11.2 is used,∥∥δφ̂gi

∥∥
X1

≤ c5
αX

hk1−1 (9.11.38)

is obtained. On the other hand,
∥∥δφ̂gih

∥∥
H1(Ω;Rd)

satisfies

∥∥δφ̂gih

∥∥
X1

≤
∥∥δφ̂gih

∥∥
W1,2qR(Ω;Rd)

≤ c3h
k2

∥∥φ̂gi

∥∥
Wk2+1,2qR(Ω;Rd)

(9.11.39)

in view of Eq. (9.11.18) with j = 1. In Eq. (9.11.39),
∥∥φ̂gi

∥∥
Wk2+1,2qR(Ω;Rd)

is bounded.

This is because if Hypothesis 9.11.1 (1) is used in the proof of Theorem 9.9.6, then
we have that φ̂gi ∈ W k2+1,∞ (

Ω;Rd
)
. Hence, if Eq. (9.11.38) and Eq. (9.11.39) are

substituted into Eq. (9.11.36), then we obtain Eq. (9.11.33).
Furthermore, if Hypothesis 9.8.3 (3) is satisfied, Eq. (9.11.24) of Lemma 9.11.2 can

then be applied to δgih of Eq. (9.11.37) to get∥∥δφ̂gi

∥∥
X1

≤ c5
αX

hk1 . (9.11.40)

Here, if Eq. (9.11.40) and Eq. (9.11.39) are substituted into Eq. (9.11.36), then we
arrive at Eq. (9.11.35) of the lemma.

If δgih of Eq. (9.11.37) is changed to δḡih and Eq. (9.11.23) of Lemma 9.11.2 is
used with respect to δḡih, then we get Eq. (9.11.34), which finishes the proof of the
lemma. □

Lemma 9.11.4 (Error estimation of λh and λ̄h) Suppose Hypothesis
9.11.1 holds. Then, there exist positive constants c7 c̄7 which do not depend on
h such that

∥δλh∥R|IA| ≤ c7h
min{k1−1,k2}, (9.11.41)∥∥δλ̄h

∥∥
R|IA| ≤ c̄7h

min{k1−1,k2} (9.11.42)
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hold with respect to λh of Eq. (9.11.9) and λ̄h of Eq. (9.11.10), respectively.
Furthermore, if Hypothesis 9.8.3 (3) is satisfied, then we also have

∥δλh∥R|IA| ≤ c7h
min{k1,k2}. (9.11.43)

□

Proof When the formulae based on the shape derivative of a function are used, one
has

δλh = A−1
h (−δAhλ+ δbh)

= A−1
h

{
−
((〈

δgih,φgj

〉)
(i,j)∈I2A

−
(〈
gi, δφgjh

〉)
(i,j)∈I2A

)
λ

+
(〈
δgih,φg0

〉)
i∈IA

+
(〈
gi, δφg0h

〉)
i∈IA

}
with respect to λh of Eq. (9.11.9). Hence, if Eq. (9.11.20) is used, then we get the
bound

∥δλh∥R|IA| ≤ c4

(
1 + |IA|max

i∈IA
|λi|

)
× max

(i,j)∈IA×(IA∪{0})

(∣∣〈δgih,φgj

〉∣∣+ ∣∣〈gi, δφgjh

〉∣∣) . (9.11.44)

For
∣∣〈δgih,φgj

〉∣∣ of Eq. (9.11.44), if Eq. (9.11.22) of Lemma 9.11.2 is used,∣∣〈δgih,φgj

〉∣∣ ≤ c5h
k1−1

∥∥φgj

∥∥
X

(9.11.45)

holds. Moreover, we have∣∣〈gi, δφgjh

〉∣∣ ≤ c6h
k1−1 ∥gi∥X′

1
(9.11.46)

from Eq. (9.11.33) of Lemma 9.11.3. In Eq. (9.11.46), ∥gi∥X′
1
is bounded. This is

because from Theorem 9.8.2, gi ∈ X ′ holds, and usingX ′ ⊂ X ′
1, ∥gi∥X′

1
≤ ∥gi∥X′ < ∞

is obtained. Here, if Eq. (9.11.45) and Eq. (9.11.46) are substituted into Eq. (9.11.44),
then we obtain Eq. (9.11.41) of the lemma.

Furthermore, if Hypothesis 9.8.3 (3) is satisfied, by applying Eq. (9.11.24) of
Lemma 9.11.2 to δgih of Eq. (9.11.45), then we get Eq. (9.11.43) of the lemma.

If δgih and δφgjh of Eq. (9.11.45) and Eq. (9.11.46) are replaced by δḡih and
δφ̄gjh, respectively, then we can apply Theorem 9.8.2 in place of Theorem 9.8.6, and,
in addition, applying Eq. (9.11.33) of Lemma 9.11.3 in place of Eq. (9.11.34), we
eventually obtain Eq. (9.11.42), completing the proof of the lemma. □

The following results can be obtained based on these lemmas.

Theorem 9.11.5 (Error estimation of φg and φ̄g) Suppose Hypothesis
9.11.1 holds. Then, there exist positive constants c and c̄ which do not depend
on h such that∥∥δφgh

∥∥
X1

≤ chmin{k1−1,k2}, (9.11.47)∥∥δφ̄gh

∥∥
X1

≤ c̄hmin{k1−1,k2} (9.11.48)
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hold with respect to δφgh and δφ̄gh of Eq. (9.11.11) and Eq. (9.11.12),
respectively. Furthermore, if Hypothesis 9.8.3 (3) holds, then we also have∥∥δφgh

∥∥
X1

≤ chmin{k1,k2}. (9.11.49)

□

Proof From Eq. (9.11.11), we have

δφgh = δφg0h +
∑
i∈IA

(
δλihφgi + λiδφgih

)
(9.11.50)

from which we get∥∥δφgh

∥∥
X1

≤
(
1 + |IA|max

i∈IA
|λi|

)
max

i∈IA∪{0}

∥∥δφgih

∥∥
X1

+ ∥δλh∥R|IA| max
i∈IA

∥∥φgi

∥∥
X1

. (9.11.51)

If Eq. (9.11.33) of Lemma 9.11.3 and Eq. (9.11.41) of Lemma 9.11.4 are substituted
into Eq. (9.11.51), Eq. (9.11.47) of the theorem can be obtained.

Furthermore, if Hypothesis 9.8.3 (3) holds, then, by substituting Eq. (9.11.35)
of Lemma 9.11.3 and Eq. (9.11.43) of Lemma 9.11.4 into Eq. (9.11.51), we obtain
Eq. (9.11.49) of the theorem.

If δφgih and δλh of Eq. (9.11.51) are replaced by δφ̄gih and δ̄λh, respectively, and
Eq. (9.11.34) of Lemma 9.11.3 and Eq. (9.11.42) of Lemma 9.11.4 are substituted into
Eq. (9.11.51), then we obtain Eq. (9.11.48) of the theorem, which finishes the proof.

□

Theorem 9.11.5 allows us to infer the following remark about the error
estimation of the finite element solution with respect to the shape optimization
problem of domain variation type.

Remark 9.11.6 (Error estimation of φg and φ̄g) From Theorem 9.11.5,

in order to reduce the error
∥∥δφgh

∥∥
X1

of the search vector φgh with respect to h

of the finite element division sequence {Th}h→0 linearly, the following conditions
need to be satisfied.

When Hypothesis 9.11.1 is satisfied:

(1) use the finite element solutions of the state determination problem and
the adjoint problems for f0, fi1 , . . . , fi|IA| based on a k1 = 2-order basis

function, and

(2) use finite element solutions with respect to g0, gi1 , . . . , gi|IA|
of Eq. (9.8.5)

(formulae based on the shape derivative of a function) or ḡ0, ḡi1 , . . . ,
ḡi|IA|

of Eq. (9.8.35) (formulae based on the partial shape derivative of

a function) in the H1 gradient method based on a k2 = 1-order basis
function.

Furthermore, if Hypothesis 9.8.3 (3) is satisfied:
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Fig. 9.15: Initial domain Ω0 ⊂ D and domain variation (displacement) ϕ in a
linear elastic body.

(1) use the finite element solutions of the state determination problem and
the adjoint problems for f0, fi1 , . . . , fi|IA| based on a k1 = 1-order basis

function, and

(2) use the finite element solutions with respect to g0, gi1 , . . . , gi|IA|
of

Eq. (9.8.5) (formulae based on the shape derivative of a function) in the
H1 gradient method based on a k2 = 1-order basis function.

□

9.12 Shape Optimization Problem of Linear
Elastic Body

As an application of the shape optimization problem, let us consider a mean
compliance minimization problem of a linear elastic body, and compute the
shape derivatives of cost functions associated with the problem. Here too, the
conditions with respect to the initial domain Ω0, the definitions of ΓD0, ΓN0 and
Γp0 as well as the definitions of X and D are taken to be the same as in Sect.
9.1 (Fig. 9.15). However, we describe D more specifically as follows:

D =

ϕ ∈ Y

∣∣∣∣∣∣∣

|ϕ|C0,1(D;Rd) ≤ σ,

∥ϕ∥H2∩C0,1(D;Rd) ≤ β (Γp0 = ∅ or Γp0 ⊂ Ω̄C0),

∥ϕ∥H3∩C1,1(D;Rd) ≤ β (Γp0 ̸⊂ Ω̄C0)

 .

(9.12.1)

9.12.1 State Determination Problem

Define a linear elastic problem as a state determination problem. In the sequel,
the notation of Problem 5.4.2 will be used, and in addition, the precise shape
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optimization problem will be presented. For a given ϕ ∈ D, let the linear space
U of state variable (solution of state determination problem) u be

U =
{
u ∈ H1

(
D;Rd

) ∣∣ u = 0Rd on ΓD (ϕ)
}
. (9.12.2)

Notice that the range of U in Eq. (9.5.1) is R, but it is Rd in Eq. (9.12.2).
Moreover, the admissible set containing u is taken to be

S = U ∩W 2,4
(
D;Rd

)
. (9.12.3)

In this section too, the required regularity conditions will be specified when
necessary. In order to satisfy the regularity requirements, we assume the same
set of hypotheses (Hypotheses 9.5.1 and 9.5.2) with respect to the regularities of
known functions, where the domain is changed to D and the functions are now
denoted by bold letters. In addition, for the linear elastic problems, we let E (u)
and S (ϕ,u) = C (ϕ)E (u) be the linear strain and stress, respectively, that
were defined in Eq. (5.4.2) and Eq. (5.4.6). Also, we assume that the stiffness C
is elliptic (Eq. (5.4.8))) and bounded (Eq. (5.4.9)). Suppose that in the modified
hypotheses, Hypotheses 9.5.1 and 9.5.2 shown above, the condition

C ∈ C1
S′

(
B;C0,1

(
D;Rd×d×d×d

))
(9.12.4)

is added. For the regularity of the boundary, Hypothesis 9.5.3 is used.
Using the above assumptions, a linear elastic problem of domain variation

type is defined as follows.

Problem 9.12.1 (Linear elastic problem of domain variation type)
For a ϕ ∈ D, let b (ϕ), pN (ϕ), uD (ϕ) and C (ϕ) be given. Find the
u : Ω (ϕ) → Rd which satisfies

−∇⊤S (ϕ,u) = b⊤ (ϕ) in Ω (ϕ) , (9.12.5)

S (ϕ,u)ν = pN (ϕ) on Γp (ϕ) , (9.12.6)

S (ϕ,u)ν = 0Rd on ΓN (ϕ) \ Γ̄p (ϕ) , (9.12.7)

u = uD (ϕ) on ΓD (ϕ) . (9.12.8)

□

From now on, we write S (ϕ,u) as S (u) for simplicity. For later use,
referring to the weak form (Problem 5.4.3) of a linear elastic problem and the
Dirichlet boundary condition, we define the Lagrange function with respect to
Problem 9.12.1 as

LS (ϕ,u,v) =

∫
Ω(ϕ)

(−S (u) ·E (v) + b · v) dx+

∫
Γp(ϕ)

pN · v dγ

+

∫
ΓD(ϕ)

{(u− uD) · (S (v)ν) + v · (S (u)ν)} dγ, (9.12.9)
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where u is not necessarily the solution of Problem 9.12.1, and v is an element
of U introduced as a Lagrange multiplier. In this case, if u is the solution of
Problem 9.12.1, then

LS (ϕ,u,v) = 0

holds for any v ∈ U . This equation is equivalent to the weak form of Problem
9.12.1.

9.12.2 Mean Compliance Minimization Problem

Let us define a shape optimization problem of linear elastic body. The cost
functions we consider here is defined as follows. With respect to the solution u
of Problem 9.12.1, the functional

f0 (ϕ,u) = l̂ (ϕ) (u)

=

∫
Ω(ϕ)

b · u dx+

∫
Γp(ϕ)

pN · u dγ

−
∫
ΓD(ϕ)

uD · (S (u)ν) dγ (9.12.10)

is referred to as the mean compliance. The reason for such use of the terminology
is given in Section 8.9.2. Here, l̂ (ϕ) (u) shows that l̂ (u) defined in Eq. (5.2.3)
also depends on ϕ. Moreover,

f1 (ϕ) =

∫
Ω(ϕ)

dx− c1 (9.12.11)

is called a constraint function with respect to the domain measure. Here, c1 is
a positive constant such that f1 (ϕ) ≤ 0 holds with respect to some ϕ ∈ D.

Here, a mean compliance minimization problem is defined as follows.

Problem 9.12.2 (Mean compliance minimization problem) Suppose D
and S is defined as Eq. (9.12.1) and Eq. (9.12.3), respectively. Let f0 and
f1 be Eq. (9.12.10) and Eq. (9.12.11). In this case, find Ω (ϕ) such that

min
(ϕ,u−uD)∈D×S

{f0 (ϕ,u) | f1 (ϕ) ≤ 0, Problem 9.12.1} .

□

9.12.3 Shape Derivatives of Cost Functions

Let us obtain the shape derivatives of f0 (ϕ,u) and f1 (ϕ). Here, we will
look separately at the case when the formulae based on the shape derivative
of a function is used and the case when the formulae based on the partial
shape derivative of a function is utilized. When the formulae based on the
shape derivative of a function is used, the corresponding expression up to the
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second-order shape derivative will be established. As preparation for this, let
the Lagrange function of f0 (ϕ,u) be

L0 (ϕ,u,v0)

= f0 (ϕ,u) + LS (ϕ,u,v0)

=

∫
Ω(ϕ)

(−S (u) ·E (v0) + b · (u+ v0)) dx+

∫
Γp(ϕ)

pN · (u+ v0) dγ

+

∫
ΓD(ϕ)

{(u− uD) · (S (v0)ν) + (v0 − uD) · (S (u)ν)} dγ.

