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Chapter 7

Abstract Optimum Design
Problem

We have seen in Chaps. 5 and 6 how boundary problems of partial differential
equations are constructed and how they are solved. If we compare them to
the optimum design problems looked at in Chap. 1, they correspond to state
determination problems. From this chapter, we finally start thinking about
optimum design problems targeting the shape or topology of a domain in which
the boundary value problem is defined. In this chapter, we construct an abstract
problem common to both problems, and explore the ways to solve them.

In Chap. 1, the basics of the optimum design problems were looked at. In
those problems considered in the chapter, the linear spaces for design variable
and the state variable were both finite-dimensional vector spaces. In this
chapter, such vector spaces will be extended to function spaces. Moreover,
a state determination problem is replaced by an abstract variation problem.
In this case the following points should be noted. The dual space of a
finite-dimensional vector space was the same finite-dimensional vector space.
Therefore, the derivative of the cost function with respect to a variation of the
design variable is an element of the same finite-dimensional vector space as that
of the design variable. However, if a function space is selected as a vector space,
its dual space generally becomes a different vector space. In this chapter, there
is a need to be careful of this. However, other than this, the same results as the
conditions satisfied by the optimal solution in Chap. 1 should be attainable.

Furthermore, with respect to numerical solutions (algorithms), the abstract
gradient method and abstract Newton method are defined by expanding the
gradient method and the Newton method shown in Chap. 3. Using their
solutions, the gradient method and Newton method with respect to constrained
problems can be considered similarly to those shown in Chap. 3. In these
cases, the numerical solutions of an abstract optimum design problem can
be constructed using the algorithms shown in Chap. 3 just by replacing the
corresponding terms.
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4 Chapter 7 Abstract Optimum Design Problem

Hence, if the content of this chapter is understood, the remaining issue
in the shape or topology optimization problem is specifying the admissible
set or function spaces with respect to these problems within the framework
of an abstract optimum design problem. In this case, clarifying the method
of calculation of the Fréchet derivative with respect to a variation of design
variable, and confirming that the solution with the abstract gradient method
or abstract Newton method using them is included in the admissible set of
the design variable become the focal points. These will be looked at for each
problem in Chaps. 8 and 9.

7.1 Linear Spaces of Design Variables

Think about making the optimum design problem abstract by remembering the
optimum design problem seen in Chap. 1. Here, let us use the mean compliance
minimization problem (Problem 1.1.4) of the stepped one-dimensional linear
elastic body in order to look at its correspondence with the abstract optimum
design problem.

In Problem 1.1.4, the linear space of design variables was set to be X = R2

and the linear space of state variables to be U = R2. In this chapter, X and
U can be also be function spaces. In this case, if the element of X is given,
we assume that a state determination problem can be constructed, the state
variables can be determined as an element of U , and cost function (functional)
defined on X × U can also be calculated. Here, if solutions using the gradient
or Hessian such as those looked at in Chap. 3 are considered, there is a need for
X and U to be a function space in which the Fréchet derivative can be defined.
Furthermore, if solutions via the abstract gradient method (Problem 7.6.1) or
abstract Newton method (Problem 7.6.4) to be shown later are to be considered,
X needs to be a real Hilbert space. Hence, in this chapter, we will assume X
in the following way.

In the optimization problems shown in Chaps. 8 and 9, the domains over
which the boundary problems of partial differential equations are defined are
the scope of the design. In this case, as shown in Chap. 5, in order for the
boundary problem of a partial differential equation to be defined, the domain
needs to have at least a Lipschitz boundary (Section A.5). In Chaps. 8 and
9, the functions representing the density or domain variation are chosen to be
the design variables. In this case, if the Lipschitz boundary is to be defined
using these functions, the function space Y for the functions needs to be of
class C0,1. Moreover, to show the existence of the optimum solution in Sect.
7.4, Y needs to be compactly embedded in X (D ⋐ X). In fact, in Chap.
8, for the d ∈ {2, 3}-dimensional bounded domain D, the function spaces X
and Y will be chosen as H1 (D;R) and H2 (D;R) ∩ C0,1 (D;R), respectively.
Similarly, in Chap. 9, for a bounded domain D ⊂ Rd, X and Y will be defined
as H1

(
D;Rd

)
and H2

(
D;Rd

)
∩ C0,1

(
D;Rd

)
, respectively. In relation to this,

Y ⋐ X is guaranteed by the Rellich–Kondrachov compact embedding theorem
(Theorem 4.4.15). Furthermore, the admissible set D of the design variables
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will be defined as sets satisfying additional conditions.
Hence, in this chapter, we shall denote the design variable as ϕ, which is an

element of D ⊂ Y ⋐ X. Furthermore, since the bounded conditions correspond
to the side constraint in Chap. 1, after this chapter, we assume that ϕ is an
interior point of D (ϕ ∈ D◦) when considering a gradient method or Newton
method. When some of the side constraints are activated, we include them in
the inequality constraints. Moreover, we will assume a variation of the design
variable as φ ∈ X (φ ∈ Y in Chap. 9) and define the Fréchet derivatives of
functions or functionals with respect to an arbitrary φ ∈ X as an element in
the dual space X ′ of X (Definition 4.4.5).

7.2 State Determination Problem

In the optimum design problem of Problem 1.1.4, the state variable was defined
by u and constructed so that it can be uniquely determined as a solution of the
state determination problem (Problem 1.1.3) when a ∈ D is given. The linear
space containing u was U = R2.

In this chapter, the state variable is written as u and uniquely determined as
a solution to the state determination problem given by an abstract variational
problem as shown later when the design variable ϕ ∈ D is given. This problem
is the same as Problem 5.2.3 but from the fact that the bilinear form a and the
linear form l depend on ϕ, they are rewritten as a (ϕ) and l (ϕ) respectively. U
is a real Hilbert space as per Problem 5.2.3.

Problem 7.2.1 (Abstract variational problem for ϕ) Let ϕ ∈ D and
define a (ϕ) : U × U → R as a bounded and coercive bilinear form on U
and l (ϕ) = l (ϕ) ( · ) = ⟨l (ϕ) , · ⟩ ∈ U ′. In this case, find u ∈ U such that

a (ϕ) (u, v) = l (ϕ) (v)

for every v ∈ U . □

Let us write Problem 7.2.1 in the following way. Let τ (ϕ) : U → U ′ be the
isomorphism given by the Lax–Milgram theorem (Theorem 5.2.4) for a given
bounded and coercive bilinear form a (ϕ) ( · , · ) and known term l (ϕ) ∈ U ′. In
this case, find u ∈ U which satisfies

s (ϕ, u) = l (ϕ)− τ (ϕ)u = 0U ′ . (7.2.1)

Moreover, as shown in Exercise 5.2.5 in Chap. 5, a non-homogeneous Dirichlet
problem is contained in an abstract variational problem by replacing with u ∈ U
in Eq. (7.2.1) by ũ = u − uD ∈ U . Here, l (ϕ) can be replaced by l̂ (ϕ) =
l (ϕ)− τ (ϕ)uD and becomes

s (ϕ, ũ) = l̂ (ϕ)− τ (ϕ) ũ = 0U ′ . (7.2.2)

For simplicity, in this chapter, we use Eq. (7.2.1).
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Moreover, as shown in Remark 7.6.3 later, in order to define the Fréchet
derivative of cost function with respect to a variation of the design variable,
the solution u of Problem 7.2.1 needs to be an element of the admissible set of
state variables S ⊂ U . In order for this to be satisfied, the known term l (ϕ) or
the regularity of domain need to be appropriately set. Their conditions will be
shown in Chaps. 8 and 9 depending on the specific optimum design problems.
Here, the design variable u is assumed to be obtained as an element of S.

Under this type of setting, in a similar manner to the state determination
problem (Problem 1.1.3) in Chap. 1, v ∈ U is taken to be an adjoint variable
(or a Lagrange multiplier) and

LS (ϕ, u, v) = −a (ϕ) (u, v) + l (ϕ) (v) (7.2.3)

is referred to as the Lagrange function for the state determination problem.
Here, u is not necessarily the solution of Problem 7.2.1. However, the element
u ∈ U which satisfies

LS (ϕ, u, v) = 0 (7.2.4)

with respect to an arbitrary v ∈ U is equivalent to the weak-form solution of
Problem 7.2.1.

