
Contents

Contents 1

5 Boundary Value Problems of Partial Differential Equations 3
5.1 Poisson Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

5.1.1 Extended Poisson Problem . . . . . . . . . . . . . . . . . 6
5.2 Abstract Variational Problem . . . . . . . . . . . . . . . . . . . . 8

5.2.1 Lax–Milgram Theorem . . . . . . . . . . . . . . . . . . . . 9
5.2.2 Abstract Minimization Problem . . . . . . . . . . . . . . . 12

5.3 Regularity of Solutions . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3.1 Regularity of Given Functions . . . . . . . . . . . . . . . . 14
5.3.2 Regularity of Boundary . . . . . . . . . . . . . . . . . . . 14

5.4 Linear Elastic Problem . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4.1 Linear Strain . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4.2 Cauchy Tensor . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4.3 Constitutive Equation . . . . . . . . . . . . . . . . . . . . 22
5.4.4 Equilibrium Equations of Force . . . . . . . . . . . . . . . 23
5.4.5 Weak Form . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4.6 Existence of Solution . . . . . . . . . . . . . . . . . . . . . 25

5.5 Stokes Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.6 Abstract Saddle Point Variational Problem . . . . . . . . . . . . 29

5.6.1 Existence Theorem of Solution . . . . . . . . . . . . . . . 30
5.6.2 Abstract Saddle Point Problem . . . . . . . . . . . . . . . 31

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.8 Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 33

References 35

Index 36

1





Chapter 5

Boundary Value Problems
of Partial Differential
Equations

As seen in Chap. 1, optimal design problems are optimization problems
whose state equations are considered as equality constraints. In Chap. 1,
we have considered design variables and state variables as elements of a
finite-dimensional vector space. However, in this book, our main interest focuses
on the shape optimization problem of continuum. In this case, boundary value
problems of partial differential equations, such as linear elastic bodies and Stokes
flow field, are included in the equality constraints as state equations.

In this chapter, the definitions and the results of functional analyses
discussed in Chap. 4 are used to study the methods of expressing boundary
value problems of elliptic partial differential equation in their corresponding
variational form (here on referred to as the weak form) as well as theorems
relating to the existence of unique solutions. This weak form is not only used
when considering methods in numerical analysis with respect to boundary value
problems of elliptic partial differential equations shown in Chap. 6, but also as
Lagrange functions with respect to shape and topology optimization problems
where boundary value problems are included in the equality constraint (see
Chaps. 8 and 9).

5.1 Poisson Problem

Let us consider a Poisson problem as a simple example of a boundary value
problem of an elliptic partial differential equation (Definition A.7.1) and look
at its definition and the process of transforming the system in its weak form. A
Poisson problem can be thought of, for instance, as a situation when thermal
conductivity is 1 in a stationary heat conduction problem (Section A.6).
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4 Chapter 5 Boundary Value Problems of Partial Differential Equations

Fig. 5.1: Domain Ω and its boundary ∂Ω = Γ̄D ∪ Γ̄N.

Let the domain Ω be a Lipschitz domain (Section A.5) of d ∈ {2, 3}
dimensions such as in Fig. 5.1. Let ΓD be a partial open set of ∂Ω, the boundary
of Ω at which temperature is given in the heat conductivity problem. The
remaining boundary ΓN = ∂Ω \ Γ̄D is taken to be the boundary at which heat
flux is given. Furthermore, let Γp ⊂ ΓN be the boundary at which the heat
flow is non-zero. In this chapter Γp and ΓN \ Γ̄p are not distinguished from
one another but they will be considered separately in Chap. 9. Moreover,
∆ = ∇ ·∇ expresses the Laplace operator. Meanwhile, ν expresses the outward
unit normal vector defined on the boundary (Definition A.5.4) and ∂ν = ν ·∇.
In this case, a Poisson problem with mixed boundary conditions is defined as
follows.