(9.12.12)

Here, LS is the Lagrange function of the state determination problem defined
by Eq. (9.12.9). Moreover, v0 is the Lagrange multiplier with respect to the
state determination problem prepared for f0, and ṽ0 = v0 − uD is assumed to
be an element of U .

Shape Derivatives of f0 and f1 Using Formulae Based on Shape
Derivative of a Function

Let us obtain the shape derivative of f0 using the formulae based on the shape
derivative of a function. Here, b (ϕ), pN (ϕ), uD (ϕ) and C (ϕ) are assumed to
be fixed with the material. Here, if b (ϕ) is written as b, ϕ is also omitted in
other equations.

Here, the Fréchet derivative of L0 can be written as

L ′
0 (ϕ,u,v0) [φ, û, v̂0] = L0ϕ′ (ϕ,u,v0) [φ] + L0u (ϕ,u,v0) [û]

+ L0v0
(ϕ,u,v0) [v̂0] (9.12.13)

with respect to an arbitrary variation (φ, û, v̂0) ∈ X × U × U . Here, it will go
along with the notations of Eq. (9.3.5) and Eq. (9.3.15). Each term is considered
below.

The third term on the right-hand side of Eq. (9.12.13) can be rewritten as

L0v0
(ϕ,u,v0) [v̂0] = LSv0

(ϕ,u,v0) [v̂0] = LS (ϕ,u, v̂0) . (9.12.14)

Equation (9.12.14) is the Lagrange function of the state determination problem
(Problem 9.12.1). Hence, if u is the weak solution of the state determination
problem, the third term on the right-hand side of Eq. (9.12.13) equates to zero.

Moreover, the second term on the right-hand side of Eq. (9.12.13) can be
written as

L0u (ϕ,u,v0) [û] =

∫
Ω(ϕ)

(−S (û) ·E (v0) + b · û) dx+

∫
Γp(ϕ)

pN · û dγ

+

∫
ΓD(ϕ)

{û · (S (v0)ν) + (v0 − u) · (S (û)ν)} dγ

= LS (ϕ,v0, û) . (9.12.15)
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If Eq. (9.12.15) and Eq. (9.12.14) are compared, it is clear that it is a relationship
whereby v0 and u are swapped over. Hence, if the self-adjoint relationship

v0 = u (9.12.16)

holds, the second term on the right-hand side of Eq. (9.12.13) vanishes.
Furthermore, the first term on the right-hand side of Eq. (9.12.13) becomes

L0ϕ′ (ϕ,u,v0) [φ]

=

∫
Ω(ϕ)

[(
S (u)

(
∇v⊤0

)⊤
+ S (v0)

(
∇u⊤)⊤) ·∇φ⊤

+ {−S (u) ·E (v0) + b · (u+ v0)}∇ ·φ
]
dx

+

∫
Γp(ϕ)

[κ {pN · (u+ v0)}ν ·φ−∇τ {pN · (u+ v0)} ·φτ ] dγ

+

∫
∂Γp(ϕ)∪Θ(ϕ)

{pN · (u+ v0)} τ ·φdς

+

∫
ΓD(ϕ)

[
{(u− uD) ·w (φ,v0) + (v0 − uD) ·w (φ,u)}

+ {(u− uD) · (S (v0)ν) + (v0 − uD) · (S (u)ν)} (∇ ·φ)τ
]
dγ

(9.12.17)

using Eq. (9.3.5), representing the result of Proposition 9.3.4, and Eq. (9.3.15)
of Proposition 9.3.7, where

w (φ,u) = S (u)
[{
ν ·
(
∇φ⊤ν

)}
ν −

{
(∇φ⊤ +

(
∇φ⊤)⊤}ν] (9.12.18)

and (∇ ·φ)τ follows Eq. (9.2.6). In order to obtain Eq. (9.12.17), the following
identity:

− (S (u) ·E (v0))ϕ′ [φ]

= − (E (u) · S (v0))ϕ′ [φ]

= (E (u) · S (v0))∇u⊤ ·
(
∇φ⊤∇u⊤)

+ (S (u) ·E (v0))∇v⊤
0
·
(
∇φ⊤∇v⊤0

)
− S (u) ·E (v0) (∇ ·φ)

=
(
∇φ⊤∇u⊤)s · S (v0) + S (u) ·

(
∇φ⊤∇v⊤0

)s
− S (u) ·E (v0) (∇ ·φ)

=
(
∇φ⊤∇u⊤) · S (v0) + S (u) ·

(
∇φ⊤∇v⊤0

)
− S (u) ·E (v0) (∇ ·φ)

=
(
S (u)

(
∇v⊤0

)⊤) ·∇φ⊤ +
(
S (v0)

(
∇u⊤)⊤) ·∇φ⊤

− S (u) ·E (v0) (∇ ·φ)

is used, which is derived using Eq. (9.8.18). The notation ( · )s represents(
( · )⊤ + ( · )

)
/2.
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With the above results in mind, assume that u is the weak solution of
Problem 9.12.1 and that the self-adjoint relationship (Eq. (9.12.16)) holds.
In this case, from the fact that Dirichlet condition holds for Problem 9.12.1,
Eq. (9.12.17) can be written as

f̃ ′0 (ϕ) [φ] = L0ϕ′ (ϕ,u,v0) [φ] = ⟨g0,φ⟩

=

∫
Ω(ϕ)

(
GΩ0 ·∇φ⊤ + gΩ0∇ ·φ

)
dx

+

∫
Γp(ϕ)

gp0 ·φ dγ +

∫
∂Γp(ϕ)∪Θ(ϕ)

g∂p0 ·φ dς (9.12.19)

using the notation of Eq. (7.5.15) for f̃0, where

GΩ0 = 2S (u)
(
∇u⊤)⊤ , (9.12.20)

gΩ0 = −S (u) ·E (u) + 2b · u, (9.12.21)

gp0 = 2κ (pN · u)ν, (9.12.22)

g∂p0 = 2 (pN · u) τ . (9.12.23)

From the results above, similar conclusions with Theorem 9.8.2 can be
obtained for g0 of Eq. (9.12.19).

On the other hand, the shape derivative of f1 (ϕ) is obtained as

f ′1 (ϕ) [φ] = ⟨g1,φ⟩ =
∫
Ω(ϕ)

gΩ1∇ ·φ dx, (9.12.24)

where

gΩ1 = 1. (9.12.25)

This is established by letting u = 1 in Proposition 9.3.1 without using LS,
which, on the other hand, is due to the fact that the solution to the state
determination problem is not used.

Second-Order Shape Derivatives of f0 and f1 Using Formulae Based
on Shape Derivative of a Function

Now, let us obtain the second-order shape derivatives of the mean compliance f0
and the constraint cost function f1 with respect to the domain measure of linear
elastic body. Here, the formulae based on the shape derivative of a function is
used following the procedures shown in Sect. 9.8.2.

Firstly, let us think about the second-order shape derivative of f0. We
assume that b = 0Rd corresponding to Hypothesis 9.8.3 (1). The relationship
corresponding to Hypothesis 9.8.3 (2) is satisfied here. Moreover, assume (3) in
Hypothesis 9.8.3.
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The Lagrange function L0 of f0 is defined by Eq. (9.12.12). Viewing (ϕ,u)
as a design variable, we define its corresponding admissible set and admissible
direction set as

S = {(ϕ,u) ∈ D × S | LS (ϕ,u,v) = 0 for all v ∈ U } ,
TS (ϕ,u) = {(φ, υ̂) ∈ X × U | LSϕu (ϕ,u,v) [φ, υ̂] = 0 for all v ∈ U } .

Considering Eq. (9.1.6), the second-order Fréchet partial derivative of L0 of
Eq. (9.12.12) with respect to arbitrary variations (φ1, υ̂1) , (φ2, υ̂2) ∈ TS (ϕ,u)
of the design variable (ϕ,u) ∈ S becomes

L0(ϕ′,u)(ϕ′,u) (ϕ,u,v0) [(φ1, υ̂1) , (φ2, υ̂2)]

=
(
L0(ϕ′,u)

)
(ϕ′,u)

(ϕ,u,v0) [(φ1, υ̂1) , (φ2, υ̂2)] + ⟨g0 (ϕ) , t (φ1,φ2)⟩

=
(
L0ϕ′ (ϕ,u,v0) [φ1] + L0u (ϕ,u,v0) [υ̂1]

)
ϕ′ [φ2]

+
(
L0ϕ′ (ϕ,u,v0) [φ1] + L0u (ϕ,u,v0) [υ̂1]

)
u
[υ̂2]

+ ⟨g0 (ϕ) , t (φ1,φ2)⟩
=
(
L0ϕ′

)
ϕ′ (ϕ,u,v0) [φ1,φ2] + L0ϕ′u (ϕ,u,v0) [φ1, υ̂2]

+ L0ϕ′u (ϕ,u,v0) [φ2, υ̂1] + L0uu (ϕ,u,v0) [υ̂1, υ̂2]

+ ⟨g0 (ϕ) , t (φ1,φ2)⟩ , (9.12.26)

where ⟨g0 (ϕ) , t (φ1,φ2)⟩ follows the definition given in Eq. (9.1.8).
Here, the first and fifth terms in Eq. (9.12.26) becomes(

L0ϕ′
)
ϕ′ (ϕ,u,v0) [φ1,φ2] + ⟨g0 (ϕ) , t (φ1,φ2)⟩

=

∫
Ω(ϕ)

[{(
S (u)

(
∇v⊤0

)⊤) ·∇φ⊤
1

}
ϕ′

[φ2]

+
{(
S (v0)

(
∇u⊤)⊤) ·∇φ⊤

1

}
ϕ′

[φ2]

− (S (u) ·E (v0)) (∇ ·φ1)ϕ′ [φ2]

+ 2S (u)
(
∇u⊤)⊤ ·

(
∇φ⊤

2 ∇φ⊤
1 −∇φ⊤

1 (∇ ·φ2)
)

− S (u) ·E (u)
{(

∇φ⊤
2

)⊤ ·∇φ⊤
1 − (∇ ·φ2) (∇ ·φ1)

}]
dx.

(9.12.27)

Here, Eq. (9.3.11) was used. The first term of the integrand on the right-hand
side of Eq. (9.12.27) becomes[{

S (u)
(
∇v⊤0

)⊤} ·∇φ⊤
1

]
ϕ′

[φ2]

=
{
S (u) ·

(
∇φ⊤

1 ∇v⊤0
)}

ϕ′ [φ2]

=
{
E (u) ·

(
C
(
∇φ⊤

1 ∇v⊤0
)s)}

ϕ′
[φ2]

=
[
∇v⊤0 ·

{(
∇φ⊤

1

)⊤
S (u)

}]
ϕ′

[φ2]
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= −
{
E (u) ·

(
C
(
∇φ⊤

1 ∇v⊤0
)s)}

∇u⊤
·
(
∇φ⊤

2 ∇u⊤)
−
[{
S (u)

(
∇v⊤0

)⊤} ·∇φ⊤
1

]
∇φ⊤

1

·
(
∇φ⊤

2 ∇φ⊤
1

)
−
[
∇v⊤0 ·

{(
∇φ⊤

1

)⊤
S (u)

}]
∇v⊤

0

·
(
∇φ⊤

2 ∇v⊤0
)

+
[{
S (u)

(
∇v⊤0

)⊤} ·∇φ⊤
1

]
∇ ·φ2

= −
(
∇φ⊤

2 ∇u⊤)s · (C (∇φ⊤
1 ∇v⊤0

)s)
−
{
S (u)

(
∇v⊤0

)⊤} ·
(
∇φ⊤

2 ∇φ⊤
1

)
−
(
∇φ⊤

2 ∇v⊤0
)
·
{(

∇φ⊤
1

)⊤
S (u)

}
+
[{
S (u)

(
∇v⊤0

)⊤} ·∇φ⊤
1

]
∇ ·φ2. (9.12.28)

Similarly, the second term of the integrand on the right-hand side of
Eq. (9.12.27) is similar to Eq. (9.12.28) with u and v0 interchanged. The third
term of the integrand on the right-hand side of Eq. (9.12.27) is

− (S (u) ·E (v0)) {∇ ·φ1}ϕ′ [φ2]

= −S (u) ·E (v0)
{
−
(
∇φ⊤

2

)⊤ ·∇φ⊤
1 + (∇ ·φ2) (∇ ·φ1)

}
.