7.3 Abstract Optimum Design Problem

In Problem 1.1.4, the cost functions f0 and f1 were defined as a function of the
design variable and the state variable. Here, the functionals f0, . . . , fm defined
on the admissible set D ⊂ X of the design variables defined in Sect. 7.1 and
the admissible set S ⊂ U of the state variables defined in Sect. 7.2 are set to
be cost functions and used in an abstract optimum design problem as follows.

Problem 7.3.1 (Abstract optimum design problem) For (ϕ, u) ∈ D × S,
if f0, . . . , fm : D × S → R is given, obtain ϕ which satisfies

min
(ϕ,u)∈D×S

{f0 (ϕ, u) | f1 (ϕ, u) ≤ 0, . . . , fm (ϕ, u) ≤ 0, Problem 7.2.1} .

□

Problem 7.3.1 can be thought of in the following way by using Figs. 2.1.1
and 2.1.3. Even if X becomes a real Hilbert space, there is no need to change
the image of the plane within the diagrams. Furthermore, if D only imposes
constraint conditions such as smoothness on an element in X with no constraint
conditions imposed using the norm of X directly, it again becomes a similar
plane image as X. However, the plane in this case can be thought to be a plane
made of only elements satisfying constraint conditions such as smoothness, just
like the set of rational numbers in the real numbers. Moreover, the set S of
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Eq. (2.1.1) called the admissible set of design variables in Chap. 2 can be
replaced by

S =
{
(ϕ, u (ϕ)) ∈ D × S | f1 (ϕ, u (ϕ)) ≤ 0, · · · , fm (ϕ, u (ϕ)) ≤ 0,

s (ϕ, u) = 0U ′
}

(7.3.1)

in this chapter. This set is an image of the sets on a plane satisfying f1 ≤ 0 and
f2 ≤ 0 in Figs. 2.1.1 and 2.1.3.

We shall now look at the Fréchet derivatives of the cost functions and KKT
conditions with respect to Problem 7.3.1. In this case, the notation of the
Lagrange function is used in several ways. Here, in order to avoid confusion,
let us summarize these relationships. Let the Lagrange function with respect to
Problem 7.3.1 be

L (ϕ, u, v0, v1, . . . , vm) = L0 (ϕ, u, v0) +
∑

i∈{1,...,m}

λiLi (ϕ, u, vi) . (7.3.2)

Here, λ = {λ1, . . . , λm}⊤ is a Lagrange multiplier with respect to f1 ≤ 0, . . . ,
fm ≤ 0. Furthermore, if the cost function fi is given as a functional of the
solution u of a state determination problem (Problem 7.2.1),

Li (ϕ, u, vi) = fi (ϕ, u) + LS (ϕ, u, vi) (7.3.3)

is referred to as the Lagrange function with respect to fi (ϕ, u). Here, LS is
the Lagrange function with respect to Problem 7.2.1 defined by Eq. (7.2.3).
Moreover, vi is a Lagrange multiplier defined with respect to fi. If fi contains

boundary integrals on the Dirichlet boundary, for example

∫
ΓD

vDi∂νu dγ with

respect to a Poisson problem, ṽi = vi − vDi is assumed to be an element of U .
Details are shown in Chaps. 8 and 9. Hereinafter, boundary integrals on the
Dirichlet boundary are not included in fi and vi is an element of U .

7.4 Existence of an Optimum Solution

The abstract optimum design problem was defined in Problem 7.3.1. In this
section, we will confirm the existence of an optimum solution. To do this,
Weierstrass’s theorem (Theorem 2.3.2) shown in Chap. 2 becomes a basic
principle. Here, we will consider a corresponding theorem for the abstract
optimum design problem. The concept used here are explained precisely in [2,
Section 2.3, p. 38, Section 2.4, p. 45].

In the optimization problems considered in Chap. 2, the cost functions were
defined only for the design variables. In contrast, in the case of optimum design
problems, the cost functions are defined as functions of the design variable ϕ
and state variable u (ϕ) which is determined with ϕ. Hence, the assumption
of Theorem 2.3.2 in Chap. 2 that an admissible set of design variables is a
bounded closed subset is replaced with that the admissible set for (ϕ, u (ϕ)), or
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its subset S defined in Eq. (7.3.1), is compact on X ×U in the case of abstract
optimum design problems. Since u (ϕ) is continuously determined from ϕ ∈ D,
the admissible set of (ϕ, u (ϕ)) is given by the graph of u (ϕ) with respect to ϕ
defined as

F = {(ϕ, u (ϕ)) ∈ D × S | Problem 7.2.1} . (7.4.1)

Then, we need to show that F is compact on X × U in the abstract optimum
design problem (Problem 7.3.1). To do it, we form the following assumption in
addition to the hypothesis shown in the abstract variational problem (Problem
7.2.1).

Hypothesis 7.4.1 (Continuity of a (ϕ) and l (ϕ)) Let a (ϕ) and l (ϕ)
defined in Problem 7.2.1 be continuous with respect to ϕ ∈ D, that is,
a (ϕn) → a (ϕ) and l (ϕn) → l (ϕ) hold with respect to an arbitrary Cauchy
sequence ϕn → ϕ on X which is uniformly convergent in D. □

The compactness of F can be shown as follows [2, Lemma 2.1, p. 14, Lemma
2.12, p. 39].

Lemma 7.4.2 (Compactness of F) In addition to the hypothesis in
Problem 7.2.1, let Hypothesis 7.4.1 be satisfied. With respect to an arbitrary
Cauchy sequence ϕn → ϕ on X which is uniformly convergent in D and the
solutions un = u (ϕn) ∈ U (n→ ∞) of Problem 7.2.1, the convergence

un → u strongly in U

holds, and u = u (ϕ) ∈ U solves Problem 7.2.1. □

Proof With respect to the solution un of Problem 7.2.1 for ϕn,

αn ∥un∥2U ≤ a (ϕn) (un, un) = l (ϕn) (un) ≤ ∥l (ϕn)∥U′ ∥un∥U

holds. Here, αn is a positive constant used in the definition of coerciveness for a (ϕn).
When ϕn → ϕ is uniformly convergent in D, αn can be replaced by a positive constant
α not depending on n. From the equation, it can be confirmed that {un}n∈N is
bounded. Then, there exists a subsequence such that un → u weakly in U .

Next, we will show that u is the solution of Problem 7.2.1 for ϕ. From the definition
of Problem 7.2.1,

lim
n→∞

a (ϕn) (un, v) = lim
n→∞

l (ϕn) (v) (7.4.2)

holds with respect to an arbitrary v ∈ U . Using Hypothesis 7.4.1, the right-hand side
of Eq. (7.4.2) becomes

lim
n→∞

l (ϕn) (v) = l (ϕ) (v) . (7.4.3)

The left-hand side of Eq. (7.4.2) becomes

lim
n→∞

a (ϕn) (un, v) = a (ϕ) (u, v) . (7.4.4)
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Indeed, we have Eq. (7.4.4) from

|a (ϕn) (un, v)− a (ϕ) (u, v)|
≤ |a (ϕn) (un, v)− a (ϕ) (un, v)|+ |a (ϕ) (un, v)− a (ϕ) (u, v)|
≤ ∥a (ϕn)− a (ϕ)∥L(U×U,R) ∥un∥U ∥v∥U + |a (ϕ) (un − u, v)|

and by using Hypothesis 7.4.1 and un → u weakly in U . Substituting Eq. (7.4.3) and
Eq. (7.4.4) in Eq. (7.4.2), it is confirmed that u is the solution of Problem 7.2.1 for ϕ.

Since the weak convergence was shown, then to prove the strong convergence of
{un}n∈N to u, it is sufficient to show that

∥un∥U → ∥u∥U (n→ ∞). (7.4.5)

Indeed, when using

|||v||| = ⟨τ (ϕ) v, v⟩

as a norm on U , we have

|||un||| = ⟨τ (ϕ)un, un⟩ = ⟨(τ (ϕ)− τ (ϕn))un, un⟩+ ⟨τ (ϕn)un, un⟩
= ⟨(τ (ϕ)− τ (ϕn))un, un⟩+ l (ϕn) (un)

→ l (ϕ) (u) = |||u||| (n→ ∞). (7.4.6)

Then, un → u strongly in U is proved. □

We assume that u (ϕ) belongs to S is guaranteed in the setting of Problem
7.2.1.

On the other hand, we form the following hypothesis for the objective
function.

Hypothesis 7.4.3 (Continuity of f0) Let f0 be lower semi-continuous on S
defined in Eq. (7.3.1). That is, with respect to an arbitrary Cauchy sequence
ϕn → ϕ on X which is uniformly convergent in D, by which we determine a
Cauchy sequence u (ϕn) → u (ϕ) ((ϕn, u (ϕn)) , (ϕ, u (ϕ)) ∈ S), it holds that

lim
n→∞

inf f0 (ϕn, u (ϕn)) ≥ f0 (ϕ, u (ϕ)) .