Problem 5.1.1 (Poisson problem) Let the functions b : Ω → R, pN : ΓN →
R, and uD : Ω → R be given. Find the function u : Ω → R such that the system

−∆u = b in Ω, (5.1.1)

∂νu = pN on ΓN, (5.1.2)

u = uD on ΓD, (5.1.3)

is satisfied. □

In Problem 5.1.1, Eq. (5.1.1) is called a Poisson equation. Moreover, when
b = 0, it is called a Laplace equation or homogeneous Poisson equation. The
problem in that case (Problem 5.1.1) is called a Laplace problem.

Moreover, the boundary condition of Eq. (5.1.3) expresses the relationship
established by the traces on ΓD of the function u and uD defined on Ω. In this
situation, there is a need to define an appropriate function space of u and uD

such that a trace can be taken. On the other hand, ∂νu of Eq. (5.1.2) shows the
relationship of a trace on ΓN. In order for this relationship to have a meaning,
assumptions such that trace on the boundary of ∇u can be taken have to be
specified. However, as shown below, if Problem 5.1.1 is changed to an integral
equation (weak form), it should be noted that such an assumption becomes
unnecessary.

From the above considerations, uD is assumed to be an element of H1 (Ω;R)
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and the set of functions satisfying Eq. (5.1.3) is taken to be

U (uD) =
{
v ∈ H1 (Ω;R)

∣∣ v = uD on ΓD

}
.

As seen in Section 4.6, U (uD) is an affine subspace of the Hilbert space

U =
{
v ∈ H1 (Ω;R)

∣∣ v = 0 on ΓD

}
. (5.1.4)

The fact that U is a Hilbert space will be needed when fitting the Poisson
problem into the framework of abstract variational problem later on.

If both sides of Eq. (5.1.1) are multiplied by an arbitrary v ∈ U and
integrated over Ω, the Gauss–Green theorem (Theorem A.8.2) can be employed
to establish

−
∫
Ω

∆uv dx =

∫
Ω

∇u ·∇v dx−
∫
ΓN

∂νuv dγ =

∫
Ω

bv dx, (5.1.5)

where the fact that v = 0 on ΓD was used. On the other hand, if an arbitrary
v ∈ U is multiplied to both sides of Eq. (5.1.2) and integrated over ΓN, then the
equation∫

ΓN

∂νuv dγ =

∫
ΓN

pNv dγ (5.1.6)

is established. Here, substituting Eq. (5.1.6) into Eq. (5.1.5) gives∫
Ω

∇u ·∇v dx =

∫
Ω

bv dx+

∫
ΓN

pNv dγ. (5.1.7)

Equation (5.1.7) is called a weak form of a Poisson problem.
Let us mention in advance the fact that the arbitrary function v ∈ U used

when obtaining the weak-form equation will be used as a Lagrange multiplier
with respect to a boundary value problem when considering a shape or topology
optimization problem in which a boundary value problem is included in the
equality constraints.

Furthermore, the left-hand side of Eq. (5.1.7) has the property of being
bilinear with respect to u and v. Moreover, the right-hand side of Eq. (5.1.7) is
linear with respect to v. Here, as was seen in Section 4.6 we define

a (u, v) =

∫
Ω

∇u ·∇v dx, (5.1.8)

l (v) =

∫
Ω

bv dx+

∫
ΓN

pNv dγ. (5.1.9)

Using these definitions, the weak form of Problem 5.1.1 is given as follows.