(9.12.29)

Hence, noting the self-adjoint relationship, Eq. (9.12.27) becomes(
L0ϕ′

)
ϕ′ (ϕ,u,v0) [φ1,φ2] + ⟨g0 (ϕ) , t (φ1,φ2)⟩

=

∫
Ω(ϕ)

[
−
(
∇φ⊤

2 ∇u⊤)s · (C (∇φ⊤
1 ∇v⊤0

)s)
−
(
∇φ⊤

2 ∇v⊤0
)
·
{(

∇φ⊤
1

)⊤
S (u)

}
−
(
∇φ⊤

2 ∇v⊤0
)s · (C (∇φ⊤

1 ∇u⊤)s)
−
(
∇φ⊤

2 ∇u⊤) · {(∇φ⊤
1

)⊤
S (v0)

}]
dx (9.12.30)

Next, consider the second term on the right-hand side of Eq. (9.12.26). If
Eq. (9.12.17) with the Dirichlet condition of the state determination problem
substituted in is used, we get

L0ϕ′u (ϕ,u,v0) [φ1, υ̂2]

=

∫
Ω(ϕ)

[{
S (υ̂2)

(
∇v⊤0

)⊤
+ S (v0)

(
∇υ̂⊤

2

)⊤}
·∇φ⊤

1

− (S(υ̂2) ·E (v0))∇ ·φ1

]
dx. (9.12.31)

On the other hand, the variation of u satisfying the state determination
problem with respect to an arbitrary domain variation φj ∈ Y for j ∈ {1, 2} is
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written as υ̂j = υ′ (ϕ)
[
φj

]
. If the Fréchet partial derivative of the Lagrange

function LS of the state determination problem is taken, we obtain

LSϕ′u (ϕ,u,v)
[
φj , υ̂j

]
=

∫
Ω(ϕ)

{
S (u) ·

(
∇φ⊤

j ∇v⊤
)s

+ S (v) ·
(
∇φ⊤

j ∇u⊤)s
− (S (u) ·E (v))∇ ·φj − S (υ̂j) ·E (v)

}
dx

=

∫
Ω(ϕ)

[{(
∇φ⊤

j

)⊤
S (u) +C

(
∇φ⊤

j ∇u⊤)s − S (u)∇ ·φj

− S (υ̂j)
}(

∇v⊤
)⊤] · I dx

=

∫
Ω(ϕ)

[
∇v⊤S (u)∇φ⊤

j

+ S (v)

{(
∇u⊤)⊤ ((∇φ⊤

j

)⊤ −∇ ·φj

)
−
(
∇υ̂⊤

j

)⊤}]
· I dx

= 0 (9.12.32)

for any v ∈ U . Here, the Dirichlet boundary conditions of v and υ̂j were used.
From the fact that Eq. (9.12.32) holds with respect to an arbitrary v ∈ U , the
identities

S (υ̂j) ·E (v)

= S (u) ·
(
∇φ⊤

j ∇v⊤
)s

+ S (v) ·
(
∇φ⊤

j ∇u⊤)s − (S (u) ·E (v))∇ ·φj ,

(9.12.33)

S (υ̂j)
(
∇v⊤

)⊤
=
{(

∇φ⊤
j

)⊤
S (u) +C

(
∇φ⊤

j ∇u⊤)s −∇ ·φjS (u)
}(

∇v⊤
)⊤
(9.12.34)

S (v)
(
∇υ̂⊤

j

)⊤
= ∇v⊤S (u)∇φ⊤

j + S (v)
(
∇u⊤)⊤ {(∇φ⊤

j

)⊤ −∇ ·φj

}
(9.12.35)

are obtained. Substituting from Eq. (9.12.33) to Eq. (9.12.35) into Eq. (9.12.31),
we get

L0ϕ′u (ϕ,u,v0) [φ1, υ̂2]

=

∫
Ω(ϕ)

[{((
∇φ⊤

2

)⊤
S (u) +C

(
∇φ⊤

2 ∇u⊤)s −∇ ·φ2S (u)
) (

∇v⊤0
)⊤

+∇v⊤0 S (u)∇φ⊤
2 + S (v0)

(
∇u⊤)⊤ ((∇φ⊤

2

)⊤ −∇ ·φ2

)}
·∇φ⊤

1

−
{
S (u) ·

(
∇φ⊤

2 ∇v⊤0
)s

+ S (v0) ·
(
∇φ⊤

2 ∇u⊤)s
− (S (u) ·E (v0))∇ ·φ2

}
∇ ·φ1

]
dx. (9.12.36)
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Similarly, the third term on the right-hand side of Eq. (9.12.26) takes the form
as in Eq. (9.12.36) with φ1 and φ2 interchanged. Lastly, the fourth term on the
right-hand side of Eq. (9.12.26) is actually equal to zero.

Summarizing the above results, the second-order shape derivative of f̃0
becomes

h0 (ϕ,u,u) [φ1,φ2]

=

∫
Ω(ϕ)

[
2S (u) ·E (u) (∇ ·φ2) (∇ ·φ1)

+
(
S (u)

(
∇u⊤)⊤) · {∇φ⊤

2 ∇φ⊤
1 +∇φ⊤

1 ∇φ⊤
2 +∇φ⊤

2

(
∇φ⊤

1

)⊤
+∇φ⊤

1

(
∇φ⊤

2

)⊤
− 4∇φ⊤

2 ∇ ·φ1 − 4∇φ⊤
1 ∇ ·φ2

}]
dx. (9.12.37)

On the other hand, the second-order shape derivative of f1 (ϕ) becomes

h1 (ϕ) [φ1,φ2] = (f ′1)
′
(ϕ) + ⟨g1 (ϕ) , t (φ1,φ2)⟩ = 0 (9.12.38)

with respect to arbitrary variations φ1 ∈ Y and φ2 ∈ Y . Here, Eq. (9.3.11) was
used.

Second-Order Shape Derivative of Cost Function Using Lagrange
Multiplier Method

The application of the Lagrange multiplier method in obtaining the second-order
shape derivative of the mean compliance f0 is described as follows. Fixing φ1,
we define the Lagrange function for f̃ ′0 (ϕ) [φ1] = ⟨g0,φ1⟩ in Eq. (9.12.19) by

LI0 (ϕ,u,w0) = ⟨g0,φ1⟩+ LS (ϕ,u,w0) , (9.12.39)

where LS is given by Eq. (9.12.9), and w0 ∈ U is the adjoint variable provided
for u in g0.

Considering Eq. (9.1.6), with respect to arbitrary variations (φ2, û, ŵ0) ∈
D × U2 of (ϕ,u,w0), the Fréchet derivative of LI0 is written as

L ′
I0 (ϕ,u,w0) [φ2, û, ŵ0]

= LI0ϕ′ (ϕ,u,w0) [φ2] + ⟨g0 (ϕ) , t (φ1,φ2)⟩+ LI0u (ϕ,u,w0) [û]

+ LI0w0
(ϕ,u,w0) [ŵ0] . (9.12.40)

The fourth term on the right-hand side of Eq. (9.12.40) vanishes if u is the
solution of the state determination problem.

Assuming that φ1 is an H2 class function in the neighborhood of Γp (ϕ)
and then applying Proposition 9.3.7, the third term on the right-hand side of
Eq. (9.12.40) is obtained as

LI0u (ϕ,u,w0) [û]
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=

∫
Ω(ϕ)

[
2
{
C
(
∇φ⊤

1 ∇v⊤0
)s

+
((

∇φ⊤
1

)⊤ −∇ ·φ1

)
S (v0)

}
·∇û⊤

+ 2 (∇ ·φ1) b · û− S (w0) ·E (û)
]
dx

+

∫
Γp(ϕ)

(∇ ·φ1)τ pN · û dγ. (9.12.41)

Here, the condition that Eq. (9.12.41) is zero for arbitrary û ∈ U is equivalent
to setting w0 to be the solution of the following adjoint problem.

Problem 9.12.3 (Adjoint problem of w0 with respect to ⟨g0,φ1⟩)
Under the assumption of Problem 9.12.1, let φ1 ∈ Y be given. Find
w0 = w0 (φ1) ∈ U satisfying

−∇⊤S (w0) = −2∇⊤
{
C
(
∇φ⊤

1 ∇v⊤0
)s

+
((

∇φ⊤
1

)⊤ −∇ ·φ1

)
S (v0)

}
+ 2b⊤ (∇ ·φ1) in Ω (ϕ) ,

S (w0)ν = (∇ ·φ1)τ pN on Γp (ϕ) ,

S (w0)ν = 0Rd on ΓN (ϕ) \ Γ̄p (ϕ) ,

w0 = 0Rd on ΓD.

□

Finally, the first and second terms on the right-hand side of Eq. (9.12.40)
become

LI0ϕ′ (ϕ,u,v0,w0 (φ1) , z0 (φ1)) [φ2] + ⟨g0 (ϕ) , t (φ1,φ2)⟩
= L0ϕ′ϕ′ (ϕ,u,v0) [φ1,φ2] + ⟨g0 (ϕ) , t (φ1,φ2)⟩
+ LSϕ′ (ϕ,u,w0) [φ2] (9.12.42)

with respect an arbitrary φ1 ∈ Y . The first and second terms on the right-hand
side of Eq. (9.12.42) are given by Eq. (9.12.30). The third term is given by

LSϕ′ (ϕ,u,w0) [φ2]

=

∫
Ω(ϕ)

{
S (u) ·

(
∇φ⊤

2 ∇w⊤
0

)s
+ S (w0) ·

(
∇φ⊤

2 ∇u⊤)s
+ (b ·w0 − S (u) ·E (w0))∇ ·φ2

}
dx

+

∫
Γp(ϕ)

{pN · u (∇ ·φ1)τ + pN ·w0 (φ1) (φ1)} (∇ ·φ2)τ dγ.

Here, u andw0 (φ1) are assumed to be the weak solutions of Problems 9.12.1
and 9.12.3, respectively. If we denote f0 (ϕ,u) by f̃0 (ϕ), then we arrive at the
relation

LI0ϕ′ (ϕ,ϕ1,u,w0 (φ1)) [φ2] + ⟨g0 (ϕ) , t (φ1,φ2)⟩
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= f̃ ′′0 (ϕ) [φ1,φ2] = ⟨gH0 (ϕ,φ1) ,φ2⟩

=

∫
Ω(ϕ)

[
−2
(
∇φ⊤

2 ∇u⊤)s · (C (∇φ⊤
1 ∇u⊤)s)

− 2
{
S (u)

(
∇u⊤)⊤} ·

(
∇φ⊤

1 ∇φ⊤
2

)
+
{
S (u)

(
∇w⊤

0 (φ1)
)⊤

+ S (w0 (φ1))
(
∇u⊤)⊤} ·∇φ⊤

2

− {S (u) ·E (w0 (φ1))− b ·w0 (φ1)}∇ ·φ2

]
dx

+

∫
Γp(ϕ)

2pN · (u+w0 (φ1)) (∇ ·φ1)τ (∇ ·φ2)τ dγ, (9.12.43)

where gH0 is the Hesse gradient of the mean compliance.
If b = 0Rd and (3) in Hypothesis 9.8.3 are satisfied, with respect to the

solution w0 of Problem 9.12.3,

S (w0) = 2
{
C
(
∇φ⊤

1 ∇v⊤0
)s

+
((

∇φ⊤
1

)s −∇ ·φ1

)
S (v0)

}
, (9.12.44)

S (u) ·E (w0) = E (u) · S (w0) , (9.12.45)

S (u)
(
∇w⊤

0

)⊤ ·∇φ⊤
2 = S (u) ·

(
∇φ⊤

2 ∇w⊤
0

)s
=
(
∇φ⊤

j

)⊤
S (u) ·E (w0)

=
(
∇φ⊤

j

)⊤
E (u) · S (w0) (9.12.46)

holds. Here, we used

S (u) ·
(
∇φ⊤

j ∇v⊤0
)s

=
(
∇φ⊤

j

)⊤
S (u) ·E (v0) .

Indeed, this relation is obtained from the fact that the inner product of S (υ̂j)
obtained from Eq. (9.12.34) and E (v) accords with Eq. (9.12.33). Substituting
Eq. (9.12.44) to Eq. (9.12.46) into Eq. (9.12.43), it can be confirmed that
Eq. (9.12.43) accords with Eq. (9.12.37).

Shape Derivatives of f0 and f1 Using Formulae Based on Partial Shape
Derivative of a Function

Next, let us compute the shape derivative of f0 using the formulae based on the
partial shape derivative of a function. Here, it is assumed that b, pN, uD and C
are functions fixed in space. Moreover, we assume that u and v0 are elements
of W 2,2qR

(
D;Rd

)
where qR > d.

Under these assumptions, the Fréchet derivative of L0 (ϕ,u,v0) can be
written as

L ′
0 (ϕ,u,v0) [φ, û, v̂0] = L0ϕ∗ (ϕ,u,v0) [φ] + L0u (ϕ,u,v0) [û]

+ L0v0
(ϕ,u,v0) [v̂0] (9.12.47)
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for any (φ, û, v̂0) ∈ X × U × U . Here, the notations of Eq. (9.3.21) and
Eq. (9.3.27) were used. Each term is considered below.

The third term on the right-hand side of Eq. (9.12.47) is given by
Eq. (9.12.14). Hence, if u is the weak solution of the state determination
problem, the said expression equates to zero. Similarly, the second term on
the right-hand side of Eq. (9.12.47) is the same as Eq. (9.12.15). Hence, when
the self-adjoint relationship (Eq. (9.12.16)) holds, the term also vanishes.

Furthermore, the first term on the right-hand side of Eq. (9.12.47) becomes

L0ϕ∗ (ϕ,u,v0) [φ]

=

∫
∂Ω(ϕ)

{−S (u) ·E (v0) + b · (u+ v0)}ν ·φ dγ

+

∫
Γp(ϕ)

(∂ν + κ) {pN · (u+ v0)}ν ·φ dγ

+

∫
∂Γp(ϕ)∪Θ(ϕ)

{pN · (u+ v0)} τ ·φ dς

+

∫
ΓD(ϕ)

[
{(u− uD) · w̄ (φ,v0) + (v0 − uD) · w̄ (φ,u)}

+ {(u− uD) · (S (v0)ν) + (v0 − uD) · (S (u)ν)} (∇ ·φ)τ
+ (∂ν + κ) {(u− uD) · (S (v0)ν) + (v0 − uD) · (S (u)ν)}ν ·φ

]
dγ

+

∫
∂ΓD(ϕ)∪Θ(ϕ)

{
(u− uD) · (S (v0)ν)

+ (v0 − uD) · (S (u)ν)
}
τ ·φ dς

using Eq. (9.3.21), representing the result of Proposition 9.3.10, and Eq. (9.3.27)

of Proposition 9.3.13. Here, we denote (ν ·∇)u =
(
∇u⊤)⊤ ν as ∂νu,

w̄ (φ,u) = −S (u)

 ∑
i∈{1,...,d−1}

{
τ i ·

(
∇φ⊤ν

)}
τ i


+ (ν ·φ)

(
∇⊤S (u)

)⊤
, (9.12.48)

and (∇ ·φ)τ as Eq. (9.2.6).
With the above results in mind, assume that u is a weak solution of Problem

9.12.1 and that the self-adjoint relationship (Eq. (9.12.16)) holds. In this case,
we can write Eq. (9.12.48) as

f̃ ′0 (ϕ) [φ] = L0ϕ∗ (ϕ,u,v0) [φ] = ⟨ḡ0,φ⟩

=

∫
∂Ω(ϕ)

ḡ∂Ω0 ·φ dγ +

∫
Γp(ϕ)

ḡp0 ·φ dγ

+

∫
∂Γp(ϕ)∪Θ(ϕ)

ḡ∂p0 ·φ dς +

∫
ΓD(ϕ)

ḡD0 ·φ dγ (9.12.49)
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using the notation of Eq. (7.5.15) for f̃0 and the Dirichlet condition in Problem
9.12.1, where

ḡ∂Ω0 = (−S (u) ·E (u) + 2b · u)ν, (9.12.50)

ḡp0 = 2 (∂ν + κ) (pN · u)ν, (9.12.51)

ḡ∂p0 = 2 (pN · u) τ , (9.12.52)

ḡD0 = 2 {∂ν (u− uD) · (S (u)ν)}ν. (9.12.53)

Furthermore, on a homogeneous Dirichlet boundary, since there is a strain
component only in the normal direction,

∂νu = E (u)ν (9.12.54)

holds. Hence, Eq. (9.12.53) can be written as

ḡD0 = 2 {(E (u)ν) · (S (u)ν)}ν = 2 (E (u) · S (u))ν. (9.12.55)

Here, if ḡ0 is written on the homogeneous Dirichlet boundary and homogeneous
Neumann boundary, we get

ḡ0 = (−S (u) ·E (u) + 2b · u)ν on ΓN (ϕ) \ Γ̄p (ϕ) , (9.12.56)

ḡ0 = (S (u) ·E (u) + 2b · u)ν on ΓD (ϕ) . (9.12.57)

From these results, it is evident that the sign of strain energy density S (u) ·
E (u) /2 swaps between the homogeneous Dirichlet boundary and homogeneous
Neumann boundary.