□

Using the hypotheses and the previous lemma above, we have the following
result for the existence of a solution to the abstract optimum design problem
(Problem 7.3.1) [2, Theorem 2.1, p. 16, Theorem 2.8, p. 41].

Theorem 7.4.4 (Existence of an optimum solution) In addition to the
hypothesis in Problem 7.2.1, suppose Hypothesis 7.4.1 is satisfied. Let S in
Eq. (7.3.1) not be empty and compact in X × U . Moreover, f0 is lower
semi-continuous (Hypothesis 7.4.3) on S. Then, there exists a minimum point
in Problem 7.3.1. □
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Proof Let {ϕn}n∈N (ϕn ∈ D) be a minimizing sequence in Problem 7.3.1, and

q = inf
(ϕ,u(ϕ))∈S

f0 (ϕ, u (ϕ)) = lim
n→∞

f0 (ϕn, u (ϕn)) . (7.4.7)

Since D is compact, there exists a subsequence which we still denote by {ϕn}n∈N and
ϕ∗ ∈ D such that

ϕn → ϕ∗ strongly in X. (7.4.8)

From Lemma 7.4.2, we have

u (ϕn) → u (ϕ∗) strongly in U, (7.4.9)

where u (ϕn) and u (ϕ
∗) are the solutions of Problem 7.2.1 with respect to ϕn and ϕ∗,

respectively. Using Eq. (7.4.8), Eq. (7.4.9), Eq. (7.4.7) and the lower semi-continuity
of f0 on S, we conclude that the limit

q = lim inf
n→∞

f0 (ϕn, u (ϕn)) = f0 (ϕ
∗, u (ϕ∗))

holds. It means that (ϕ∗, u (ϕ∗)) ∈ S is a minimum point in Problem 7.3.1. □

7.5 Derivatives of Cost Functions

From this point onward, assuming that the conditions for the existence
of a solution of the abstract optimum design problem (Problem 7.3.1) are
satisfied, we shall examine a solution to an optimization problem with equality
constraints. In this book, we focus on an approach based on the gradient
method, so next let us think about the way to seek the Fréchet derivative
of a cost function fi with respect to a variation of ϕ on X. Here, there is
a need to seek the Fréchet derivative on X when the equality constraints of
the abstract variational problem (Problem 7.2.1) are satisfied. With respect
to the equality-constrained problems on a finite-dimensional vector space, the
Lagrange multiple method described in Section 2.6.2 (or adjoint variable method
described in Section 2.6.5) was used. This principle is based on Theorem 2.6.4.
Here, let us think about expanding this into the function space.

Let us expand Problem 2.6.1 to a problem defined on X×U . Let us consider
an optimization problem with equality constraint such as the following. Here,
let fi be a cost function for i ∈ {1, . . . ,m}.

Problem 7.5.1 (Optimization problem with equality constraint) Let
(ϕ, u) ∈ X × U . If fi : X × U → R is given, find (ϕ, u) which satisfies

min
(ϕ,u)∈X×U

{fi (ϕ, u) | s (ϕ, u) = 0U ′} ,

where s (ϕ, u) is defined by Eq. (7.2.1). □
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In this chapter, an arbitrary variation of (ϕ, u) will be denoted by (φ,w) ∈
X × U and the Fréchet derivative of s and fi will be written as

f ′i (ϕ, u) [φ,w] = fiϕ (ϕ, u) [φ] + fiu (ϕ, u) [w]

= ⟨gfi , φ⟩+ fiu (ϕ, u) [w] , (7.5.1)

s′ (ϕ, u) [φ,w] = sϕ (ϕ, u) [φ] + su (ϕ, u) [w]

= gh [φ]− τ (ϕ)w, (7.5.2)

respectively. We shall use these notations to show the result of Theorem 2.6.4
being expanded.

Theorem 7.5.2 (1st necessary condition for a minimizer) Let fi and s
of Problem 7.5.1 be elements of C1 (X × U ;R) and C1 (X × U ;U ′), respectively.
Let the Fréchet derivatives of fi and s with respect to an arbitrary φ ∈ X be
given by Eq. (7.5.1) and Eq. (7.5.2), respectively. In this case, if (ϕ, u) is the
minimal point of Problem 7.5.1, there exists a vi ∈ U which satisfies

⟨gfi , φ⟩+ ⟨gh [φ] , vi⟩+ ⟨fiu (ϕ, u)− τ∗ (ϕ) vi, w⟩ = 0, (7.5.3)

⟨l (ϕ)− τ (ϕ)u,w⟩ = 0 (7.5.4)

for an arbitrary (φ,w) ∈ X × U . Here, τ∗ (ϕ) : U → û is the adjoint operator
of τ (ϕ). □

Proof From the fact that we assume s ∈ C1 (X × U ;U ′) and there is a unique
solution u which satisfies s (ϕ, u) = 0U′ , s satisfies the following assumptions for the
implicit function theorem (Theorem A.4.2) in neighborhood BX × BU ⊂ X × U of
(ϕ, u) ∈ X × U :

(1) s (ϕ, u) = 0U′ ,

(2) s ∈ C0 (BX ×BU ;U
′),

(3) s (ϕ, · ) ∈ C1 (BU ;U
′) with respect to an arbitrary y = (φ,w) ∈ BX × BU and

su (ϕ, u) = −τ : U → U ′ is continuous at (ϕ, u),

(4) (su (ϕ, u))−1 = −τ−1 : U ′ → U is bounded and linear.

Hence, from the implicit function theorem, there exist some neighborhood UX ×UU ⊂
BX × BU and continuous mapping υ : UX → UU (υ is the Greek letter upsilon), and
s (ϕ, u) = 0U′ can be written as

u = υ (ϕ) . (7.5.5)

Therefore, y (ϕ) = (ϕ, υ (ϕ)) ∈ C1 (D;X × U) can be defined.
Hence, write f̃i (ϕ) = fi (ϕ, υ (ϕ)) = fi (y (ϕ)). Since fi ∈ C1 (X × U ;R), when ϕ

is a local minimizer,

f̃ ′
i (ϕ) [φ] = y′∗ (ϕ) ◦ gi (ϕ, υ (ϕ)) [φ] = 0 (7.5.6)

holds with respect to an arbitrary φ ∈ X. Here,

gi (ϕ, υ (ϕ)) = f ′
i (ϕ, υ (ϕ)) ∈ L

(
X;X ′ × U ′) = L (X;L (X × U ;R)) ,
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y′ (ϕ) ∈ L (X;X × U) , y′∗ (ϕ) ∈ L
(
X ′ × U ′;X ′) .

L (X;U) represents the bounded linear operator X → U . ◦ represents a composition
operator. We rewrite the relationship of Eq. (7.5.6) as follows.

Firstly, let us write the admissible set of (ϕ, u) as

S = {(ϕ, u) ∈ X × U | s (ϕ, u) = 0U′ } . (7.5.7)

For y (ϕ) = (ϕ, u) ∈ S, we denote the kernel of s′ (ϕ, u) ∈ L (X × U ;U ′) by

TS (ϕ, u) =
{
(φ, υ̂) ∈ X × U

∣∣ s′ (ϕ, u) [φ, υ̂] = 0U′
}

(7.5.8)

and the space orthogonal to TS (ϕ, u) as

T ′
S (ϕ, u)

=
{
(ψ,w) ∈ X ′ × U ′ | ⟨(φ, υ̂) , (ψ,w)⟩ = 0 for all (φ, υ̂) ∈ TS (ϕ, u)

}
.
(7.5.9)

Moreover, the relationship between TS (ϕ, u) and the Fréchet derivative y′ (ϕ) of
y (ϕ) can be obtained in the following way. If we take the Fréchet derivative on both
sides of s (ϕ, u) = 0U′ with respect to an arbitrary φ ∈ X, we get

s′ (ϕ, u) ◦ y′ (ϕ) [φ] = 0U′ . (7.5.10)

Here, the invertibility of τ (ϕ) was used. This relationship shows that the image space
Im y′ (ϕ) of y′ (ϕ) is actually the kernel space Ker s′ (ϕ, u) of s′ (ϕ, u). In other words,
the following is established:

TS (ϕ, u) = Im y′ (ϕ) . (7.5.11)