Problem 5.1.2 (Weak form of Poisson problem) Let U be defined as in
Eq. (5.1.4) and the consider the functions b ∈ L2 (Ω;R), pN ∈ L2 (ΓN;R) and
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uD ∈ H1 (Ω;R). Moreover, let a ( · , · ) and l ( · ) be given by Eq. (5.1.8) and
Eq. (5.1.9), respectively. Find u such that ũ = u− uD ∈ U satisfying

a (u, v) = l (v) , (5.1.10)

for all v ∈ U . □

Here, let us compare Problem 5.1.1 with Problem 5.1.2. In Problem 5.1.1, in
order for Eq. (5.1.1) to have meaning, u needs to be second-order differentiable.
Moreover, ∂νu needs to be defined on ΓN. On the other hand, in Problem
5.1.2, there is no need for u to be second-order differentiable, instead in order
for the integral of Eq. (5.1.8) to be defined, there is a need for the first-order
derivative of both u and v to be square integrable. In this way, depending on the
conditions that the solutions should satisfy, Problem 5.1.1 is referred to as the
strong form of Poisson problem and Problem 5.1.2 as the weak form of Poisson
problem. Moreover, the solution u of Problem 5.1.2 is called the weak solution.
Furthermore, as shown in Sect. 5.2, the fact that a unique solution exists is
guaranteed by the weak solution.

The following terminology is used in a boundary value problem of a
differential equation:

• Equation (5.1.3) is called a Dirichlet condition or fundamental boundary
condition or first-type boundary condition. The boundary for which the
Dirichlet condition is given is called a Dirichlet boundary. Problem 5.1.1
or Problem 5.1.2 for which this condition is given over the entire boundary
is called a Dirichlet problem.

• Equation (5.1.2) can also be called a Neumann condition or natural
boundary condition or second-type boundary condition. The boundary
with Neumann condition is called a Neumann boundary. Problem 5.1.1 or
Problem 5.1.2 with this condition given over the entire boundary is called
a Neumann problem. However, there is a need to note that a Neumann
problem does not have a unique solution (Exercise 5.2.6).

• When both the Dirichlet condition and Neumann condition exist, it is
referred to as mixed boundary value problem.

• For the Dirichlet condition or Neumann condition, if uD = 0 or pN = 0
respectively, it is called a homogeneous type. When uD ̸= 0 or pN ̸= 0, it
is called an inhomogeneous type.

5.1.1 Extended Poisson Problem

Let us consider an extended Poisson problem. This problem is used when
specifying an abstract gradient method in Chap. 8. Moreover, a linear elastic
problem extended in a similar manner to that shown here will be used when
specifying an abstract gradient method in Chap. 9 too.

We use the symbols used in Problem 5.1.1 to extend the Poisson problem in
the following way.
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Problem 5.1.3 (Extended Poisson problem) Let the functions b : Ω → R,
cΩ : Ω → R, pR : ∂Ω → R and c∂Ω : ∂Ω → R be given. Find the function
u : Ω → R satisfying

−∆u+ cΩu = b in Ω, (5.1.11)

∂νu+ c∂Ωu = pR on ∂Ω. (5.1.12)

□

In Problem 5.1.3, Eq. (5.1.12) is called a Robin condition or third-type
boundary condition. In reference to Problem 5.1.3, the problem when this
condition is given across the entire boundary is called a Robin problem.

The weak form of Problem 5.1.3 can be obtained in the following way. Here

U = H1 (Ω;R) (5.1.13)

is set. Multiplying both sides of Eq. (5.1.11) by an arbitrary v ∈ U and
integrating over Ω, then using the Gauss–Green theorem (Theorem A.8.2) gives∫

Ω

(−∆u+ cΩu) v dx =

∫
Ω

(∇u ·∇v + cΩuv) dx−
∫
∂Ω

∂νuv dγ

=

∫
Ω

bv dx. (5.1.14)

On the other hand, if both sides of Eq. (5.1.12) are multiplied by an arbitrary
v ∈ U and integrated over ∂Ω, the equality∫

∂Ω

∂νuv dγ =

∫
∂Ω

(pR − c∂Ωu) v dγ (5.1.15)

holds. Here, if Eq. (5.1.15) is substituted into Eq. (5.1.14), the equation∫
Ω

(∇u ·∇v + cΩuv) dx+

∫
∂Ω

c∂Ωuv dγ =

∫
Ω

bv dx+

∫
∂Ω

pRv dγ

(5.1.16)

is obtained. Eq. (5.1.16) is the weak form of Problem 5.1.3.