From the above results, conclusions similar to Theorem 9.8.6 can be obtained
with respect to the function space containing ḡ0 of Eq. (9.12.49).

On the other hand, the shape derivative of f1 (ϕ) can be written as

f ′1 (ϕ) [φ] = ⟨ḡ1,φ⟩ =
∫
∂Ω(ϕ)

ḡ∂Ω1 ·φ dγ, (9.12.58)

where

ḡ∂Ω1 = ν. (9.12.59)

This can be obtained by letting u = 1 in Proposition 9.3.9 and is actually due
to the fact that the solution for the state determination problem is not used.

9.12.4 Relation with Optimal Design Problem of Stepped
One-Dimensional Linear Elastic Body

Let us think about the relationship between the shape derivative of the cost
function in the mean compliance minimization problem (Problem 9.12.2) of a
d ∈ {2, 3}-dimensional linear elastic body and the cross-sectional derivative of
the cost function in the mean compliance minimization problem (Problem 1.1.4)
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Table 9.2: Correspondence between cross-sectional optimization problem and
shape optimization problem.

Comparison item Cross-sectional optimization Shape optimization

Design variable a ∈ X = R2 ϕ ∈ X = H1
(
D;Rd

)
State variable u ∈ U = R2 u ∈ U = H1

(
D;Rd

)
State determination LS (a,u,v) = 0 ∀v ∈ U LS (ϕ,u,v) = 0 ∀v ∈ U

Object function f0 = p · u f0 = l̂ (ϕ) (u)
Constraint function f1 = (volume)− c1 f1 = (domain measure)− c1
Gradient gi ∈ X ′ = R2 gi, ḡi ∈ X ′ = H1′ (D;Rd

)
Gradient method ygi ·Az = −g · z ∀z ∈ X a

(
φgi,z

)
= −⟨gi,z⟩ ∀z ∈ X

of the stepped one-dimensional linear elastic body seen in Chap. 1. Table 9.2
shows some comparisons between the two problems.

In Problem 1.1.4, the body force and known displacement were not used. If
this assumption is applied to Problem 9.12.2, it corresponds to putting the cost
function as

f0 (ϕ,u) = l̂ (ϕ) (u) =

∫
Γp(ϕ)

pN · u dγ =
∑

i∈{1,2}

∫
Γi

pi
ai
ui dγ, (9.12.60)

where pi, ui, ai with respect to i ∈ {1, 2} follow the respective definitions in
Problem 1.1.4. Moreover, in Problem 1.1.4, external forces p1 and p2 were fixed
with respect to the variation of the cross-sectional area. In other words, p1
and p2 are assumed to vary with boundary measures (Definition 9.4.4). In this
case, the shape derivative of f0ϕ (ϕ,u) [φ] becomes zero. On the other hand,
pN was assumed to be fixed with the material (Definition 9.4.1) in Eq. (9.12.19)
which gives the shape derivative of f0. Considering their differences, the shape
derivative of f0 defined by Eq. (9.12.60) can be written as

f̃ ′0 (ϕ) [φ] = ⟨g0,φ⟩ =
∑

i∈{1,2}

∫ l

0

{
GΩ0i ·

(
∇φ⊤

i

)
+ gΩ0i∇ ·φi

}
ai dx.

(9.12.61)

Here, we assume that the cross-section of the stepped one-dimensional linear
elastic body is a rectangle with unit depth. In addition, the x-coordinate
is viewed as the x1-coordinate, and the height direction is viewed as the
x2-coordinate. For each i ∈ {1, 2}, ai represents the cross-section and bi
represents its variation. Moreover, σ1, ε1, σ2, ε2 denotes σ (u1), ε (u1),
σ (u2 − u1), ε (u2 − u1), respectively. In this case, the following relationships:

GΩ0i = 2S (u)
(
∇u⊤)⊤ = 2

(
σi 0
0 0

)(
εi 0
0 0

)
= 2

(
σiεi 0
0 0

)
,
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gΩ0i = −S (u) ·E (u) = −
(
σi 0
0 0

)
·
(
εi 0
0 0

)
= −σiεi,

∇φ⊤
i =

(
0 0
0 bi/ai

)
, ∇ ·φi = (∇ ·φi)τ =

bi
ai

hold. Using these relationships, we get

f̃ ′0 (ϕ) [φ] = ⟨g0,φ⟩ = l

(
−σ1ε1
−σ2ε2

)
·
(
b1
b2

)
= g0 · b. (9.12.62)

Here, g0 on the right-hand side of Eq. (9.12.62) matches the cross-sectional
gradient of Eq. (1.1.28).

Moreover, the shape derivative of f1 (ϕ) becomes

f ′1 (ϕ) [φ] =
∑

i∈{1,2}

⟨g1,φ⟩ =
∫ l

0

(∇ ·φi) ai dx

= l

(
1
1

)
·
(
b1
b2

)
= g1 · b. (9.12.63)

g1 on the right-hand side of Eq. (9.12.63) matches the cross-sectional gradient
of Eq. (1.1.17).

Furthermore, the Hessian matrix of f0 defined by Eq. (9.12.60) can be
obtained as follows. For each j ∈ {1, 2}, the following hold:

∇φ⊤
ji =

(
0 0

0
bji
ai

)
, ∇ ·φji =

bji
ai
,

E (u) =

(
εi 0
0 0

)
, S (u) =

(
σi 0
0 0

)
.

The shape derivative of the first term on the right-hand side of Eq. (9.12.61) is
calculated by Eq. (9.12.37). Hence, we get

h0 (ϕ,u,v0) [φ1,φ2]

=
∑

i∈{1,2}

∫ l

0

[
2S (u) ·E (u) (∇ ·φ2) (∇ ·φ1)

+
(
S (u)

(
∇u⊤)⊤) · {∇φ⊤

2 ∇φ⊤
1 +∇φ⊤

1 ∇φ⊤
2 +∇φ⊤

2

(
∇φ⊤

1

)⊤
+∇φ⊤

1

(
∇φ⊤

2

)⊤ − 4∇φ⊤
2 ∇ ·φ1 − 4∇φ⊤

1 ∇ ·φ2

}]
ai dx

=

(
b11
b12

)
·
(
2l

(σ1ε1
a1

0

0 σ2ε2
a2

)(
b21
b22

))
= b1 · (H0b2) . (9.12.64)

The H0 on the right-hand side of Eq. (9.12.64) matches the Hessian matrix of
Eq. (1.1.29).
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Fig. 9.16: The image of a minimizer ϕ of the mean compliance minimization
problem (Problem 9.12.2).

Fig. 9.17: The image of the H1 gradient method with respect to f̃0.

Based on these comparisons, the image of the minimum point of Problem
9.12.2 is thought to be as that depicted in Fig. 9.16 using Fig. 1.1.4 of Exercise
1.1.7.

Figures 9.17 and 9.18 show the images of the H1 gradient method for
obtaining the domain variations φg0 and φg1 that decreases f̃0 and f1,
respectively. Figure 9.19 shows the image of the Lagrange multiplier λ1 such
that the constraint concerning the domain measure is satisfied. In these figures,
it is assumed that although the domain measure constraint is satisfied at Ω (ϕ),
ϕ is not a minimizer. The search direction φg = φg0 + λ1φg1 in Fig. 9.19
is orthogonal to g1 in Fig. 9.18. In other words, the search direction is in the
direction that the constraint is satisfied. This is due to the fact that Eq. (9.10.3)
which determines the Lagrange multiplier in the gradient method with respect
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Fig. 9.18: The image of the H1 gradient method with respect to f1.

Fig. 9.19: Image of Lagrange multiplier λ1.

to a constrained problem is actually given by

λ1 = −
〈
g1,φg0

〉〈
g1,φg1

〉 (9.12.65)

in Problem 9.12.2 and can be written as〈
g1,φg0 + λ1(k+1)φg1

〉
= 0. (9.12.66)

9.12.5 Numerical Example

Let us show a numerical example. In Figs. 9.20 to 9.22, the results of the mean
compliance minimization with respect to a two-dimensional linear elastic body
with a boundary condition referred to as the coat-hanging problem are shown.
Figure 9.20 (a) shows the initial shape and the boundary conditions of the state
determination problem. The boundary condition with respect to the domain
variation is assumed to be Ω̄C0 = ΓD0 ∪ Γp0 in Eq. (9.1.1). Here, it is assumed
that these boundaries deform in the tangential direction. In addition, pN is
assumed to vary with boundary measure. The program is written using the
programming language FreeFEM (https://freefem.org/) [33] by the finite
element method with reference to Example 37 in the book [70]. In the finite
element analyses of the linear elastic problem and the H1 gradient method or

https://freefem.org/


102 Chapter 9 Shape Optimization Problems of Domain Variation Type

(a) Initial shape and boundary conditions (b) H1 gradient method
(ḡL )

(c) H1 gradient method (d) H1 Newton method (e) H1 Newton method
(gL ) (h0, gL ) (gH0, gL )

Fig. 9.20: Numerical example of mean compliance minimization problem: shape
(k = 200).

the H1 Newton method, second-order triangular elements were used. In the
case using the H1 Newton method, the routine of the H1 Newton method was
started at kN = 120. The parameters (ca in Eq. (9.10.1), cΩ in Eq. (9.9.3), kN,
cΩ1 and cΩ0 in Eq. (9.9.17), ch in Eq. (9.10.8) and the parameter (errelas) that
controls the error level in the adaptive mesh) affect the result. The details are
described in the programs.4

Figures 9.20 (b) to (e) show the shapes obtained by the four methods (H1

gradient method using ḡL = ḡ0 + λ1ḡ1 of the boundary integral type, H1

gradient method using gL = g0+λ1g1 of the domain integral type, H1 Newton
method using hL = h0 + λ1h1 and gL , and H1 Newton method using gH0, h1
and gL ).

Figure 9.21 (a) shows the cost functions f0/f0init and 1 + f1/c1 normalized
with f0 at the initial shape denoted by f0init and c1 set with the initial volume,
respectively, with respect to the iteration number k. Figure 9.21 (b) shows

those values with respect to the distance
∑k−1

i=0

∥∥∥φg(i)

∥∥∥
X

on the search path in

4See Electronic supplementary material.
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(a) Cost functions (b) Cost functions
(search distance)

(c) Gradient of f0 on search path (d) Gradient of f0 on search path
(search distance)

(e) Hessian of f0 on search path (f) Hessian of f0 on search path
(search distance)

Fig. 9.21: Numerical example of mean compliance minimization problem: cost
functions, their gradients and Hessians on the search path (ḡL : H1 gradient
method using ḡL , gL : H1 gradient method using gL , h0, gL : H1 Newton
method，gH0, gL : H1 Newton method using Hesse gradient).
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(a) Iteration history (b) (k − 1)-th vs. k-th plot

Fig. 9.22: Numerical example of mean compliance minimization problem:

distance
∥∥∥ϕ(k) − ϕ

∗
∥∥∥
X

from an approximate minimum point ϕ∗ (ḡL : H1

gradient method using ḡL , gL : H1 gradient method using gL , h0, gL : H1

Newton method，gH0, gL : H1 Newton method using Hesse gradient).

X. The graphs of f0’s gradient (the gradient of the Lagrange function L =

L0+λ1f1) calculated as
〈
gL ,φg(k)

〉
/
∥∥∥φg(k)

∥∥∥
X

are shown in Fig. 9.21 (c) and

(d) with respect to the iteration number and the search distance, respectively.
Moreover, Fig. 9.21 (e) and (f) shows the graphs of f0’s second-order derivative

h0

[
φg(k),φg(k)

]
/
∥∥∥φg(k)

∥∥∥2
X

(in the case of the Newton method using Hesse

gradient,
〈
gH0,φg(k)

〉
/
∥∥∥φg(k)

∥∥∥2
X
) with respect to the iteration number and

the search distance, respectively. In these notations, the norm of the i-th search
vector is defined by

∥∥∥φg(i)

∥∥∥
X

=

(∫
Ω(ϕ)

{(
∇φ⊤

g(i)

)
·
(
∇φ⊤

g(i)

)
+φg(i) ·φg(i)

}
dx

)1/2

.

(9.12.67)

The computational times until k = 200 by PC were 24.443, 37.132, 46.026,
59.312 sec when the H1 gradient method of the boundary integral type, the H1

gradient method of the domain integral type, the H1 Newton method and the
H1 Newton method using the Hesse gradient were used, respectively.

Regarding the computational results obtained from the above-mentioned
methods, we give the the following explanations and provide some
considerations. The graphs in Fig. 9.21 (a) show that the convergence speed
with respect to the iteration number k is faster when using the H1 Newton
method than when applying the H1 gradient method. However, when the H1

Newton method started, cΩ1 and cΩ0 in Eq. (9.9.17) were replaced with smaller
values (the step size was enlarged) within the area where numerical instability
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did not happen. As a result, it can be considered that the convergence speed
was increased. In this problem, when ch is set to zero (that is, the H1 gradient
method), it was observed that the convergence speed was increased. The reason
we consider to be behind the increase in convergence speed is the increase in the
magnitude of the step size which was due to the exclusion of the term hL . In
most cases, it is observed that when the step size is taken bigger, the H1 Newton
method keeps the computation until termination, but the H1 gradient method
fails to continue after a number of iterations. Moreover, the aspect around the
minimum point can be observed in Fig. 9.21 (d) and (f). From these graphs,
based on the observation that the Hessian of f0 on the search path is positive
valued, we infer that the point of convergence is a local minimum point.