We use the relationship above to rewrite Eq. (7.5.6). When ϕ is a local minimizer,
gi (ϕ, υ (ϕ)) needs to be orthogonal to an arbitrary (φ, vi) ∈ TS (ϕ, u). Hence,

gi (ϕ, υ (ϕ)) ∈ T ′
S (ϕ, u) . (7.5.12)

Here, from the theorem relating to the orthogonal complement space of the image
space and the kernel space and Eq. (7.5.11),

T ′
S (ϕ, u) = (TS (ϕ, u))⊥ =

(
Ker s′ (ϕ, u)

)⊥
= Im s′∗ (ϕ, u)

is established. Here, s′∗ (ϕ, u) ∈ L (U ;X ′ × U ′). Therefore, Eq. (7.5.12) is equivalent
that there exists some vi ∈ U and

fiϕ (ϕ, u) [φ] + fiu (ϕ, u) [w] + ⟨sϕ (ϕ, u) [φ] , vi⟩+ ⟨su (ϕ, u) [w] , vi⟩
= ⟨gfi , φ⟩+ ⟨gh [φ] , vi⟩+ ⟨fiu (ϕ, u)− τ∗ (ϕ) vi, w⟩ = 0

holds with respect to an arbitrary (φ,w) ∈ X × U . In other words, Eq. (7.5.3) is
established. Moreover, Eq. (7.5.4) holds if u is the solution of Eq. (7.2.1). □
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7.5.1 Adjoint Variable Method

Let us define the adjoint variable method in the following way based on Theorem
7.5.2. vi ∈ U is called an adjoint problem with respect to fi, and is determined
so that the second term on the left-hand side of Eq. (7.5.3) becomes zero. In
other words, let it be the solution of the following problem.

Problem 7.5.3 (Adjoint problem with respect to fi) When ϕ ∈ X and
the solution u ∈ U of Eq. (7.2.1) in this case as well as fiu (ϕ, u) ∈ U ′ are given,
obtain a function vi ∈ U which satisfies

fiu (ϕ, u)− τ∗ (ϕ) vi = 0U ′ . (7.5.13)

Here, τ (ϕ) is the same as Eq. (7.2.1). □

If the solution vi of Problem 7.5.3 is used, Eq. (7.5.3) can be written as

⟨gfi , φ⟩+ ⟨gh [φ] , vi⟩ = ⟨gi, φ⟩ = 0. (7.5.14)

When u is the solution of Eq. (7.2.1) and (ϕ, u) is the minimal point of Problem
7.5.1, Eq. (7.5.14) holds by Theorem 7.5.2.

The gi in this case is the gradient of the Fréchet derivative of fi with respect
to φ ∈ X when u continues to be the solution of the state determination problem
(Problem 7.2.1), even when the design variable varies with an arbitrary φ ∈ X.
Here, if υ (ϕ) of Eq. (7.5.5) defined in the proof of Theorem 7.5.2 is used, the
following can be written with respect to f̃i (ϕ) = fi (ϕ, υ (ϕ)):

f̃ ′i (ϕ) [φ] = ⟨gi, φ⟩ . (7.5.15)

7.5.2 Lagrange Multiplier Method

The gradient gi of the Fréchet derivative of the cost function fi with respect to
an arbitrary variation φ ∈ X of design variable can also be obtained from the
Lagrange multiplier method shown next. This method is used in Chaps. 8 and
9 because the process is explicit.

As defined in Problem 2.6.5, the Lagrange multiplier method is a method
for finding candidates for solutions by replacing optimization problems with
equality constraints with stationary conditions of Lagrange functions. Hence,
set the Lagrange function of Problem 7.5.1 to be

Li (ϕ, u, vi) = fi (ϕ, u) + ⟨s (ϕ, u) , vi⟩ = fi (ϕ, u) + LS (ϕ, u, vi) . (7.5.16)

Here, LS (ϕ, u, vi) is a Lagrange function of the state determination problem
(Problem 7.2.1). The function u is not necessary for the solution of Problem
7.2.1. vi is the Lagrange multiplier with respect to the state determination
problem prepared for fi and assumed to be an element of U , similarly to
Theorem 7.5.2. In this case, the Fréchet derivative of Li (ϕ, u, vi) with respect
to an arbitrary variation (φ, û, v̂i) ∈ X × U × U of (ϕ, u, vi) becomes

L ′
i (ϕ, u, vi) [φ, û, v̂i]
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= Liϕ (ϕ, u, vi) [φ] + Liu (ϕ, u, vi) [û] + Livi (ϕ, u, vi) [v̂i] . (7.5.17)

The following can be obtained with respect to the third term on the right-hand
side of Eq. (7.5.17):

Livi
(ϕ, u, vi) [v̂i] = LS (ϕ, u, v̂i) . (7.5.18)

The right-hand side of Eq. (7.5.18) is the Lagrange function of the state
determination problem (Problem 7.2.1). In this case, if u is a solution of the state
determination problem, the third term on the right-hand side of Eq. (7.5.17)
becomes zero. Moreover, the following equation holds:

Liu (ϕ, u, vi) [û] = fiu (ϕ, u) [û] + LSu (ϕ, u, vi) [û]

= ⟨fiu (ϕ, u)− τ∗ (ϕ) vi, û⟩ . (7.5.19)

The conditions under which Eq. (7.5.19) becomes zero with respect to an
arbitrary û ∈ U is the same as the weak-form equation of the adjoint problem
(Problem 7.5.3). Hence, if the weak solution of the adjoint problem is set to be
vi, the second term on the right-hand side of Eq. (7.5.17) becomes zero.

Furthermore, the first term on the right-hand side of Eq. (7.5.17) becomes

Liϕ (ϕ, u, vi) [φ] = ⟨gfi , φ⟩+ ⟨gh [φ] , vi⟩ = ⟨gi, φ⟩ . (7.5.20)

The gi of Eq. (7.5.20) matches the gi of Eq. (7.5.14).
This relationship is an expression which is an abstract format of Eq. (1.1.37)

in Chap. 1. In Chaps. 8 and 9, the stationary conditions of a Lagrange function
with respect to fi will be used to seek gi as shown here.

7.5.3 Second-Order Fréchet Derivatives of Cost functions

Furthermore, let us think about the second-order derivatives of the cost
functions with respect to a variation of design variable based on the definition
of a Fréchet derivative (Definition 4.5.4).

In Section 1.1.6, the second-order derivative of mean compliance with respect
to a variation of design variables when a stepped one-dimensional linear elastic
problem is set to be a state determination problem was sought by using the
second-order derivative of the Lagrange function L0. In this regard, it was
crucial to substitute for the variation û of the state variable u with the variation
û which satisfies the equality constraints of the state determination problem
based on Theorems 2.6.6 and 2.6.7. Here, let us think about something similar
with respect to an abstract optimum design problem (Problem 7.5.1) with
equality constraints.

With respect to Li defined by Eq. (7.5.16), (ϕ, u) is thought of as a design
variable based on the definitions in Chap. 2. In this case, the second-order
Fréchet derivative of Li with respect to arbitrary variations (φ1, û1) and
(φ2, û2) ∈ TS (ϕ, u) of (ϕ, u) ∈ S becomes

Li(ϕ,u)(ϕ,u) (ϕ, u, vi) [(φ1, û1) , (φ2, û2)]
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= (Liϕ (ϕ, u, vi) [φ1] + Liu (ϕ, u, vi) [û1])ϕ [φ2]

+ (Liϕ (ϕ, u, vi) [φ1] + Liu (ϕ, u, vi) [û1])u [û2]

= Liϕϕ (ϕ, u, vi) [φ1, φ2] + Liuϕ (ϕ, u, vi) [û1, φ2]

+ Liϕu (ϕ, u, vi) [φ1, û2] + Liuu (ϕ, u, vi) [û1, û2] . (7.5.21)

Using it, we have the following result corresponding to Theorem 2.6.6.