Here, note that the left-hand side of Eq. (5.1.16) is bilinear with respect to
u and v and the right-hand side is linear with respect to v. Let a : U × U → R
and l : U → R be

a (u, v) =

∫
Ω

(∇u ·∇v + cΩuv) dx+

∫
∂Ω

c∂Ωuv dγ, (5.1.17)

l (v) =

∫
Ω

bv dx+

∫
∂Ω

pRv dγ. (5.1.18)

Here, the weak form of Problem 5.1.3 becomes as follows.
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Problem 5.1.4 (Weak form of extended Poisson problem) Let U
be Eq. (5.1.13) and the functions b ∈ L2 (Ω;R), cΩ ∈ L∞ (Ω;R), pR ∈
L2 (∂Ω;R), c∂Ω ∈ L∞ (∂Ω;R). Moreover, let a ( · , · ) and l ( · ) be given by
Eq. (5.1.17) and Eq. (5.1.18), respectively. In this case, obtain a u ∈ U which
satisfies

a (u, v) = l (v) (5.1.19)

with respect to an arbitrary v ∈ U . □

5.2 Abstract Variational Problem

In Sections 5.1 and 5.1.1, the weak forms of the Poisson problem and extended
Poisson problem were shown as Eq. (5.1.10) and Eq. (5.1.19), respectively.
These are classified as boundary value problems of elliptic partial differential
equations based on classification of linear second-order partial differential
equations (Definition A.7.1). If it is a boundary value problem of an elliptic
partial differential equation, it can be expected that either of the weak forms
can be expressed using a bilinear form a and linear form l. Hence, let us define
an abstract variational problem which abstracts the weak form of elliptic partial
differential equation and investigate the existence of a unique solution to such
a problem.

In this section, U is taken to be a real Hilbert space. Let us define two
characteristics with respect to a bilinear form on U (Section 4.4).

Definition 5.2.1 (Coercive bilinear form on real Hilbert space) Let
a : U × U → R be a bilinear form on U . If some constant α > 0 exists with
respect to an arbitrary v ∈ U and

a (v, v) ≥ α ∥v∥2U

holds, a is referred to as coercive or elliptic. □

If U is Rd, the bilinear form equation with respect to x,y ∈ Rd can be
written as a (x,y) = x · (Ay). Here, A is a matrix of Rd×d. When A = A⊤,
coerciveness of a is equivalent to A being positive definite.

Definition 5.2.2 (Boundedness of bilinear form on real Hilbert space)
Let a : U × U → R be a bilinear form on U . If there exists some β > 0 with
respect to an arbitrary u, v ∈ U and

|a (u, v)| ≤ β ∥u∥U ∥v∥U

holds, a is said to be bounded. □

If U = Rd, the boundedness of the bilinear form a (x,y) = x · (Ay) becomes
equivalent to the norm of matrix A being bounded (see Eq. (4.4.3)).

Let us consider the next problem using the definitions above.
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Problem 5.2.3 (Abstract variational problem) Let a : U × U → R be a
bilinear form on U and l = l ( · ) = ⟨l, · ⟩ ∈ U ′. In this case, obtain a u ∈ U
which satisfies

a (u, v) = l (v)

with respect to an arbitrary v ∈ U . □

Let U = Rd. If the matrix A ∈ Rd×d in the bilinear form a (x,y) = x · (Ay)
and b ∈ Rd are given, an abstract variational problem becomes a problem
seeking x ∈ Rd which satisfies

(Ax) · y = b · y (5.2.1)

with respect to an arbitrary y ∈ Rd.