In addition, Fig. 9.22 (a) shows the graphs of the distance
∥∥∥ϕ(k) − ϕ

∗
∥∥∥
X
from

the k-th approximation ϕ(k) to an approximate minimum point ϕ∗ obtained
by the four methods with respect to the iteration number k. The approximate
minimum point ϕ∗ is given as the numerical solution of ϕ when the iteration time
is taken larger than the given value in the H1 Newton method. From this figure,
it can be confirmed that the convergence orders for the results obtained through
the H1 Newton method are more than the first order. However, Fig. 9.22 (b),
plotting the k-th distance ∥ϕk − ϕ∗∥X with respect to the (k − 1)-th distance
(the gradient of the graph shows the order of convergence as explained by using
Eq. (3.8.13)) shows that the convergence order of the H1 Newton method is
less than the second order but is more than the first order. The reason behind
this finding is provided at the end of Section 8.9.6. Namely, the addition of the
bilinear form aX in X to the original Hessian in order to ensure coercivity and
regularity of the left-hand side of Eq. (9.9.16) makes the H1 Newton method
different from the original Newton method.

9.13 Shape Optimization Problem of Stokes
Flow Field

As an example of an application in flow field problems, let us consider a mean
flow resistance minimization problem of a Stokes flow field and look at the
process for obtaining the shape derivatives of cost functions. The image of the
initial domain Ω0 is shown in Fig. 9.23. The linear space X with respect to
domain movement and its admissible set D are defined as in Sect. 9.1.

9.13.1 State Determination Problem

Let us consider a Stokes problem as a state determination problem. Here, in
addition to the symbols used in Problem 5.5.1, the Stokes problem will be
written in the following way for the shape optimization problem. Here, to
guarantee the unique existence of the solution, ∂Ω(ϕ) is taken to be a Dirichlet
boundary with respect to ϕ ∈ D and uD : ∂Ω(ϕ) → Rd is taken to be a known
flow velocity. Detailed conditions will be shown in Eq. (9.13.5) and Eq. (9.13.6)
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Fig. 9.23: The initial domain Ω0 ⊂ D and the domain variation (displacement)
ϕ with respect to a Stokes flow field.

later. µ is a positive constant expressing the coefficient of viscosity. With
respect to the flow velocity u, which is the solution to the state determination
problem shown later, let u − uD be denoted as ũ. Here, let the admissible set
and the Hilbert space containing ũ be defined as

U =
{
u ∈ H1

(
D;Rd

) ∣∣ u = 0Rd on ∂Ω(ϕ)
}
, (9.13.1)

S = U ∩W 2,4
(
D;Rd

)
, (9.13.2)

respectively. Moreover, the admissible set and the real Hilbert space containing
the pressure p are taken to be

P =

{
q ∈ L2 (D;R)

∣∣∣∣∣
∫
Ω(ϕ)

q dx = 0

}
, (9.13.3)

Q = P ∩W 1,4 (D;R) , (9.13.4)

respectively. For known functions, in conjunction with Hypothesis 9.5.1, it is
assumed that

b ∈ C1
S′

(
B;L∞ (D;Rd

))
, uD ∈ C1

S′

(
B;Udiv ∩ C0,1

(
D;Rd

))
(9.13.5)

and these are fixed with the material. Moreover, with respect to Hypothesis
9.5.2,

b ∈ C1
S∗

(
B;W 1,2qR

(
D;Rd

))
, uD ∈ C1

S∗

(
B;Udiv ∩W 2,2qR

(
D;Rd

))
(9.13.6)

and these are assumed to be fixed in space, where qR > d. Here, let

Udiv =
{
u ∈ H1

(
D;Rd

) ∣∣ ∇ · u = 0 in D
}
.

Here too, (ν ·∇)u =
(
∇u⊤)⊤ ν is written as ∂νu. Given these definitions,

we define a state determination problem as follows.
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Problem 9.13.1 (Stokes problem) For ϕ ∈ D, let b, uD and µ be given.
Find (u, p) : Ω (ϕ) → Rd+1 which satisfies

−∇⊤ (µ∇u⊤)+∇⊤p = b⊤ (ϕ) in Ω (ϕ) ,

∇ · u = 0 in Ω (ϕ) ,

u = uD (ϕ) on ∂Ω(ϕ) ,∫
Ω(ϕ)

pdx = 0.

□

For later use, referring to the weak form of the Stokes problem (Problem
5.5.2) with a Dirichlet boundary condition, let the Lagrange function with
respect to Problem 9.13.1 be

LS (ϕ,u, p,v, q)

=

∫
Ω(ϕ)

{
−µ∇u⊤ ·

(
∇v⊤

)
+ p∇ · v + q∇ · u+ b · v

}
dx

+

∫
∂Ω(ϕ)

{(u− uD) · (µ∂νv − qν) + v · (µ∂νu− pν)} dγ, (9.13.7)

where (u, p) is not necessarily the solution of Problem 9.13.1 and (v, q) is taken
to be an element of U × P introduced as a Lagrange multiplier. If (u, p) is the
solution of Problem 9.13.1, the equation

LS (ϕ,u, p,v, q) = 0

holds with respect to an arbitrary (v, q) ∈ U × P . This equation is equivalent
to the weak form of Problem 9.13.1.

9.13.2 Mean Flow Resistance Minimization Problem

Let us define a shape optimization problem with the associated cost functions
defined as follows. With respect to the solution (u, p) of Problem 9.13.1,

f0 (ϕ,u, p) = −
∫
Ω(ϕ)

b · udx+

∫
∂Ω(ϕ)

uD · (µ∂νu− pν) dγ (9.13.8)

is referred to as the mean flow resistance. The reason for this is as explained in
Section 8.10.2. Moreover,

f1 (ϕ) =

∫
Ω(ϕ)

dx− c1 (9.13.9)

is a cost function with respect to domain measure constraint. Here, c1 is a
positive constant such that f1 (ϕ) ≤ 0 holds with respect to some ϕ ∈ D.

We define a mean flow resistance minimization problem as follows.
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Problem 9.13.2 (Mean flow resistance minimization problem) Let D,
S and Q be defined as in Eq. (9.1.3), Eq. (9.13.2) and Eq. (9.13.4), respectively.
Let f0 and f1 be Eq. (9.13.8) and Eq. (9.13.9), respectively. In this case, obtain
Ω (ϕ) which satisfies

min
(ϕ,u−uD,p)∈D×S×Q

{f0 (ϕ,u, p) | f1 (ϕ) ≤ 0, Problem 9.13.1} .

□

9.13.3 Shape Derivatives of Cost Functions

The shape derivative of f1 (ϕ) has already been obtained using Eq. (9.12.24) or
Eq. (9.12.58). Hence, only the shape derivative of f0 (ϕ,u, p) will be computed.
Here too, let us consider the case of using the formulae based on the shape
derivative of a function and the case using the formulae based on the partial
shape derivative of a function separately. If the formulae based on the shape
derivative of a function are used, the expression for the shape derivative up to
the second order will be established. As preparation for this, let the Lagrange
function of f0 (ϕ,u) be

L0 (ϕ,u, p,v0, q0)

= f0 (ϕ,u, p)− LS (ϕ,u, p,v, q)

=

∫
Ω(ϕ)

{
µ∇u⊤ ·∇v⊤0 − p∇ · v0 − b · (v0 + u)− q0∇ · u

}
dx

−
∫
∂Ω(ϕ)

{(u− uD) · (µ∂νv0 − q0ν) + (v0 − uD) · (µ∂νu− pν)} dγ.

(9.13.10)

Here, LS is the Lagrange function of the state determination problem defined
in Eq. (9.13.7). Moreover, it is assumed that (v0, q0) is a Lagrange multiplier
with respect to the state determination problem prepared for f0 and that
(v0 − uD, q0) is an element of U × P .

Shape Derivative of f0 Using Formulae Based on Shape Derivative of
a Function

If the formulae based on the shape derivative of a function are used, the following
results are obtained. In this case, it is assumed that b and uD are fixed with
the material.

In this case, the Fréchet derivative of L0 can be written as

L ′
0 (ϕ,u, p,v0, q0) [φ, û, p̂, v̂0, q̂0]

= L0ϕ′ (ϕ,u, p,v0, q0) [φ] + L0up (ϕ,u, p,v0, q0) [û, p̂]

+ L0v0q0 (ϕ,u, p,v0, q0) [v̂0, q̂0] (9.13.11)
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for any arbitrary variation (φ, û, p̂, v̂0, q̂0) ∈ X × (U × P )
2
. Here, the notations

in Eq. (9.3.5) and Eq. (9.3.15) were used. Each term is considered below.
The third term on the right-hand side of Eq. (9.13.11) becomes

L0v0q0 (ϕ,u, p,v0, q0) [v̂0, q̂0] = −LSv0,q0 (ϕ,u, p,v0, q0) [v̂0, q̂0]

= −LS (ϕ,u, p, v̂0, q̂0) . (9.13.12)

Eq. (9.13.12) is the Lagrange function of the state determination problem
(Problem 9.13.1). Hence, if (u, p) is the weak solution of the state determination
problem, the third term on the right-hand side of Eq. (9.13.11) is zero.

Moreover, the second term on the right-hand side of Eq. (9.13.11) becomes

L0up (ϕ,u, p,v0, q0) [û, p̂]

=

∫
Ω(ϕ)

{
µ
(
∇u′⊤) ·∇v⊤0 − p̂∇ · v0 − b · û− q0∇ · û

}
dx

−
∫
∂Ω(ϕ)

{û · (µ∂νv0 − q0ν) + (v0 − uD) · (µ∂νû− p̂ν)}dγ

= −LS (ϕ,v0, q0, û, p̂) (9.13.13)

for any arbitrary variation (û, p̂) ∈ U×P of (u, p). Hence, when the self-adjoint
relationship

(u, p) = (v0, q0) (9.13.14)

holds, the second term on the right-hand side of Eq. (9.13.11) also vanishes.
Furthermore, the first term on the right-hand side of Eq. (9.13.11) becomes

L0ϕ′ (ϕ,u, p,v0, q0) [φ]

=

∫
Ω(ϕ)

[
−µ∇u⊤ ·

(
∇φ⊤∇v⊤0

)
− µ∇v⊤0 ·

(
∇φ⊤∇u⊤)

+ p
(
∇φ⊤∇

)
· v0 + q0

(
∇φ⊤∇

)
· u

+
{
µ∇u⊤ ·∇v⊤0 − p∇ · v0 − q0∇ · u− b · (u+ v0)

}
∇ ·φ

]
dx

−
∫
∂Ω(ϕ)

[
{(u− uD) ·w (φ,v0, q0) + (v0 − uD) ·w (φ,u, p)}

+
{
(u− uD) · (µ∂νv0 − q0ν)

+ (v0 − uD) · (µ∂νu− pν)
}
(∇ ·φ)τ

]
dγ,

in view of Eq. (9.3.5) and Eq. (9.3.15) representing the results of Propositions
9.3.4 and 9.3.7. Here, we let

w (φ,u, p)

=
{(
µ∇u⊤)⊤ − pI

}[{
ν ·
(
∇φ⊤ν

)}
ν −

{
∇φ⊤ +

(
∇φ⊤)⊤}ν] ,

(9.13.15)
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and (∇ ·φ)τ follows Eq. (9.2.6). I represents a d-order unit matrix.
Furthermore, by applying the identity(

∇φ⊤∇
)
· v0 =

(
∇v⊤0

)⊤ ·∇φ⊤ = I ·
(
∇φ⊤∇v⊤0

)
, (9.13.16)

we get

L0ϕ′ (ϕ,u, p,v0, q0) [φ]

=

∫
Ω(ϕ)

[
−
(
µ∇u⊤ − pI

)
·
(
∇φ⊤∇v⊤0

)
−
(
µ∇v⊤0 − q0I

)
·
(
∇φ⊤∇u⊤)

+
{(
µ∇u⊤ − pI

)
·∇v⊤0 − q0∇ · u− b · (u+ v0)

}
∇ ·φ

]
dx

−
∫
∂Ω(ϕ)

[
{(u− uD) ·w (φ,v0, q0) + (v0 − uD) ·w (φ,u, p)}

+
{
(u− uD) · (µ∂νv0 − q0ν)

+ (v0 − uD) · (µ∂νu− pν)
}
(∇ ·φ)τ

]
dγ. (9.13.17)

With the above results in mind, it is assumed that (u, p) is the weak solution
of Problem 9.13.1 and that the self-adjoint relationship (Eq. (9.13.14)) holds
true. Here, using the Dirichlet condition and the continuity equation of Problem
9.13.1, we get

f̃ ′0 (ϕ) [φ] = L0ϕ′ (ϕ,u, p,v0, q0) [φ] = ⟨g0,φ⟩

=

∫
Ω(ϕ)

(
GΩ0 ·∇φ⊤ + gΩ0∇ ·φ

)
dx (9.13.18)

following the notation of Eq. (7.5.15) for f̃0, where

GΩ0 = −2
(
µ∇u⊤ − pI

) (
∇u⊤)⊤ , (9.13.19)

gΩ0 = µ∇u⊤ ·∇u⊤ − 2b · u. (9.13.20)

From the above results, similar conclusions can be obtained for Theorem
9.8.2 with respect to g0 of Eq. (9.13.18).

Second-Order Shape Derivative of f0 Using Formulae Based on Shape
Derivative of a Function

Next, let us obtain the second-order shape derivative of mean flow resistance
f0. Here, the formulae based on the shape derivative of a function are used,
following the procedures shown in Sect. 9.8.2.

In correspondence with Hypothesis 9.8.3, the first condition b = 0Rd is
assumed and we also suppose that the second condition is again satisfied.
However, Hypothesis 9.8.3 (3) is unnecessary.

The Lagrange function L0 of f0 is defined by Eq. (9.13.10). Viewing (ϕ,u, p)
as a design variable, we define its admissible set and admissible direction set
respectively as

S = {(ϕ,u, p) ∈ D × S ×Q | LS (ϕ,u, p,v, q) = 0 for all (v, q) ∈ U × P } ,
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TS (ϕ,u, p) = { (φ, υ̂, π̂) ∈ X × U × P |
LSϕup (ϕ,u, p,v, q) [φ, υ̂, π̂] = 0 for all (v, q) ∈ U × P} .