Theorem 7.5.4 (The second-order necessary condition) Let fi and s be
elements of C2 (X × U ;R) and C2 (X × U ;U ′), respectively. If (ϕ, u) is a local
minimizer of Problem 7.5.1,

Li(ϕ,u)(ϕ,u) (ϕ, u, vi) [(φ, υ̂) , (φ, υ̂)] ≥ 0 (7.5.22)

holds with respect to an arbitrary (φ, υ̂) ∈ TS (ϕ, u). □

Proof In the proof of Theorem 7.5.2, the assumption s (ϕ, · ) ∈ C1 (BU ;U
′) for the

implicit function theorem is replaced by s (ϕ, · ) ∈ C2 (BU ;U
′), and then using υ (ϕ)

in Eq. (7.5.5), y (ϕ) = (ϕ, υ (ϕ)) ∈ C2 (D;X × U) is determined. From Eq. (7.5.10),
we have

s′′ (ϕ, u)
[
y′ (ϕ) [φ] , y′ (ϕ) [φ]

]
= 0U′ (7.5.23)

with respect to y′ (ϕ) [φ] ∈ TS (ϕ, u). Hence, if (ϕ, u) is a local minimizer of Problem
7.5.1,

Li(ϕ,u)(ϕ,u) (ϕ, u, vi)
[
y′ (ϕ) [φ] , y′ (ϕ) [φ]

]
= f̃ ′′

i (ϕ) [φ,φ] ≥ 0 (7.5.24)

holds with respect to y′ (ϕ) [φ] ∈ TS (ϕ, u). □

Moreover, corresponding to Theorem 2.6.7, we obtain the following result.

Theorem 7.5.5 (The second-order sufficient condition) Under the
assumptions of Theorem 7.5.4, if Eq. (7.5.3) and Eq. (7.5.4) are satisfied at
(ϕ, u, vi) ∈ X × U2 and Eq. (7.5.22) replacing ≥ with > holds, then (ϕ, u) is a
local minimizer of Problem 7.5.1. □

Proof When (ϕ, u, vi) ∈ X×U2 is a stationary point of Li in S, with respect to an
arbitrary point y (ϕ+ φ) = y (ϕ) + z (φ) in a neighborhood B ⊂ S of y (ϕ) = (ϕ, u),
there exists a θ ∈ (0, 1) satisfying

f̃i (ϕ+ φ)− f̃i (ϕ) =
1

2
Li(ϕ,u)(ϕ,u) (ϕ+ θφ, u (ϕ+ θφ) , vi) [z (φ) , z (φ)]

for all y (ϕ) + z (φ) ∈ B. From the assumption, since the right-hand side is greater
than or equal to zero, f̃i (ϕ) ≤ f̃i (ϕ+ φ) holds. □

In view of Theorems 7.5.4 and 7.5.5, since the left-hand side of Eq. (7.5.24)
is the Hessian of f̃i with respect to an arbitrary variation φ ∈ X of ϕ, we write
it as hi (ϕ, u, vi) ∈ L2 (X ×X;R) (Definition 4.5.4). hi is calculated as

hi (ϕ, u, vi) [φ1, φ2]
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= (Liϕ (ϕ, u, vi) [φ1] + Liu (ϕ, u, vi) [υ̂1])ϕ [φ2]

+ (Liϕ (ϕ, u, vi) [φ1] + Liu (ϕ, u, vi) [υ̂1])u [υ̂2]

= Liϕϕ (ϕ, u, vi) [φ1, φ2] + Liuϕ (ϕ, u, vi) [υ̂1, φ2]

+ Liϕu (ϕ, u, vi) [φ1, υ̂2] + Liuu (ϕ, u, vi) [υ̂1, υ̂2] , (7.5.25)

where, in order that (φj , υ̂j) ∈ TS (ϕ, u) for j ∈ {1, 2}, υ̂j = υ′ (ϕ) [φj ] has to be
determined using the equation

LSϕu (ϕ, u, v) [φj , υ̂j ] = 0 (7.5.26)

for all φj ∈ X. These specific results of hi are shown in Chaps. 8 and 9.

7.5.4 Second-Order Fréchet Derivative of Cost Function
Using Lagrange Multiplier Method

The application of the Lagrange multiplier method in obtaining the second-order
Fréchet derivative of a cost function is described as follows. Recalling the
definition of the second-order Fréchet derivative (Definition 4.5.4), and that
u and vi are the solutions of the state determination and adjoint problems,
respectively, we fix φ1 and define the Lagrange function with respect to ⟨gi, φ1⟩
in Eq. (7.5.20) by

LIi (ϕ, u, vi, wi, zi) = ⟨gi, φ1⟩+ LS (ϕ, u, wi) + LAi (ϕ, vi, zi) , (7.5.27)

where LS is defined by Eq. (7.2.3). LAi is the Lagrange function of the adjoint
problem (Problem 7.5.3) with respect to fi defined by

LAi (ϕ, vi, zi) = Liu (ϕ, u, vi) [zi] = ⟨fiu (ϕ, u)− τ∗ (ϕ) vi, zi⟩ , (7.5.28)

where Liu (ϕ, u, vi) [zi] is given by Eq. (7.5.19). wi ∈ U and zi ∈ U are the
adjoint variables provided for u and vi in gi.

With respect to arbitrary variations (φ2, û, v̂i, ŵi, ẑi) ∈ X × U4 of
(ϕ, u, vi, wi, zi), the derivative of LIi is written as

L ′
Ii (ϕ, u, vi, wi, zi) [φ2, û, v̂i, ŵi, ẑi]

= LIiϕ (ϕ, u, vi, wi, zi) [φ2] + LIiu (ϕ, u, vi, wi, zi) [û]

+ LIivi (ϕ, u, vi, wi, zi) [v̂i] + LIiwi (ϕ, u, vi, wi, zi) [ŵi]

+ LIizi (ϕ, u, vi, wi, zi) [ẑi] . (7.5.29)

The fourth term on the right-hand side of Eq. (7.5.29) vanishes if u is the solution
of the state determination problem. If vi can be determined as the solution of
the adjoint problem, the fifth term of Eq. (7.5.29) also vanishes.

The condition that the second term on the right-hand side of Eq. (7.5.29)
satisfies

LIiu (ϕ, u, vi, wi, zi) [û] = 0 (7.5.30)
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with respect to arbitrary variation of û ∈ U gives the adjoint problem with
respect to ⟨gi, φ1⟩ to determine wi. The condition that the third term on the
right-hand side of Eq. (7.5.29) satisfies

LIivi (ϕ, u, vi, wi, zi) [v̂i] = 0 (7.5.31)

with respect to arbitrary variation of v̂i ∈ U gives the adjoint problem with
respect to ⟨gi, φ1⟩ to determine zi.

Here, u, vi, wi (φ1) and zi (φ1) are assumed to be the weak solutions of
Problems 7.2.1, 7.5.3, Eq. (7.5.30) and Eq. (7.5.31), respectively. If we denote
fi (ϕ, u) by f̃i (ϕ), then we can write

LIiϕ (ϕ, u, vi, wi (φ1) , zi (φ1)) [φ2] = f̃ ′′i (ϕ) [φ1, φ2]

= gHi (ϕ, φ1) [φ2] . (7.5.32)

In this book, gHi (ϕ, φ1) [φ2] is called the Hesse gradient.

7.6 Descent Directions of Cost Functions

In Sect. 7.5, it became apparent that the first and second-order Fréchet
derivative of cost functions f̃0, . . . , f̃m with respect to a variation of design
variable can be obtained. Hence, let us think about making the solution to the
optimization problem shown in Chap. 3 abstract.

7.6.1 Abstract Gradient Method

Let us make the gradient method abstract. From now on, let us go with the
notation in Chap. 3 to write f̃i (ϕ) as fi (ϕ). Here, let us assume that the
Fréchet derivative of fi (ϕ) can be calculated and think about obtaining the
minimum point of fi (ϕ).

In the gradient method on a finite-dimensional vector space seen in Section
3.3 (Problem 3.3.1), when X = Rd, the bilinear form aX ( · , · ) = ( · ) · (A ( · ))
using the positive definite symmetric matrix A was an operator X × X →
R which is coercive (Definition 5.2.1), bounded and symmetric. Focusing on
these characteristics, an abstract gradient method such as the one below can be
thought of.

Problem 7.6.1 (Abstract gradient method) Let X ⋑ D be a real Hilbert
space. Let aX : X ×X → R be a coercive and bounded bilinear form on X. In
other words, with respect to an arbitrary φ,ψ ∈ X, there exists some α, β > 0
and

aX (φ,φ) ≥ α ∥φ∥2X , |aX (φ,ψ)| ≤ β ∥φ∥X ∥ψ∥X (7.6.1)

is taken to form. With respect to fi ∈ C1 (X;R) (Definition 4.5.4), let gi (ϕk) ∈
X ′ be the Fréchet derivative at ϕk ∈ D◦ which is not a local minimizer. In this
case, obtain a φgi ∈ X which satisfies

aX (φgi, φ) = −⟨gi (ϕk) , φ⟩ (7.6.2)
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with respect to an arbitrary φ ∈ X. □

In Problem 7.6.1, the symmetry aX (φ,ψ) = aX (ψ,φ) of aX was not
assumed. This is because the desired result can be obtained later in Theorem
7.6.2 without using symmetry. In reality, it is possible to think of a
non-symmetric example among coercive and bounded linear forms in a real
Hilbert space. For example, with respect to an arbitrary u, v ∈ X defined on
X = H1

0 (Ω;R),

a (u, v) =

∫
Ω

(
∇u ·∇v +

∂u

∂x1
v

)
dx

is a coercive and bounded bilinear form even though it is asymmetric.1 However,
when considering the numerical solution, it is desirable to assume the symmetry
of aX . Specific provisions are shown in response to the problems in Chaps. 8
and 9.