5.2.1 Lax–Milgram Theorem

The fact that there exists a unique solution to Problem 5.2.3 is guaranteed
by the Lax–Milgram theorem. In this theorem, it is assumed that a bilinear
form a is coercive and bounded. Since these characteristics are the same as
the definition of an inner product in Hilbert spaces, this theorem is proven
using Riesz’s representation theorem (Theorem 4.4.17) (cf. [2, Theorem 1.3,
p. 29], [3, Theorem 1, p. 297], [9, Theorem 2.6, p. 48]).

Theorem 5.2.4 (Lax–Milgram theorem) In Problem 5.2.3, let a be
coercive and bounded. Moreover, let l ∈ U ′. In this case, there is a unique
solution u ∈ U for Problem 5.2.3 and

∥u∥U ≤ 1

α
∥l∥U ′

holds with respect to α used in Definition 5.2.1. □

If U = Rd, assuming A is symmetric bounded and positive definite, there
exists an inverse matrix to A and x satisfying Eq. (5.2.1) becomes

x = A−1b. (5.2.2)

Here, the inequality

∥x∥Rd ≤ 1

α
∥b∥Rd

holds, where α is the minimum eigenvalue of A. Moreover, when A is

asymmetric, the positive definiteness ofA is replaced with that of
(
A⊤ +A

)
/2,

because x ·
{(

A⊤ +A
)
x
}
≥ 2α ∥x∥2Rd holds if x ·(Ax) ≥ α ∥x∥2Rd with respect

to an arbitrary x ∈ Rd.
Next, let us show the existence of a unique solution to the Poisson problem

using the Lax–Milgram theorem.
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Exercise 5.2.5 (Existence of unique solution to Poisson problem) In

Problem 5.1.2, when |ΓD| (=

∫
ΓD

dγ) is positive, show that there exists a

unique solution ũ = u− uD ∈ U . □

Answer The assumptions of the Lax–Milgram theorem with respect to
Problem 5.1.2 need to be shown. Consider the Hilbert space U ={
u ∈ H1 (Ω;R)

∣∣ u = 0 on ΓD

}
. Moreover, if we let

l̂ (v) = l (v)− a (uD, v) , (5.2.3)

Problem 5.1.2 can be written as a problem seeking ũ = u− uD ∈ U which satisfies

a (ũ, v) = l̂ (v) ,

with respect to an arbitrary v ∈ U . In view of these relationships, the assumptions of
the Lax–Milgram theorem hold in the following ways:

(1) a is coercive. In fact,

a (v, v) =

∫
Ω

∇v ·∇v dx = ∥∇v∥2
L2(Ω;Rd) ≥

1

c2
∥v∥2H1(Ω;R)

holds because of Poincaré’s inequality (Corollary A.9.4). If we let 1/c2 be α,
from Definition 5.2.1, a is coercive.

(2) a is bounded. In fact, using Hölder’s inequality (Theorem A.9.1), the inequality

|a (u, v)| =
∣∣∣∣∫

Ω

∇u ·∇v dx

∣∣∣∣ ≤ ∥∇u∥L2(Ω;Rd) ∥∇v∥L2(Ω;Rd)

≤ ∥u∥H1(Ω;R) ∥v∥H1(Ω;R)

is established. This relationship shows that it holds when β = 1 in Definition
5.2.2.

(3) l̂ ∈ U ′. In fact, from the fact that ∂Ω assumes a Lipschitz boundary, the norm
of the trace operator (Theorem 4.4.2)

∥γ∥L(H1(Ω;R);H1/2(∂Ω;R)) = sup
v∈H1(Ω;R)\{0

H1(Ω;R)}

∥v∥H1/2(∂Ω;R)

∥v∥H1(Ω;R)
. (5.2.4)

is bounded. This is set as c1 > 0. Moreover, the inequalities∣∣∣l̂ (v)∣∣∣ ≤ ∫
Ω

|bv| dx+

∫
ΓN

|pNv| dγ +

∫
Ω

|∇uD ·∇v| dx

≤ ∥b∥L2(Ω;R) ∥v∥L2(Ω;R) + ∥pN∥L2(ΓN;R) ∥v∥L2(ΓN;R)