Considering Eq. (9.1.6), the second-order Fréchet partial derivative of L0 with
respect to arbitrary variations (φ1, υ̂1, π̂1) , (φ2, υ̂2, π̂2) ∈ TS (ϕ,u, p) of the
design variable (ϕ,u, p) ∈ S is given as follows:

L0(ϕ′,u,p)(ϕ′,u,p) (ϕ,u, p,v0, q0) [(φ1, υ̂1, π̂1) , (φ2, υ̂2, π̂2)]

=
(
L0(ϕ′,u,p)

)
(ϕ′,u,p)

(ϕ,u, p,v0, q0) [(φ1, υ̂1, π̂1) , (φ2, υ̂2, π̂2)]

+ ⟨g (ϕ) , t (φ1,φ2)⟩
=
(
L0ϕ′ (ϕ,u, p,v0, q0) [φ1] + L0up (ϕ,u, p,v0, q0) [υ̂1, π̂1]

)
ϕ′ [φ2]

+
(
L0ϕ′ (ϕ,u, p,v0, q0) [φ1] + L0up (ϕ,u,v0) [υ̂1, π̂1]

)
up

[υ̂2, π̂2]

+ ⟨g (ϕ) , t (φ1,φ2)⟩
=
(
L0ϕ′

)
ϕ′ (ϕ,u, p,v0, q0) [φ1,φ2] + L0ϕ′up (ϕ,u, p,v0, q0) [φ1, υ̂2, π̂2]

+ L0ϕ′up (ϕ,u, p,v0, q0) [φ2, υ̂1, π̂1]

+ L0upup (ϕ,u, p,v0, q0) [υ̂1, π̂1, υ̂2, π̂2]

+ ⟨g (ϕ) , t (φ1,φ2)⟩ , (9.13.21)

where ⟨g0 (ϕ) , t (φ1,φ2)⟩ follows the definition given in Eq. (9.1.8).
Here, the first and fifth terms of the right-hand side in Eq. (9.13.21) become(

L0ϕ′
)
ϕ′ (ϕ,u, p,v0, q0) [φ1,φ2] + ⟨g (ϕ) , t (φ1,φ2)⟩

=

∫
Ω(ϕ)

[{
−
(
µ∇u⊤ − pI

)
·
(
∇φ⊤

1 ∇v⊤0
)}

ϕ′ [φ2]

+
{
−
(
µ∇v⊤0 − q0I

)
·
(
∇φ⊤

1 ∇u⊤)}
ϕ′ [φ2]

+ µ∇u⊤ ·∇v⊤0 (∇ ·φ1)ϕ′ [φ2]

− 2
(
µ∇u⊤ − pI

) (
∇u⊤)⊤ ·

(
∇φ⊤

2 ∇φ⊤
1 −∇φ⊤

1 (∇ ·φ2)
)

+ µ∇u⊤ ·∇u⊤
{(

∇φ⊤
2

)⊤ ·∇φ⊤
1 − (∇ ·φ2) (∇ ·φ1)

}]
dx,

(9.13.22)

which is obtained from Eq. (9.13.17) using the Dirichlet condition of Problem
9.13.1, the equation of continuity and the assumption b = 0Rd . The first term
of the integrand on the right-hand side of Eq. (9.13.22) can be expanded as
follows:{

−
(
µ∇u⊤ − pI

)
·
(
∇φ⊤

1 ∇v⊤0
)}

ϕ′ [φ2]

=
{(
µ∇u⊤ − pI

)
·
(
∇φ⊤

1 ∇v⊤0
)}

∇u⊤ ·
(
∇φ⊤

2 ∇u⊤)
+
{(
µ∇u⊤ − pI

)
·
(
∇φ⊤

1 ∇v⊤0
)}

∇φ⊤
1
·
(
∇φ⊤

2 ∇φ⊤
1

)
+
{(
µ∇u⊤ − pI

)
·
(
∇φ⊤

1 ∇v⊤0
)}

∇v⊤
0
·
(
∇φ⊤

2 ∇v⊤0
)
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−
{(
µ∇u⊤ − pI

)
·
(
∇φ⊤

1 ∇v⊤0
)}

∇ ·φ2

= µ
(
∇φ⊤

2 ∇u⊤) · (∇φ⊤
1 ∇v⊤0

)
+
(
µ∇u⊤ − pI

)
·
{(

∇φ⊤
2 ∇φ⊤

1 ∇v⊤0
)
+
(
∇φ⊤

1 ∇φ⊤
2 ∇v⊤0

)}
−
{(
µ∇u⊤ − pI

)
·
(
∇φ⊤

1 ∇v⊤0
)}

∇ ·φ2. (9.13.23)

Similarly, the second term of the integrand on the right-hand side of
Eq. (9.13.22) is the first term with (u, p) and (v0, q0) switched over. The third
term of the integrand on the right-hand side of Eq. (9.13.22) is

µ∇u⊤ ·∇v⊤0 {∇ ·φ1}ϕ′ [φ2]

= µ∇u⊤ ·∇v⊤0
{
−
(
∇φ⊤

2

)⊤ ·∇φ⊤
1 + (∇ ·φ2) (∇ ·φ1)

}
. (9.13.24)

Hence, using the self-adjoint relationship, Eq. (9.13.22) becomes(
L0ϕ′

)
ϕ′ (ϕ,u, p,v0, q0) [φ1,φ2] + ⟨g (ϕ) , t (φ1,φ2)⟩

=

∫
Ω(ϕ)

[
µ
(
∇φ⊤

2 ∇u⊤) · (∇φ⊤
1 ∇v⊤0

)
+
(
µ∇u⊤ − pI

)
·
(
∇φ⊤

1 ∇φ⊤
2 ∇v⊤0

)
+ µ

(
∇φ⊤

2 ∇v⊤0
)
·
(
∇φ⊤

1 ∇u⊤)
+
(
µ∇v⊤0 − q0I

)
·
(
∇φ⊤

1 ∇φ⊤
2 ∇u⊤)]dx. (9.13.25)

Next, we consider the second term on the right-hand side of Eq. (9.13.21).
Using Eq. (9.13.17), the Dirichlet condition of Problem 9.13.1, the equation of
continuity and the assumption b = 0Rd , we get

L0ϕ′up (ϕ,u, p,v0, q0) [φ1, υ̂2, π̂2]

=

∫
Ω(ϕ)

[
−
(
µ∇υ̂⊤

2 − π̂2I
)
·
(
∇φ⊤

1 ∇v⊤0
)

−
(
µ∇v⊤0 − q0I

)
·
(
∇φ⊤

1 ∇υ̂
⊤
2

)
+
{
µ
(
∇υ̂⊤

2 − π̂2I
)
·∇v⊤0 − q0∇ · υ̂2

}
∇ ·φ1

]
dx. (9.13.26)

On the other hand, the variation of (u, p) satisfying the state determination
problem with respect to an arbitrary domain variation φj ∈ Y for j ∈ {1, 2} is

written as (υ̂j , π̂j) =
(
υ′ (ϕ)

[
φj

]
, π′ (ϕ)

[
φj

])
. If the Fréchet partial derivative

of the Lagrange function LS of the state determination problem defined in
Eq. (9.13.7) is taken, then we obtain

LSϕ′up (ϕ,u, p,v, q)
[
φj , υ̂j , π̂j

]
=

∫
Ω(ϕ)

[
µ
(
∇φ⊤

j ∇u⊤) · (∇v⊤)+ µ∇u⊤ ·
(
∇φ⊤

j ∇v⊤
)

− p
(
∇φ⊤

j ∇
)
· v − q

(
∇φ⊤

j ∇
)
· u
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+
{
−∇u⊤ ·

(
µ∇v⊤ − qI

)
+ p∇ · v

}
∇ ·φj

−
(
∇υ̂⊤

j

)
·
(
µ∇v⊤ − qI

)
+ π̂j∇ · v

]
dx

=

∫
Ω(ϕ)

[{
µ
(
∇φ⊤

j +
(
∇φ⊤

j

)⊤ −
(
∇ ·φj

)
I
)
∇u⊤ − µ∇υ̂⊤

j

+ π̂jI + p
(
∇ ·φj

)
I − p

(
∇φ⊤

j

)⊤} ·∇v⊤

+ q
{
−
(
∇φ⊤

j ∇
)
· u+ (∇ · u)

(
∇ ·φj

)
+∇ · υ̂j

}]
dx

= 0 (9.13.27)

for any arbitrary variation (v, q) ∈ U × P . From Eq. (9.13.27), the following
identities:

∇υ̂⊤
j =

{
∇φ⊤

j +
(
∇φ⊤

j

)⊤ −∇ ·φj

}
∇u⊤, (9.13.28)

∇ · υ̂j =
(
∇φ⊤

j ∇
)
· u− (∇ · u)

(
∇ ·φj

)
, (9.13.29)

π̂jI = −p
(
∇ ·φj

)
I − p

(
∇φ⊤

j

)⊤
(9.13.30)

hold for any (v, q) ∈ U × P . Here, if υ̂2 and π̂2 satisfying Eq. (9.13.28) to
Eq. (9.13.30) are substituted into υ̂2 and π̂2 of Eq. (9.13.26), we have

L0ϕ′up (ϕ,u, p,v0, q0) [φ1, υ̂2, π̂2]

=

∫
Ω(ϕ)

[
−
{(

∇φ⊤
2 +

(
∇φ⊤

2

)⊤ −∇ ·φ2

) (
µ∇u⊤)

+ p (∇ ·φ2) I − p
(
∇φ⊤

2

)⊤} ·
(
∇φ⊤

1 ∇v⊤0
)

−
(
µ∇v⊤0 − q0I

)
·
{
∇φ⊤

1

(
∇φ⊤

2 +
(
∇φ⊤

2

)⊤ −∇ ·φ2

)
∇u⊤

}
+
{((

∇φ⊤
2 +

(
∇φ⊤

2

)⊤ −∇ ·φ2

) (
µ∇u⊤)

+ p (∇ ·φ2) I − p
(
∇φ⊤

2

)⊤) ·∇v⊤0 − q0∇φ⊤
2 ·
(
∇u⊤)⊤}∇ ·φ1

]
dx.

(9.13.31)

Similarly, the third term on the right-hand side of Eq. (9.13.21) is Eq. (9.13.31)
where φ1 and φ2 are interchanged. The fourth term on the right-hand side of
Eq. (9.13.21) becomes zero.

Summarizing the above results, the second-order shape derivative of f̃0
becomes

h0 (ϕ,u,u) [φ1,φ2]

=

∫
Ω(ϕ)

[
−2
(
µ∇u⊤ ·∇u⊤) (∇ ·φ2) (∇ ·φ1)

−
{(
µ∇u⊤ − pI

) (
∇u⊤)⊤} ·

{
∇φ⊤

2 ∇φ⊤
1 +∇φ⊤

1 ∇φ⊤
2

+∇φ⊤
2

(
∇φ⊤

1

)⊤
+∇φ⊤

1

(
∇φ⊤

2

)⊤
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− 4∇φ⊤
2 ∇ ·φ1 − 4∇φ⊤

1 ∇ ·φ2

}]
dx. (9.13.32)

Second-Order Shape Derivative of Cost Function Using Lagrange
Multiplier Method

The application of the Lagrange multiplier method in obtaining the second-order
shape derivative of the mean flow resistance f0 is described as follows. Fixing
φ1, we define the Lagrange function for f̃ ′0 (ϕ) [φ1] = ⟨g0,φ1⟩ in Eq. (9.13.18)
by

LI0 (ϕ,u, p,w0, r0) = ⟨g0,φ1⟩ − LS (ϕ,u, p,w0, r0) , (9.13.33)

where LS is given by Eq. (9.13.7), and (w0, r0) ∈ U × P is the adjoint variable
provided for (u, p) in g0.

Considering Eq. (9.1.6), with respect to arbitrary variations

(φ2, û, p̂, ŵ0, r̂0) ∈ D × (U × P )
2
of (ϕ,u, p,w0, r0), the Fréchet derivative of

LI0 is written as

L ′
I0 (ϕ,u, p,w0, r0) [φ2, û, p̂, ŵ0, r̂0]

= LI0ϕ′ (ϕ,u, p,w0, r0) [φ2] + ⟨g0 (ϕ) , t (φ1,φ2)⟩
+ LI0up (ϕ,u, p,w0, r0) [û, p̂]

+ LI0w0r0 (ϕ,u, p,w0, r0) [ŵ0, r̂0] . (9.13.34)

The fourth term on the right-hand side of Eq. (9.13.34) vanishes if (u, p) is the
solution of the state determination problem.

The third term on the right-hand side of Eq. (9.13.34) is

LI0up (ϕ,u, p,w0, r0) [û, p̂]

=

∫
Ω(ϕ)

[
−2
{(

∇φ⊤
1 +

(
∇φ⊤

1

)⊤ −∇ ·φ1

)
µ∇u⊤ + p

(
∇φ⊤

1

)⊤} ·∇û⊤

+ 2 (∇ ·φ1) b · û+ 2p̂
(
∇φ⊤

1

)⊤ ·
(
∇u⊤)

+ µ∇w⊤
0 ·
(
∇û⊤

)
− p̂∇ ·w⊤

0 − r0∇ · û
]
dx. (9.13.35)

Here, the conditions that Eq. (9.13.35) is zero for arbitrary (û, p̂) ∈ U × P and
u satisfies the continuity equation are equivalent to setting (w0, r0) to be the
solution of the following adjoint problem.

Problem 9.13.3 (Adjoint problem of w0 with respect to ⟨g0,φ1⟩)
Under the assumption of Problem 9.13.2, let φ1 ∈ Y be given. Find
(w0, r0) = (w0 (ϑ1) , r0 (ϑ1)) ∈ U × P satisfying

−∇⊤ (µ∇w⊤
0

)
+∇⊤r0 = −2∇⊤

{(
∇φ⊤

1 +
(
∇φ⊤

1

)⊤ −∇ ·φ1

)
µ∇u⊤

+ p
(
∇φ⊤

1

)⊤}− 2 (∇ ·φ1) b
⊤ in Ω (ϕ) ,



9.13 Shape Optimization Problem of Stokes Flow Field 115

∇ ·w0 = 2
(
∇φ⊤

1

)⊤ ·∇u⊤ in Ω (ϕ) ,

w0 = 0Rd on ∂Ω(ϕ) ,∫
Ω(ϕ)

r0dx = 0.