The following result is obtained with respect to Problem 7.6.1.

Theorem 7.6.2 (Abstract gradient method) The solution φgi of Problem
7.6.1 exists uniquely in X and the inequality

∥φgi∥X ≤ 1

α
∥gi (ϕk)∥X′ (7.6.3)

is established. Here, α is a positive constant used in Eq. (7.6.1). Furthermore,
φgi is the descent direction of fi at ϕ. □

Proof The unique existence and Eq. (7.6.3) can be seen from the Lax–Milgram
theorem. Furthermore, φgi satisfies Eq. (7.6.2), hence

fi (ϕ+ ϵ̄φgi)− fi (ϕ) = ϵ̄ ⟨gi, φgi⟩+ o (|ϵ̄|) = −ϵ̄aX (φgi, φgi) + o (|ϵ̄|)

≤ −ϵ̄α ∥φgi∥2X + o (|ϵ̄|)

holds with respect to a positive constant ϵ̄. □

Even among the abstract gradient methods, let us refer to the case when a
function space of H1-class is chosen in X as the H1 gradient method.

Theorem 7.6.2 shows that the solution of the abstract gradient method
(Problem 7.6.1) φgi is in X. However, there is no guarantee that φgi is in
D. Hence, there is a need to note the following.

Remark 7.6.3 (Solution of abstract gradient method) In order to use
the solution φgi of the abstract gradient method (Problem 7.6.1) in the solution
for the abstract optimum design problem (Problem 7.3.1), φgi should be
obtained as an element of D. The following needs to be noted to satisfy the
condition:

1This a appears in the weak form of the problem in which a convective term is added to
the homogeneous Poisson problem [F. Kikuchi, personal communication].
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(1) In order for the solution φgi of the abstract gradient method (Problem
7.6.1) to be included in D, gi needs to be included within a set of functions
with appropriate regularity. For this result, the known term l (ϕ) and
boundary regularities need to be set appropriately in order for the solution
u of the state determination problem (Problem 7.2.1) to be included in
an appropriate set S of functions. Furthermore, fiu (ϕ, u) needs to be
appropriately set so that the solution vi of the adjoint problem (Problem
7.5.3) is in the appropriate function set S. Details of these are shown in
Chaps. 8 and 9.

(2) When this is not possible (for example when there are special constraint
conditions imposed on D), in seeking φgi, or after it is been sought,
there is a need to add extra procedures to satisfy the necessary constraint
conditions under D.

□

7.6.2 Abstract Newton Method

Next let us make the Newton method abstract. Here, let us assume that
the Fréchet derivative ⟨gi (ϕk) , φ⟩ of fi (ϕ) and second-order Fréchet derivative
hi (ϕk) [φ1, φ2] can be calculated, and think about obtaining the minimum point
of fi (ϕ).

As seen in Section 3.5, the bilinear form aX ( · , · ) = ( · ) · (A ( · )) used in
the gradient method was replaced by h (xk) [ · , · ] = ( · ) · (H (xk) ( · )) using the
Hessian matrix H in the Newton method (Problem 3.5.1). In a real Hilbert
space X, the abstract Newton method such as the following can be thought of.

Problem 7.6.4 (Abstract Newton method) Let X ⋑ D be a real Hilbert
space. With respect to fi ∈ C2 (X;R) (Definition 4.5.4), the gradient of the
Fréchet derivative and Hessian of fi at a non-local minimum point ϕk ∈ D◦ are
denoted as gi (ϕk) ∈ X ′ and hi (ϕk) ∈ L2 (X ×X;R), respectively. Moreover,
aX : X ×X → R is a coercive and bounded bilinear form on X. Here, obtain a
φgi ∈ X which satisfies

hi (ϕk) [φgi, φ] + aX (φgi, φ) = −⟨gi (ϕk) , φ⟩ (7.6.4)

with respect to an arbitrary φ ∈ X. □

In Problem 7.6.4, the aX was introduced in order to compensate for the
lack of coerciveness and boundedness of the left-hand side of Eq. (7.6.4) and to
ensure the regularity of φgi. Even among the abstract Newton methods, the
case when function space of H1-class is chosen in X is called the H1 Newton
method. In Problem 7.6.4, as in Theorem 3.5.2, when ϕk is sufficiently close to
the local minimum, it is hoped that the point sequence generated by the abstract
Newton method would have quadratic convergence to the local minimum point.
Moreover, Remark 7.6.3 with respect to the solution to the abstract gradient
method is valid here too.
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Furthermore, in the case of the abstract Newton method when the
second-order Fréchet derivative of fi (ϕ) is given by the Hesse gradient, Problem
7.6.4 is replaced with the following problem.

Problem 7.6.5 (Abstract Newton method using Hesse gradient)
Under the assumption of Problem 7.6.4, the gradient of the Fréchet derivative
of fi, search vector and Hesse gradient of fi at a non-local minimum point
ϕk ∈ D◦ are denoted by gi (ϕk) ∈ X ′, φ̄gi ∈ X and gHi (ϕk, φ̄gi) ∈ X ′,
respectively. Given a coercive and bounded bilinear form aX : X ×X → R on
X, find a φgi ∈ X which satisfies

aX (φgi, φ) = −⟨(gi (ϕk) + gHi (ϕk, φ̄gi)) , φ⟩ (7.6.5)

with respect to an arbitrary φ ∈ X. □

The solution φgi of Problem 7.6.5 accords with the solution of the abstract
Newton method if φ̄gi = φgi.

7.7 Solution of Abstract Optimum Design
Problem

Now that the abstract gradient method and abstract Newton method have been
defined, let us think about the solution of the abstract optimum design problem
(Problem 7.3.1) here.

7.7.1 Gradient Method for Constrained Problems

Firstly, let us bear in mind what was learned in Section 3.7 and think about
the gradient method with respect to a constrained problem. Here, the gradients
g0, . . ., gm ∈ X ′ of the Fréchet derivatives of the cost functions f0, . . ., fm are
assumed to be calculable using the method shown in Sect. 7.5.

Here, let us show the KKT conditions with respect to Problem 7.3.1. The
content shown here is an expansion of the KKT conditions Eq. (1.1.51) to
Eq. (1.1.54) with respect to Problem 1.1.4 in Chap. 1. In Problem 1.1.4,
X = R2 and U = R2. In contrast, in Problem 7.3.1, X and U were assumed to
be real Hilbert spaces. The Fréchet derivatives of cost functions with respect
to an arbitrary variation of design variable are included in the dual space X ′ of
X. If this relationship is remembered, the following result can be obtained.

Let the Lagrange function with respect to Problem 7.3.1 be

L (ϕ,λ) = f0 (ϕ) +
∑

i∈{1,...,m}

λifi (ϕ) . (7.7.1)

Here, λ = (λ1, . . . , λm)
⊤ ∈ Rm is a Lagrange multiplier with respect to f1 (ϕ) ≤

0, . . ., fm (ϕ) ≤ 0.
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In this case, the KKT conditions with respect to Problem 7.3.1 are given by

g0 (ϕ) +
∑

i∈{1,...,m}

λigi (ϕ) = 0X′ , (7.7.2)

fi (ϕ) ≤ 0 for i ∈ {1, . . . ,m} , (7.7.3)

λifi (ϕ) = 0 for i ∈ {1, . . . ,m} , (7.7.4)

λi ≥ 0 for i ∈ {1, . . . ,m} . (7.7.5)

Let us think about the solution to the abstract optimum design problem
(Problem 7.3.1) based on this condition following the gradient method with
respect to the constrained problem shown in Section 3.7. With respect to k ∈
{0, 1, 2, . . .}, the trial point ϕk is assumed to be an element of admissible set
S defined by Eq. (7.3.1). Denote the set of suffixes with respect to active
constraints with respect to ϕk as

IA (ϕk) = { i ∈ {1, . . . ,m} | fi (ϕk) ≥ 0} =
{
i1, . . . , i|IA|

}
. (7.7.6)

If there is no confusion, denote IA (ϕk) as IA. Moreover, the size of the search
vector (step size) is adjusted by the size of a positive constant ca. In this
case, the problem seeking the search vector φg ∈ X satisfying the inequalities
constraint with respect to the cost functions around ϕk is constructed in the
following way.