+ ∥∇uD∥L2(Ω;Rd) ∥∇v∥L2(Ω;Rd)

≤
(
∥b∥L2(Ω;R) + c1 ∥pN∥L2(ΓN;R) + ∥uD∥H1(Ω;R)

)
∥v∥H1(Ω;R)

are established if Hölder’s inequality is used. In Problem 5.1.2, b ∈ L2 (Ω;R),
pN ∈ L2 (ΓN;R) and uD ∈ H1 (Ω;R) were assumed. Thus, the right-hand side
of ( · ) is bounded and l is a bounded linear functional on U .
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Therefore, ũ = u− uD ∈ U exists uniquely. □

Moreover, if the Lax–Milgram theorem is applied with respect to the
Neumann problem, we get the following.

Exercise 5.2.6 (Indeterminateness of solution to Neumann problem)
If |ΓD| = 0 in Problem 5.1.2, show that there does not exist a unique u ∈ U
which satisfies Problem 5.1.2. Moreover, show how the problem needs to be
amended in order to guarantee the existence of a unique solution. □

Answer In the solution to Exercise 5.2.5, to show the coercivity of a, a corollary
of Poincaré’s inequality (Corollary A.9.4) was used from the fact that |ΓD| > 0
was assumed. However, in Neumann problems |ΓD| = 0, hence the corollary of
Poincaré’s inequality cannot be used and so a cannot be said to be coercive. Hence,
the Lax–Milgram theorem cannot be used. However, if we let

uD =
1

|Ω|

∫
Ω

u dx (5.2.5)

and use Poincaré’s inequality (Theorem A.9.3), the inequality

a (v, v) =

∫
Ω

∇v ·∇v dx = ∥∇v∥2
L2(Ω;Rd) ≥

1

c2
∥v − uD∥2L2(Ω;Rd)

holds and a becomes coercive. Therefore, there is the existence of a unique solution if
the Neumann problem is rewritten as a problem seeking ũ = u− uD ∈ U with respect
to uD satisfying Eq. (5.2.5). □

From the result of Exercise 5.2.6, the solution to the Neumann problem is
said to have uncertainty of constant.

Furthermore, the following assumptions are needed in order to guarantee
the existence of a unique solution with respect to an extended Poisson problem
(Problem 5.1.3).

Exercise 5.2.7 (Existence of solution to extended Poisson problem)
In Problem 5.1.4, one of the following is assumed to hold:

(1) cΩ ∈ L∞ (Ω;R) takes a positive value on most of Ω.

(2) c∂Ω ∈ L∞ (∂Ω;R) takes a positive value over most of ∂Ω.

In this case, show that there exists a unique solution u ∈ U of Problem 5.1.4. □

Answer The assumptions of the Lax–Milgram theorem with respect to Problem
5.1.4 need to be verified. Let U = H1 (Ω;R) be a Hilbert space. Furthermore, the
following holds:

(1) a is coercive. In fact, from the assumption, ess infx∈Ω cΩ (x) and
ess infx∈∂Ω c∂Ω (x) are set as c1 > 0 and c2 > 0, respectively and the norm
of the inverse operator of the trace operator γ : H1 (Ω;R) → L2 (∂Ω;R):

∥∥γ−1
∥∥
L(L2(∂Ω;R);H1(Ω;R)) = sup

v∈L2(∂Ω;R)\{0
L2(∂Ω;R)}

∥v∥H1(Ω;R)

∥v∥L2(∂Ω;R)
. (5.2.6)
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is set to be c3 > 0,

a (v, v) ≥ ∥∇v∥2
L2(Ω;Rd) + c1 ∥v∥2L2(Ω;R) + c2 ∥v∥2L2(∂Ω;R)

≥
(
min {1, c1}+

c2
c23

)
∥v∥2H1(Ω;R)

holds. If ( · ) of the right-hand side is set to be α, a becomes coercive from
Definition 5.2.1.