□

Finally, the first and second terms on the right-hand side of Eq. (9.13.34)
become

LI0ϕ′ (ϕ,u, p,w0, r0) [φ2] + ⟨g0 (ϕ) , t (φ1,φ2)⟩
= L0ϕ′ϕ′ (ϕ,u, p,u, p) [φ1,φ2] + ⟨g0 (ϕ) , t (φ1,φ2)⟩
− LSϕ′ (ϕ,u, p,w0, r0) [φ2] (9.13.36)

with respect to an arbitrary φ1 ∈ Y . The first and second terms on the
right-hand side of Eq. (9.13.36) are given by Eq. (9.13.25) in which (v0, q0) =
(u, p) is substituted. The third term is

− LSϕ′ (ϕ,u, p,w0, r0) [φ2]

=

∫
Ω(ϕ)

[(
µ∇u⊤ − pI

)
·
(
∇φ⊤

2 ∇w⊤
0

)
+
(
µ∇w⊤

0 − r0I
)
·
(
∇φ⊤

2 ∇u⊤)
+
{(
µ∇u⊤ − pI

)
·∇w⊤

0 − r0∇ · u− b ·w0

}
∇ ·φ2

]
dx.

(9.13.37)

Here, (u, p) and (w0, r0) are the weak solutions of Problems 9.13.1 and
9.12.3, respectively. If we denote f0 (ϕ,u, p) by f̃0 (ϕ), then we obtain the
relation

LI0ϕ′ (ϕ,u, p,w0 (φ1) , r0 (φ1)) [φ2] + ⟨g0 (ϕ) , t (φ1,φ2)⟩
= f̃ ′′0 (ϕ) [φ1,φ2] = ⟨gH0 (ϕ,φ1) ,φ2⟩

=

∫
Ω(ϕ)

[
2µ
(
∇φ⊤

1 ∇u⊤) · (∇φ⊤
2 ∇u⊤)

+ 2
{(
µ∇u⊤ − pI

) (
∇u⊤)⊤} ·

(
∇φ⊤

1 ∇φ⊤
2

)
−
{(
µ∇u⊤ − pI

) (
∇w⊤

0 (φ1)
)⊤

+
(
µ∇w⊤

0 (φ1)− r0I
) (

∇u⊤)⊤}
·
(
∇φ⊤

2

)
+
{(
µ∇u⊤ − pI

)
·∇w⊤

0 (φ1)− b ·w0 (φ1)
}
∇ ·φ2

]
dx,

(9.13.38)

where gH0 is the Hesse gradient of the mean flow resistance.
If b = 0Rd is satisfied, with respect to the solution (w0, r0) of Problem 9.13.3,

µ∇w⊤
0 (φ1)− r0I = 2

(
∇φ⊤

1 +
(
∇φ⊤

1

)⊤ −∇ ·φ1

)
µ∇u⊤
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+ 2p
(
∇φ⊤

1

)⊤
, (9.13.39)

∇w⊤
0 (φ1) = 2

(
∇φ⊤

1 +
(
∇φ⊤

1

)⊤ −∇ ·φ1

)
∇u⊤ (9.13.40)

holds. Substituting Eq. (9.13.39) and Eq. (9.13.40) into Eq. (9.13.38), and
using the relation h0 (ϕ,u, p,v0, q0) [φ1,φ2] = h0 (ϕ,u, p,v0, q0) [φ2,φ1], it can
be confirmed that Eq. (9.13.38) accords with Eq. (9.13.32).

Shape Derivative of f0 Using Formulae Based on Partial Shape
Derivative of a Function

If the formulae based on the partial shape derivative of a function are used,
the corresponding results are as follows. Here, b and uD are assumed to be
functions fixed in space. Moreover, it is assumed that u and v0 are elements of
W 2,2qR

(
D;Rd

)
, and p and q0 are in W 1,2qR (D;R), where qR > d.

Under these assumptions, the Fréchet derivative of L0 can be written as

L ′
0 (ϕ,u, p,v0, q0) [φ, û, p̂, v̂0, q̂0] = L0ϕ (ϕ,u, p,v0, q0) [φ]

+ L0up (ϕ,u, p,v0, q0) [û, p̂] + L0v0q0 (ϕ,u, p,v0, q0) [v̂0, q̂0] (9.13.41)

for any arbitrary variation (φ, û, p̂, v̂0, q̂0) ∈ X × (U × P )
2
. Here, the notations

of Eq. (9.3.21) and Eq. (9.3.27) were used. Each term is considered below.

The third term on the right-hand side of Eq. (9.13.41) accords with
Eq. (9.13.12). Hence, if (u, p) is the weak solution of state determination
problem (Problem 9.13.1), then this term is equal to zero.

Moreover, the second term on the right-hand side of Eq. (9.13.41) is the
same as Eq. (9.13.13). Hence, if the self-adjoint relationship holds, then this
term is also zero.

Furthermore, the first term on the right-hand side of Eq. (9.13.41) becomes

L0ϕ∗ (ϕ,u,v0) [φ]

=

∫
∂Ω(ϕ)

{
µ∇u⊤ ·∇v⊤0 − p∇ · v0 − b · (u+ v0)

}
ν ·φ dγ

+

∫
∂Ω(ϕ)

[
{(u− uD) · w̄ (φ,v0, q0) + (v0 − uD) · w̄ (φ,u, p)}

+ {(u− uD) · (µ∂νv0 − q0ν) + (v0 − uD) · (µ∂νu− pν)} (∇ ·φ)τ
+ (∂ν + κ)

{
(u− uD) · (µ∂νv0 − q0ν)

+ (v0 − uD) · (µ∂νu− pν)
}
ν ·φ

]
dγ

−
∫
∂Ω(ϕ)∪Θ(ϕ)

{
(u− uD) · (µ∂νv0 − q0ν)

+ (v0 − uD) · (µ∂νu− pν)
}
τ ·φ dς,

from Eq. (9.3.21) and Eq. (9.3.27) expressing Propositions 9.3.10 and 9.3.13,
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where

w̄ (φ,u, p) = −
{(
µ∇u⊤)⊤ − pI

} ∑
i∈{1,...,d−1}

{
τ i ·

(
∇φ⊤ν

)}
τ i


+ (ν ·φ)

[
∇⊤

{(
µ∇u⊤)⊤ − pI

}]⊤
, (9.13.42)

and (∇ ·φ)τ follows Eq. (9.2.6). Here, if the Dirichlet condition of Problem
9.13.1 is considered, the terms including u− uD and v0 − uD on L0ϕ∗ vanish.

With the above results in mind, if u and v0 fulfil the weak form of Problem
9.13.1 satisfying the self-adjoint relationship, we get

f̃ ′0 (ϕ) [φ] = L0ϕ∗ (ϕ, u, v0) [φ] = ⟨ḡ0,φ⟩ =
∫
∂Ω(ϕ)

ḡ∂Ω0 ·φ dγ (9.13.43)

using the notation of Eq. (7.5.15) for f̃0, where

ḡ∂Ω0 =
{
µ∇u⊤ ·∇u⊤ − 2b · u− 2∂ν (u− uD) · (µ∂νu− pν)

}
ν.
(9.13.44)

Furthermore, on the homogeneous Dirichlet boundary, we have the equations

∇u⊤ ·∇u⊤ =
{
ν (∂νu)

⊤
}
·
{
ν (∂νu)

⊤
}
= ∂νu · ∂νu (9.13.45)

and

∇ · u = (∂νu) · ν = 0. (9.13.46)

In this case, we get

ḡ∂Ω0 = −µ (∂νu · ∂νu)ν. (9.13.47)

From the above results, similar conclusions can be obtained for Theorem
9.8.6 with respect to function space containing ḡ∂Ω0 of Eq. (9.13.44).

9.13.4 Relationship with Optimal Design Problem of
One-Dimensional Branched Stokes Flow Field

Here, let us think about the relationship between the shape derivative of the
cost function obtained with respect to the mean flow resistance minimization
problem of a d ∈ {2, 3}-dimensional Stokes flow field and the cross-sectional
derivative of the cost function obtained with respect to the mean flow resistance
minimization problem (Problem 1.3.2) of the one-dimensional branched Stokes
flow field looked at in Chap. 1. To correspond to the variables and linear spaces,
relationships similar to those shown in Table 9.2 with respect to the linear elastic
problem hold, with an addition of the pressure to the state variable and a change
of the objective function.



118 Chapter 9 Shape Optimization Problems of Domain Variation Type

In Problem 1.3.2, volume force was not assumed. If this assumption is
applied to Problem 9.13.2, it corresponds to setting the objective function to

f0 (ϕ,u, p) =

∫
∂Ω(ϕ)

uD · (µ∂νu− pν) dγ

= −
∑

i∈{1,2}

∫ ri

0

piuHi (r) 2πr dr, (9.13.48)

where pi and ri for i ∈ {0, 1, 2} follows the definition given in Problem 1.3.2,
respectively, and uHi is given by Eq. (1.3.1). In Eq. (9.13.48), ∂νu = 0 and
p0 = 0 were used. In Problem 1.3.2, u1 and u2 were defined as the volumes of
the fluid flow per unit time on Γ1 and Γ2, respectively, and were fixed during the
changes on the cross-sectional areas. In other words, uH1 and uH2 were varying
with the boundary measure. This relation is written as

u′Hi (r) [φ] = −uHi (r) (∇ ·φi)τ . (9.13.49)

On the other hand, uD was taken to be fixed with material in Eq. (9.13.18)
which gives the shape derivative of f0. If this difference is considered, the shape
derivative of f0 defined by Eq. (9.13.48) becomes

f̃ ′0 (ϕ) [φ] = ⟨g0,φ⟩

=
∑

i∈{0,1,2}

l

∫
Γi

(
GΩ0i ·∇φ⊤

i + gΩ0i∇ ·φi

)
dγ

+
∑

i∈{1,2}

∫ ri

0

piuHi (r) (∇ ·φi)τ 2πr dr. (9.13.50)

We express a point in the cylindrical domain in the one-dimensional Stokes
flow field as (x, r, θ) ∈ (0, l)× Γi and u = (uHi (r) , 0, 0)

⊤
. Here, because of the

relationship∫
Γi

(∇ ·φi)τ dγ = (∇ ·φi)τ ai = bi,

the following equations hold:

∇ ·φi = (∇ ·φi)τ =
bi
ai
, ∇φ⊤

i =

0 0 0
0 bi/ai 0
0 0 0

 . (9.13.51)

The flow velocity is given by

∇u⊤ =
pi − p̄

4µl

 0 0 0
2r 0 0
0 0 0

 .
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Hence, we have

GΩ0i ·∇φ⊤
i = −2

{(
µ∇u⊤ − pI

) (
∇u⊤)⊤} ·

(
∇φ⊤

i

)
= −8µ

(
pi − p̄

4µl

)2
bi
ai
r2,

gΩ0i∇ ·φi = µ∇u⊤ ·∇u⊤ (∇ ·φi) = 4µ

(
pi − p̄

4µl

)2
bi
ai
r2.

From these results and Eq. (1.3.2), we get

f̃ ′0 (ϕ) [φ] =
∑

i∈{0,1,2}

l

∫ ri

0

(
GΩ0i ·∇φ⊤

i + gΩ0i∇ ·φi

)
2πr dr

−
∑

i∈{1,2}

pi
uibi
ai

= −
∑

i∈{0,1,2}

2
u2i bi
a3i

= g0 · b. (9.13.52)

In Eq. (9.13.52), the equation of continuity with respect to domain variation∑
i∈{0,1,2}

∫
Γi

ui (∇ ·φi)τ dγ =
u0b0
a0

+
u1b1
a1

+
u2b2
a2

= 0 (9.13.53)

was used. Here, g0 matches the cross-sectional-area gradient of the mean flow
resistance f0 with respect to the one-dimensional branched Stokes flow field
obtained in Eq. (1.3.19).

Furthermore, the Hessian form of f0 becomes

h0 (ϕ,u, p,v0, q0) [φ1i,φ2]

=
∑

i∈{1,2}

l

∫
Γi

[
−2
(
µ∇u⊤ ·∇u⊤) (∇ ·φ2i) (∇ ·φ1i)

−
{(
µ∇u⊤ − pI

) (
∇u⊤)⊤} ·

{
∇φ⊤

2i∇φ⊤
1i +∇φ⊤

1i∇φ⊤
2i

+∇φ⊤
2i

(
∇φ⊤

1i

)⊤
+∇φ⊤

1i

(
∇φ⊤

2i

)⊤
− 4∇φ⊤

2i∇ ·φ1i − 4∇φ⊤
1i∇ ·φ2i

}]
dγ

+
∑

i∈{0,1,2}

{
d

dai

(
u2i b1i
a3i

)
b2i +

u2i b1i
a3i

(
b2i
ai

)}

=
∑

i∈{0,1,2}

6
u2i
a4i
b1ib2i = b1 · (H0b2) (9.13.54)

using Eq. (9.13.32). Here, H0 matches the Hessian matrix of the mean flow
resistance f0 with respect to the cross-sectional areas of the one-dimensional
branched Stokes flow field obtained in Eq. (1.3.26).
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(a) Initial shape and boundary condition (b) H1 gradient method
(ḡL )

(c) H1 gradient method (d) H1 Newton method (e) H1 Newton method
(gL ) (h0, gL ) (gH0, gL )

Fig. 9.24: Numerical example of mean flow resistance minimization problem:
shape (k = 40).