Problem 7.7.1 (Gradient method for constrained problems) Suppose
that for a trial point ϕk ∈ D of Problem 7.3.1 satisfying the inequality
constraints, f0 (ϕk), fi1 (ϕk) = 0, . . . , fi|IA| (ϕk) = 0 and g0 (ϕk), gi1 (ϕk),

. . . , gi|IA| (ϕk) ∈ X ′ are given. Let aX : X×X → R be a coercive and bounded

bilinear form on X. Moreover, ca is taken to be a positive constant. Obtain
ϕk+1 = ϕk + φg which satisfies

q (φg) = min
φ∈X

{
q (φ) =

ca
2
aX (φ,φ) + ⟨g0 (ϕk) , φ⟩

∣∣∣∣
fi (ϕk) + ⟨gi (ϕk) , φ⟩ ≤ 0 for i ∈ IA (ϕk)

}
.

□

Similarly to Problem 3.7.1, Problem 7.7.1 is a convex optimization problem.
In this regard, φg satisfying the KKT conditions becomes the local minimizer
of Problem 7.7.1. Let us consider the solution for Problem 7.3.1 by focusing on
this. The method below is an abstract version of the method shown in Section
3.7.

Let the Lagrange function of Problem 7.7.1 be

LQ (φg,λ) = q (φg) +
∑

i∈IA(ϕk)

λi (fi (ϕk) + ⟨gi (ϕk) , φg⟩) .
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Here, λ = (λ1, . . . , λm)
⊤ ∈ Rm is a Lagrange multiplier with respect to the

inequality constraint conditions. The KKT conditions with respect to the
minimum point φg of Problem 7.7.1 are that the following hold with respect
to an arbitrary ψ ∈ X:

caaX (φg, ψ) + ⟨g0 (ϕk) , ψ⟩+
∑

i∈IA(ϕk)

λi ⟨gi (ϕk) , ψ⟩ = 0, (7.7.7)

fi (ϕk) + ⟨gi (ϕk) , φg⟩ ≤ 0 for i ∈ IA (ϕk) (7.7.8)

λk+1 i (fi (ϕk) + ⟨gi (ϕk) , ψ⟩) = 0 for i ∈ IA (ϕk) , (7.7.9)

λk+1 i ≥ 0 for i ∈ IA (ϕk) . (7.7.10)

(φg,λk+1) ∈ X × R|IA| satisfying these can be obtained as follows.
Let φg0, φi1 , . . . , φi|IA| be the solution of the abstract gradient method

(Problem 7.6.1). Here, Eq. (7.6.2) is changed to

caaX (φgi, ψ) = −⟨gi, ψ⟩ (7.7.11)

with respect to an arbitrary ψ ∈ X. In this case,

φg = φg (λk+1 i) = φg0 +
∑

i∈IA(ϕk)

λk+1 i φgi (7.7.12)

satisfies Eq. (7.7.7). On the other hand, Eq. (7.7.8) becomes
⟨gi1 , φgi1⟩ · · ·

〈
gi1 , φgi|IA|

〉
...

. . .
...〈

gi|IA| , φgi1

〉
· · ·

〈
gi|IA| , φgi|IA|

〉


 λk+1 i1
...

λk+1 i|IA|



= −


fi1 + ⟨gi1 , φg0⟩

...

fi|IA| +
〈
gi|IA| , φg0

〉
 .

This equation is written as

(⟨gi, φgj⟩)(i,j)∈I2
A
(λk+1 j)j∈IA

= − (fi + ⟨gi, φg0⟩)i∈IA
. (7.7.13)

In Eq. (7.7.13), the matrix (⟨gi, φgj⟩)(i,j)∈I2
A
is symmetric because ⟨gi, φgj⟩ =

aX (φgi, φgj). If g1, . . . , gm are linearly independent, Eq. (7.7.13) is solvable
about λk+1. Moreover, if the active constraint functions fi1 , . . . , fi|IA| all

have the value zero, from the fact that they hold even when an arbitrary real
number is multiplied all of φgi1 , . . . , φgi|IA| , it becomes possible to obtain

λk+1 even when the step size ∥φg∥X is not appropriately set. In addition, as
adapted in Chap. 3, Eq. (7.7.13) is solved possibly several times, removing
each time the constraints where the associated Lagrange multiplier is negative
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(active set method), although if we set appropriate constraint functions which
have trade-off property with respect to an objective function, the Lagrange
multipliers become always positive.

Using the definitions so far, a simple Algorithm 3.7.2 shown in Section 3.7.1
can be applied. In this case, the following changes can be made:

(1) Replace the design variable x and its variation y as ϕ and φ respectively.

(2) Replace Eq. (3.7.10) with Eq. (7.7.11).

(3) Replace Eq. (3.7.11) with Eq. (7.7.12).

(4) Replace Eq. (3.7.12) with Eq. (7.7.13).

Furthermore, when considering a complicated Algorithm 3.7.6 with
parameter adjustments shown in Section 3.7.2, the following needs to be taken
into consideration:

(i) Functionality for determining ca, so that the initial step size becomes
∥φg∥ = ϵg with a given value ϵg.

(ii) When the design variable is updated to ϕk+1, the functionality of
amending λk+1 = (λk+1 i)i∈IA(ϕk+1)

so that |fi (ϕk+1)| ≤ ϵi and λk+1 i > 0

with respect to i ∈ IA (ϕk+1) are satisfied.

(iii) The functionality to make suitable the admissible values ϵ1, . . . , ϵm of
the constraint functions f1, . . . , fm with respect to the convergence
determination value ϵ0 of the objective function f0.

(iv) Functionality for adjusting the step size ∥φg∥ so that global convergence
is guaranteed.

With respect to the aforementioned (i), the content shown in Section 3.7.2
will hold as it is by replacing y by φ.

The same is true for (ii) above. In other words, Algorithm 3.7.6 can
be used exactly by replacing the update of λk+1 using Eq. (3.7.21) of the
Newton–Raphson method by

(δλj)j∈IA
= − (⟨gi (λk+1 l) , φgj (λk+1 l)⟩)−1

(i,j)∈I2
A
(fi (λk+1 l))i∈IA

.

(7.7.14)

Moreover, with respect to (iii) above, the method for replacing ϵi so that
Eq. (3.7.25) is satisfied has already been incorporated into Algorithm 3.7.6.

Furthermore, with respect to (iv) above, the following type of replacement
would allow Algorithm 3.7.6 to be used as it is. The Lagrange function with
respect to the abstract optimum design problem (Problem 7.3.1) is given by
L (ϕ,λ) of Eq. (7.7.1). In this case, the Armijo criterion becomes

L (ϕk + φg,λk+1)− L (ϕk,λk)
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≤ ξ

〈
g0 (ϕk) +

∑
i∈IA(ϕk)

λkigi (ϕk) , φg

〉
(7.7.15)

with respect to a ξ ∈ (0, 1). The Wolfe criterion is given with respect to a µ
(0 < ξ < µ < 1) by

µ

〈
g0 (ϕk) +

∑
i∈IA(ϕk)

λkigi (ϕk) , φg

〉

≤

〈
g0 (ϕk + φg) +

∑
i∈IA(ϕk+1)

λk+1 igi (ϕk + φg) , φg

〉
. (7.7.16)

Using these replacements, Algorithm 3.7.6 can be applied with respect to the
abstract optimum design problem (Problem 7.3.1). In this case, the following
changes are made in addition to (1) to (4) above:

(5) Replace the Armijo criterion Eq. (3.7.26) with Eq. (7.7.15).

(6) Replace the Wolfe criterion Eq. (3.7.27) with Eq. (7.7.16).

(7) Replace Eq. (3.7.21) by Eq. (7.7.14) to update λ by the Newton–Raphson
method.

In order for this algorithm to function well, there is a need for the points
made in Remark 7.6.3 to be satisfied. If these are not satisfied, there is a
possibility of numerical instability arising. In order to prevent these situations,
there is a need to ensure that the new design variable is always included within
the admissible set D by adding an appropriate process after the design variable
is updated.