(2) a is bounded. In fact, when the norm ∥γ∥L(H1(Ω;R);H1/2(∂Ω;R)) of the trace

operator of Eq. (5.2.4) is set to be c4,

|a (u, v)| ≤ ∥∇u∥L2(Ω;Rd) ∥∇v∥L2(Ω;Rd)

+ ∥cΩ∥L∞(Ω;R) ∥u∥L2(Ω;R) ∥v∥L2(Ω;R)

+ ∥c∂Ω∥L∞(∂Ω;R) ∥u∥L2(∂Ω;R) ∥v∥L2(∂Ω;R)

≤
(
1 + ∥cΩ∥L∞(Ω;R) + c24 ∥c∂Ω∥L∞(∂Ω;R)

)
∥u∥H1(Ω;Rd) ∥v∥H1(Ω;Rd)

is established from cΩ ∈ L∞ (Ω;R) and c∂Ω ∈ L∞ (∂Ω;R). If ( · ) of the
right-hand side is set to be β, a becomes bounded from Definition 5.2.2.

(3) l ∈ U ′. In fact, when the norm ∥γ∥L(H1(Ω;R);H1/2(∂Ω;R)) of the trace operator of

Eq. (5.2.4) is set to be c4, the inequality

|l (v)| ≤
∫
Ω

|bv| dx+

∫
∂Ω

|pRv| dγ

≤ ∥b∥L2(Ω;R) ∥v∥L2(Ω;R) + ∥pR∥L2(∂Ω;R) ∥v∥L2(∂Ω;R)

≤
(
∥b∥L2(Ω;R) + c4 ∥pR∥L2(∂Ω;R)

)
∥v∥H1(Ω;R)

is established. In Problem 5.1.4, since b ∈ L2 (Ω;R) and pR ∈ L2 (∂Ω;R) in ( · )
of the right-hand side become bounded, then l becomes a bound linear functional
on U .

Therefore, from the Lax–Milgram theorem, u ∈ U exists uniquely. □

5.2.2 Abstract Minimization Problem

In an abstract variational problem (Problem 5.2.3), if a : U × U → R is
symmetric, the abstract variational problem is shown to be equivalent to the
abstract minimization problem. Let us confirm that in this section.

Let U be a real Hilbert space and a : U × U → R be a bilinear form on U .
If for arbitrary u, v ∈ U ,

a (u, v) = a (v, u)

holds, a is called symmetric.
If U is Rd and with respect to x,y ∈ Rd, a (x,y) = x · (Ay), a being

symmetric is equivalent to the matrix A ∈ Rd×d being symmetric A = A⊤.
The following problem is called an abstract minimization problem.
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Problem 5.2.8 (Abstract minimization problem) Let a : U ×U → R be
a bilinear form on U , l = l ( · ) = ⟨l, · ⟩ ∈ U ′ and f : U → R. In this case,
obtain u ∈ U such that

min
u∈U

{
f (u) =

1

2
a (u, u)− l (u)

}
.

□

If U = Rd, it becomes a problem seeking x ∈ Rd satisfying

min
x∈Rd

{
f (x) =

1

2
x · (Ax)− b · x

}
. (5.2.7)

The following results can be obtained with respect to Problem 5.2.8 (cf. [2,
Theorem 1.1, p. 24], [6, Theorem 2.1, p. 33], [9, Theorem 2.7, p. 50]).