9.13.5 Numerical Example

The results of mean flow resistance minimization for a two-dimensional Stokes
flow field around an isolated object are shown in Figs. 9.24 to 9.27. The
boundary condition of the state determination problem is assumed to be a
uniform flow field in the horizontal direction on the outer boundary and zero on
the boundary of the isolated object as shown in Fig. 9.24 (a). Moreover, with
respect to the boundary condition for domain variation, the outer boundary
was fixed (added in Ω̄C0 of Eq. (9.1.1)). The programs were written using the
programming language FreeFEM (https://freefem.org/) [33] for the finite
element method. In the finite element analyses of the Stokes problem, triangular
elements of the second order with respect to the velocity and of the first order
with respect to the pressure were used. Also, in the finite element analyses of
the H1 gradient method or the H1 Newton method, the second-order triangular
elements were used. On the other hand, in the case using the H1 Newton
method, the routine for the second-order method was started at kN = 20. The
parameters (ca in Eq. (9.10.1), cΩ in Eq. (9.9.3), kN, cΩ1 and cΩ0 in Eq. (9.9.17),
ch in Eq. (9.10.8) and the parameter (errelas) that controls the error level in the
adaptive mesh) affect the result. For a complete understanding of the conditions,

https://freefem.org/
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(a) Streamline of initial shape (b) Streamline of optimal shape
(H1 Newton method, k = 40)

Fig. 9.25: Numerical example of mean flow resistance minimization problem:
streamlines.

we suggest that the readers also examine the details of the programs.5

Figure 9.24 (b) to (e) show the shapes obtained by the four methods (H1

gradient method using ḡL = ḡ0 + λ1ḡ1 of the boundary integral type, H1

gradient method using gL = g0+λ1g1 of the domain integral type, H1 Newton
method using h0 and gL , and H1 Newton method using gH0 and gL ). Figures
9.25 (a) and (b) illustrate the streamlines in the initial shape and the optimal
shape obtained by the H1 Newton method, respectively. The streamlines are
defined as the contour lines of the flow function ψ : Ω (ϕ) → R when the flow

velocity u is given by (∂ψ/∂x2,−∂ψ/∂x1)⊤.
The graphs in Fig. 9.26 illustrate the histories the of cost functions and the

gradients and Hessians of the object function f0 on the search path with respect

to the iteration number k and the search distance
∑k−1

i=0

∥∥∥φg(i)

∥∥∥
X
. In this figure,

f0init denotes the value of f0 at the initial density. Also, c1 is set as the integral
volume. The gradient of f0 on the search path was calculated using the Lagrange

function L = L0 + λ1f1 by
〈
gL ,φg(k)

〉
/
∥∥∥φg(k)

∥∥∥
X
. The Hessian of f0 on the

search path was computed by h0

[
φg(k),φg(k)

]
/
∥∥∥φg(k)

∥∥∥2
X
. In the case of the

Newton method using the Hesse gradient, the formula
〈
gH0,φg(k)

〉
/
∥∥∥φg(k)

∥∥∥2
X

was used to calculate the Hessian. The norm
∥∥∥φg(i)

∥∥∥
X

of the i-th search vector

is defined by Eq. (9.12.67). The computational times until k = 40 by PC
were 16.324, 43.628, 63.173, 81.039 sec by the H1 gradient method of the
boundary integral type, the H1 gradient method of the domain integral type,
the H1 Newton method and the H1 Newton method using the Hesse gradient,
respectively.

Regarding the computational results obtained from the above-mentioned
numerical illustrations, our findings were similar to those given in Sect. 9.12.5.
The graphs in Fig. 9.26 (a) show that the convergence speed with respect to

5See Electronic supplementary material.
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(a) Cost functions (b) Cost functions
(search distance)

(c) Gradient of f0 on search path (d) Gradient of f0 on search path
(search distance)

(e) Hessian of f0 on search path (f) Hessian of f0 on search path
(search distance)

Fig. 9.26: Numerical example of mean flow resistance minimization problem:
cost functions, their gradients and Hessians on the search path (ḡL : H1 gradient
method using ḡL , gL : H1 gradient method using gL , h0, gL : H1 Newton
method，gH0, gL : H1 Newton method using Hesse gradient).



9.13 Shape Optimization Problem of Stokes Flow Field 123

(a) Iteration history (b) (k − 1)-th vs. k-th plot

Fig. 9.27: Numerical example of mean flow resistance minimization problem:

distance
∥∥∥ϕ(k) − ϕ

∗
∥∥∥
X

from an approximate minimum point ϕ∗ (gL : the

gradient method, hL , gL : the Newton method，gH0, h1, gL : the Newton
method using the Hesse gradient).

the iteration number k is faster when using the H1 Newton method than when
employing the H1 gradient method. However, we emphasize that cΩ1 and cΩ0

in Eq. (9.9.17) were actually replaced with smaller values (the step size was
enlarged) within the area where numerical instability did not happen when
the H1 Newton method started, and it seems that the convergence speed was
improved due to the increased in the step size. Moreover, the aspect around the
minimum point can be observed in Fig. 9.26 (d) and (f). From these graphs,
based on fact that the Hessian of f0 on the search path is positive valued, we
infer that the point of convergence is a local minimum point.

In addition, Fig. 9.27 (a) shows the graphs of the distance
∥∥∥ϕ(k) − ϕ

∗
∥∥∥
X

of

the k-th approximate ϕ(k) obtained by the four methods to the approximate
minimum point ϕ∗ with respect to the iteration number k. The approximate
minimum point ϕ∗ is substituted by the numerical solution of ϕ when the
iteration time is taken larger than the given value in the H1 Newton method.
From this figure, it can easily be observed that the convergence orders for
the results obtained via the H1 Newton methods are higher than the first
order. However, from Fig. 9.27 (b), which shows the plot of the k-th distance∥∥∥ϕ(k) − ϕ

∗
∥∥∥
X

with respect to the (k − 1)-th distance, it can be observed easily

that the convergence order of the H1 Newton method is less than the second
order but is definitely more than the first order. The reason behind this result
is considered as the same as that stated at the end of Sect. 9.12.5.
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9.14 Summary

In Chap. 9, a shape optimization problem of domain variation type was
constructed with respect to the domain on which a boundary value problem
of a partial differential equation is defined and its solution looked at in detail.
The key points are as below:

(1) In a shape optimization problem of domain variation type, the design
variable is a function defined on an initial domain and represents the
displacement of each of the points from the reference domain to the new
domain after variation (Sect. 9.1). The linear space X and the admissible
set D of the design variable are defined by Eq. (9.1.1) and Eq. (9.1.3),
respectively. Furthermore, in Sect. 9.1.3, two notions of derivatives called
the shape derivative and partial shape derivative were introduced with
respect to a function and a functional defined on varying domains.

(2) In Sect. 9.2, the formulae for the shape derivatives relating to the Jacobi
matrix of domain mapping were established. Using these formulae, it was
shown in Sect. 9.3 that the shape derivatives of functions and functionals
can be obtained and there corresponding forms were established. These
formulae, in addition, were used to define a variety of variation rules for
functions in Sect. 9.4.

(3) In Sect. 9.6, considering a Poisson problem as a state determination
problem (Sect. 9.5), a shape optimization problem of domain variation
type was defined on X.

(4) It was shown that the shape derivative of a cost function can be obtained
via the Lagrange multiplier method. In this case, an evaluation method
using the formulae based on the shape derivative of a function given in
Theorem 9.8.2 and evaluation method using the formulae based on the
shape derivative of a function stated in Theorem 9.8.6 can be considered.
However, these shape derivatives are not necessarily in the linear space
containing the admissible set for the design variables, as pointed out in
Remark 9.8.7.

(5) In Sect. 9.9, an H1 gradient method using the shape derivative of a cost
function was defined on the space X. The solutions of the H1 gradient
method are contained in the admissible set (Theorem 9.9.6) excluding the
neighborhoods of singular points. Furthermore, in Sect. 9.9.2, it was
shown that if the second-order shape derivative of the cost function can
be calculated, it is also possible to obtain a descent direction for the cost
function using the H1 Newton method.

(6) In Sect. 9.10, it was shown that a solution to a shape optimization problem
of domain variation type with constraints can be constructed using the
same framework as the gradient method with respect to constrained
problems and Newton method with respect to constrained problems shown
in Chap. 3.
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(7) When the finite element method is used to solve a state determination
problem, the adjoint problem with respect to fi and the H1 gradient
method, the order evaluation of the finite element solution with respect
to the search vector φg can be obtained (Theorem 9.11.5).

(8) In Sect. 9.12, the first and second order shape derivatives of some cost
functions associated with a mean compliance minimization problem of a
linear elastic body with domain measure constraint were established.

(9) In Sect. 9.13, the first and second-order shape derivatives of some cost
functions associated with a mean flow resistance minimization problem of
a Stokes flow field with domain measure constraint were established.

Formulations and solutions of certain topology optimization problems of
density variation type and shape optimization problems of domain variation
type were introduced in Chaps. 8 and 9, respectively. As concluding remarks,
we give a comparison of these problems below, detailing their advantages and
disadvantages.

In the case of the density variation type, the density defined on a fixed
domain bears advantages and disadvantages. An advantage is that clear
theoretical development could easily be carried out because it enters the
conventional framework of a typical function optimization problem. Moreover,
replacing the density of the design variable by other material parameters, various
problems except the topology optimization problem can be formulated. For
example, when we use a healthy rate of stiffness instead of the density, an
identification problem of damage in a linear elastic body can be constructed [88].
On the other hand, a disadvantage can be mentioned due to the need of some
additional scheme to determine the boundary of a continuum from the obtained
density.

In contrast, in the case of the domain variation type, it is necessary to
prepare various formulas to obtain the shape derivatives of cost functions.
This is primarily due to the fact that the domains where the associated state
determination problems were defined vary. Especially, when one calculates the
second-order derivative, it is not easy to notice that a correction term (refer to
Eq. (9.1.9) and Eq. (9.3.11)) proportional to the first-order shape derivative of
the cost function that was obtained with respect to the product of the second
variation vector and variation of the first perturbation vector. On the other
hand, it is possible to perturb a boundary of a continuum directly in actual
numerical analysis. Hence, it is superior in the sense that the shape can be
found correctly.

In actual shape optimization problems, it is hoped that a suitable method
could easily be chosen considering its desired features.

9.15 Practice Problems

9.1 Suppose condition (2) in Theorem 9.8.2 holds. Show that the second term
on the right-hand side of Eq. (9.8.9) giving gpi is in L

∞ (Γp (ϕ) ;Rd
)
.
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9.2 In Problems 9.5.4 and 9.12.1, which were considered as state determination
problems in this chapter, a mixed Dirichlet–Neumann boundary condition
was assumed. However, in order to obtain the results in Theorem 9.8.2,
Hypothesis 9.5.3 (2) (β < π/3 when on mixed boundaries) has to be
satisfied with respect to the opening angle β. If the mixed boundary
condition is replaced with a Robin condition, Hypothesis 9.5.3 (1) (β <
2π/3 when on boundaries of the same type) then becomes applicable.
Hence, if the extended Poisson problem taken up in Chap. 5 (Problem
5.1.3) is simplified by removing the terms unrelated to the boundary
conditions and replacing with a domain variation type, then we obtain
the following.

Problem 9.15.1 (Poisson problem of Robin type) Let ϕ ∈ D and
c∂Ω (ϕ) : D → R and pR (ϕ) : D → R be given functions fixed with the
material. Find u : Ω (ϕ) → R which satisfies

−∆u = 0 in Ω (ϕ) ,

∂νu+ c∂Ω (ϕ)u = pR (ϕ) on ∂Ω(ϕ) .

□

Here, choose Problem 9.15.1 as the state determination problem and let
the cost function be

fi (ϕ, u) =

∫
∂Ω(ϕ)

ηRi (ϕ, u) dγ (9.15.1)

for i ∈ {0, 1, . . . ,m}, where ηRi (ϕ, u) is some function fixed with the
material. In this case, compute the shape derivative gi using the formulae
based on the shape derivative of a function. Moreover, state the condition
of the corner opening angle and the required regularities for c∂Ω, pR, ηRi

and ηRiu in order to have a similar regularity result for gi in Theorem
9.8.2.

9.3 In a shape optimization problem of domain variation type examined in
this chapter, if there is a crack on ∂Ω(ϕ) (opening angle β = 2π), or
if there is a Dirichlet boundary and Neumann boundary on a smooth
boundary (opening angle β = π), then Hypothesis 9.5.3 is not satisfied.
This would then imply that the assumption u ∈ S in Theorem 9.8.2 is
also not satisfied and therefore, it is not clear that the shape derivative is
obtained as an element of X ′. However, if the linear space of the design
variable (domain variation) is replaced with

X =
{
ϕ ∈ C0,1

(
D;Rd

) ∣∣ ϕ = 0Rd on Ω̄C0

}
,

it is possible to show that the shape derivative of the corresponding cost
function is a bounded linear functional with respect to this space. The
shape derivative can then be computed using a generalized J integral [5].
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Fig. 9.28: Path of boundary integral Pu.

Here, let us go through the calculation of an interim result used in
obtaining the shape derivative. Suppose Ω (ϕ) is a two-dimensional
domain and xC is the tip of a crack (opening angle βC = 2π) and of
an interior point on the homogeneous Dirichlet boundary or homogeneous
Neumann boundary. Moreover, suppose xM, as shown in Fig. 9.28, is a
point on a smooth boundary and a boundary between the Dirichlet and
Neumann boundaries (opening angle βM = π). In this case, think about
obtaining the shape derivative of a cost function at xC and xM with the
corresponding state determination problem defined as follows.

Problem 9.15.2 (Poisson problem of domain variation type)
Let ϕ ∈ D and b (ϕ) be a given function fixed with the material. Find
u : Ω (ϕ) → R which satisfies

−∆u = b (ϕ) in Ω (ϕ) ,

∂νu = 0 on ΓN (ϕ) ,

u = 0 on ΓD (ϕ)

□

Here, we replace the cost function of Eq. (9.6.1) with

fi (ϕ, u) =

∫
Ω(ϕ)

ζi (ϕ, u) dx− ci,

and assume, for simplicity, that ζi is not a function of ∇u. The shape
derivative of fi is computed as

⟨gi,φ⟩ = −Pu (∂Ω(ϕ) ,φ, u) [vi] + ⟨ĝiC,φ⟩+ ⟨ĝiM,φ⟩+ ⟨giR,φ⟩

using the P integral defined in a generalized J integral [5], where

−Pu (∂Ω(ϕ) ,φ, u) [vi]

=

∫
∂Ω(ϕ)

{
(∇u ·∇vi)ν ·φ

− ∂νu∇vi ·φ− ∂νvi∇u ·φ
}
dγ, (9.15.2)
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〈
ĝij ,φ

〉
= lim

ϵ→0
−
∫ βj

0

{
(∇u ·∇vi)ν ·φ− ∂νu∇vi ·φ

− ∂νvi∇u ·φ
}
ϵdθ, (9.15.3)

⟨giR,φ⟩ =
∫
∂Ω(ϕ)

bviν ·φ dγ +

∫
Ω(ϕ)

(ζiϕ ·φ+ ζi∇ ·φ) dx,

(9.15.4)

for j ∈ {C,M}, and βC = 2π and βM = π with respect to. Here,
Eq. (9.15.3) is the shape derivative of fi with respect to the variation
of the singular point. u and vi are given by

u (r, θ) = kjr
π/βj cos

π

βj
θ + uR, (9.15.5)

vi (r, θ) = lijr
π/βj cos

π

βj
θ + viR (9.15.6)

using (r, θ) coordinate with xj as the origin with respect to j ∈ {C,M}
as seen in Section 5.3. Here, kj and lij are constants and uR and viR
are elements of H2 (D;R). In this case, substitute Eq. (9.15.5) and
Eq. (9.15.6) into Eq. (9.15.3) and obtain ĝiC and ĝiM.
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