7.7.2 Newton Method for Constrained Problems

If the second-order Fréchet derivatives of the cost functions can be obtained, it
is possible to change the gradient method with respect to a constrained problem
to a Newton method with respect to a constrained problem. Here, let us use
the abstract Newton method (Problem 7.6.4) in order to make Problem 3.8.1 in
Chap. 3 abstract.

Problem 7.7.2 (Newton method for constrained problems) At a trial
point ϕk ∈ D of Problem 7.3.1 satisfying the inequality constraints, the Lagrange
multiplier λk ∈ R|IA| is assumed to satisfy Eq. (7.7.8) to Eq. (7.7.10) (where
k + 1 is viewed as k). Moreover, f0 (ϕk), fi1 (ϕk) = 0, . . . , fi|IA| (ϕk) = 0

and g0 (ϕk), gi1 (ϕk), . . ., gi|IA| (ϕk) ∈ X ′ as well as h0 (ϕk), hi1 (ϕk), . . . ,

hi|IA| (ϕk) ∈ L2 (X ×X;R) are taken to be known and

hL (ϕk) = h0 (ϕk) +
∑

i∈IA(ϕk)

λikhi (ϕk) . (7.7.17)



7.7 Solution of Abstract Optimum Design Problem 25

Moreover, let aX : X ×X → R be a coercive and bounded bilinear form on X.
In this case, obtain ϕk+1 = ϕk + φg which satisfies

q (φg) = min
φ∈X

{
q (φ) =

1

2
(hL (ϕk) [φ,φ] + aX (φ,φ)) + ⟨g0 (ϕk) , φ⟩

+ f0 (ϕk)

∣∣∣∣ fi (ϕk) + ⟨gi (ϕk) , φ⟩ ≤ 0 for i ∈ IA (ϕk)

}
.

□

In Problem 7.7.2, the aX was introduced in order to compensate for the lack
of coerciveness and boundedness of hL (ϕk) on X and to ensure the regularity
of φgi.

Problem 7.7.2 is classified to be a second-order optimization problem. When
hL (ϕk) [φ,φ]+aX (φ,φ) is a coercive and bounded bilinear form onX, Problem
7.7.2 becomes a convex optimization problem. It is not necessarily the case.
However, a φg satisfying the KKT conditions shown next is a candidate for the
minimum point with respect to Problem 7.7.2. Focusing on this, let us look at
what has been learned in Section 3.8 in order to think of the solution to Problem
7.7.2.

It is assumed that KKT conditions at the minimum point φg of Problem
7.7.2 hold. In other words, the following holds with respect to an arbitrary
ψ ∈ X:

hL (ϕk) [φ,ψ] + aX (φ,ψ) + ⟨g0 (ϕk) , ψ⟩

+
∑

i∈IA(ϕk)

λk+1 i ⟨gi (ϕk) , ψ⟩ = 0, (7.7.18)

fi (ϕk+1) = fi (ϕk) + ⟨gi (ϕk) , φg⟩ ≤ 0 for i ∈ IA (ϕk) , (7.7.19)

λk+1 i (fi (ϕk) + ⟨gi (ϕk) , φg⟩) = 0 for i ∈ IA (ϕk) , (7.7.20)

λk+1 i ≥ 0 for i ∈ IA (ϕk) . (7.7.21)

(φg,λk+1) ∈ X × R|IA| satisfying these can be obtained as follows.
In the gradient method (Sect. 7.7.1) with constraints, φg0, φi1 , . . ., φi|IA|

were taken to be the solution for the abstract gradient method. Here, these
are replaced by the solution of the abstract Newton method. Problem 7.6.4 is
rewritten as follows. “Let the known functions in Problem 7.7.2 be given. Find
φgi ∈ X which satisfy the following with respect to an arbitrary φ ∈ X:

hL (ϕk) [φgi, φ] + aX (φgi, φ) = −⟨gi (ϕk) , φ⟩ .” (7.7.22)

Here, φg defined by Eq. (7.7.12) satisfies Eq. (7.7.18). On the other hand,
Eq. (7.7.19) becomes Eq. (7.7.13). Hence, if Eq. (7.7.13) is used to obtain λk+1,
Eq. (7.7.19) is established and the KKT conditions at the minimal point φg of
Problem 7.7.2 hold. In this case, Eq. (7.7.20) and Eq. (7.7.21) are satisfied by
choosing IA (ϕk+1) appropriately in the algorithm using the active set method.

Using the definitions so far, Algorithm 3.8.4 shown in Section 3.8.1 can be
applied. In this case, it will be changed in the following way:
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(1) Replace the design variable x and its fluctuation y by ϕ and φ respectively.

(2) Replace Eq. (3.8.9) with Eq. (7.7.22).

(3) Replace Eq. (3.7.11) with Eq. (7.7.12).

(4) Replace Eq. (3.7.12) with Eq. (7.7.13).

Furthermore, the abstract Newton method when the second-order Fréchet
derivative of fi (ϕ) is obtained as a Hesse gradient can be illustrated as follows.
Equations (7.7.17) and (7.7.22) are replaced with

gHL (ϕk, φ̄g) = gH0 (ϕk, φ̄g) +
∑

i∈IA(ϕk)

λikgHi (ϕk, φ̄g) , (7.7.23)

aX (φgi, φ) = −⟨(gi (ϕk) + gHL (ϕk, φ̄g)) , φ⟩ , (7.7.24)

respectively. Using the definitions, the following step is added:

(5) Replace Eq. (3.8.11) with Eq. (7.7.24).

In this way, the difference between the gradient method with respect to
a constrained problem and the Newton method is just that aX ( · , · ) of the
abstract gradient method is replaced with hi (ϕk) [ · , · ] + aX ( · , · ) or gi (ϕk) is
replaced with gi (ϕk)+ gHi (ϕk, φ̄g). However, with this method, a second-order
derivative of a cost function is used. Hence, it is hoped that the characteristics of
the Newton method mentioned in Remark 3.5.4 will hold. However, as explained
in Remark 3.8.2, because the constraint condition is approximated to be up to
first-order derivative, there is a need to be careful with the step size when the
non-linearity of the constraint functions is strong.

Furthermore, with respect to the methods for achieving coerciveness of
the bilinear form and adding the functionality for adjusting the step size, the
explanation provided in Section 3.8.2 is still valid here.

Whether such a Newton method can be used or not depends on whether the
calculation hi (ϕk) [ · , · ] or gHi (ϕk, φ̄g) is possible or not. Let us look at the
specific calculation methods of these in Chaps. 8 and 9.

7.8 Summary

In Chap. 7, abstract problems, which may be common to the optimum design
problems targeting the topology and shape with respect to domain of a boundary
value problem of partial differential equation such as shown in Chaps. 8 and 9,
were constructed and their solutions were looked at. The following are the key
points:

(1) Real Hilbert spaces are chosen for the linear spaces of a design variable and
state variable (Sect. 7.1). This is because the abstract gradient method
is defined on a Hilbert space.
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(2) An abstract optimum design problem was defined with an abstract
variational problem as a state determination problem (Sect. 7.2) and
using cost functions defined via functionals of the design variable (Sect.
7.3) and the state variable (solution of state determination problem).

(3) With respect to an abstract optimum design problem, the derivative of
a cost function can be obtained via the adjoint variable method (Sect.
7.5.1) or the Lagrange multiplier method (Sect. 7.5.2). Moreover, the
second-order derivative of a cost function can be obtained by substituting
the derivative of the solution of the state determination problem when the
equality constraints of the state determination problem are satisfied in the
second-order derivative of the Lagrange function (Sect. 7.5.3).

(4) The abstract gradient method is defined on a real Hilbert space (Sect.
7.6.1). The unique existence of the solution of the abstract gradient
method is shown by the Lax–Milgram theorem. Moreover, the solution is
on the downward slope of the cost function (Theorem 7.6.2). Furthermore,
the abstract Newton method is defined as a method in which the bilinear
form in the abstract gradient method is replaced by the sum of a
second-order derivative of the cost function and a bilinear form which
compensates for the coerciveness and boundedness of the second-order
derivative (Sect. 7.6.2).

(5) The solution to the abstract optimum design problem is constructed with
the same framework as the gradient method and Newton method with
respect to constrained problems shown in Chap. 3 (Sect. 7.7.1 and Sect.
7.7.2).

Let us mention a few books which are useful references for this chapter.
Chap. 5 of [3] is useful in relation to the Lagrange multiplier method on a
function space. The paper [1] and Section 4.4 of [4] are useful with respect to
the gradient method on function spaces.
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