Theorem 5.2.9 (Solution to abstract minimization problem) Consider
Problem 5.2.8 and let a be coercive, bounded and symmetric. In this case, with
respect to an arbitrary l ∈ U ′, u ∈ U satisfying Problem 5.2.8 exists uniquely
and agrees with the solution to Problem 5.2.3. □

If U = Rd and A is bounded, positive definite and symmetric, x ∈ Rd

satisfying Eq. (5.2.7) is the same as Eq. (5.2.2).
If a is symmetric in the weak form of the Poisson problem (Problem 5.1.2),

then Problem 5.1.2 is equivalent to the following problem in view of the solution
of Exercise 5.2.5 and Theorem 5.2.9.

Problem 5.2.10 (Minimization problem of Poisson problem) Let a

and l̂ be Eq. (5.1.8) and Eq. (5.2.3), respectively. In this case, obtain ũ =
u− uD ∈ U which satisfies

min
ũ∈U

{
f (ũ) =

1

2
a (ũ, ũ)− l̂ (ũ)

}
.

□

5.3 Regularity of Solutions

The Poisson problem is an abstract variational problem and we have seen how
the existence of a unique solution can be guaranteed by the Lax–Milgram
theorem. In this case, if l̂ of Eq. (5.2.3) constructed form the given functions b, p,
uD in the Poisson problem (Problem 5.1.1) is in U ′. This shows that the solution
u − uD of the Poisson problem exists in U =

{
u ∈ H1 (Ω;R)

∣∣ u = 0 on ΓD

}
.

However, this condition is necessary for the existence of a solution. So, even if
smoother given functions are assumed, it is expected that the solution to the
Poisson problem will be correspondingly smooth. In Chaps. 8 and 9 smoothness
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greater than H1 class is needed with respect to the solution to a boundary value
problem. Here let us examine this notion of smoothness.

In this book, the smoothness of a function represents the order of
differentiability and the exponent of integrability for the function. They are
referred to as the regularity of function. In contrast, if there are not enough
regularities or there are only a few, it is referred to as irregularity. The regularity
(or irregularity) of a function can be expressed as “C1 class” by adding “class”
to the symbol representing the function space.

There are two factors determining the irregularity of the solution to a
boundary value problem. Let us look at these in the following subsections.

5.3.1 Regularity of Given Functions

Firstly, let us think about the relationship between the regularity of solution and
regularity of given functions b, p, uD of the Poisson problem (Problem 5.1.1).
Suppose the boundary ∂Ω is sufficiently smooth. In this case, from the fact that

−∆u = b in Ω, ∂νu = pN on ΓN, u = uD on ΓD,

holds, if we assume

b ∈ L2 (Ω;R) , pN ∈ H1 (Ω;R) , uD ∈ H2 (Ω;R) ,

we get u ∈ H2
(
Ω \ B̄;R

)
, where the neighborhood of the boundary between

the Dirichlet boundary and the Neumann boundary is denoted by B. In more
detail, if we set b ∈ L2 (Ω;R), we obtain u ∈ H2

(
Ω \ B̄;R

)
from the fact

that the Poisson equation is satisfied. Moreover, since the boundary ∂Ω is
sufficiently smooth, then ν ∈ C (ΓN;R). So if pN ∈ H1 (Ω;R), ∂νu = ν ·
∇u ∈ H1/2

(
ΓN \ B̄;R

)
is obtained from pN ∈ H1/2 (ΓN;R). From this, u ∈

H2
(
Ω \ B̄;R

)
can be obtained. Moreover, according to the Sobolev embedding

theorem (Theorem 4.3.14), H2 (Ω;R) ⊂ C0,σ
(
Ω̄;R

)
holds with respect to σ ∈

(0, 1/2) and d ∈ {2, 3}. Hence, u becomes a continuous function. It is said that
there are no irregularities in the solution u in this case. If a given function is
changed to an even smoother function then a correspondingly smoother u can
be obtained.

5.3.2 Regularity of Boundary

On the other hand, even if given functions are assumed to be sufficiently smooth,
if the boundary is not smooth, there can be irregularities in the solution. Let
us look at such a situation in detail. In this section, Ω is assumed to be a
two-dimensional domain and focus is given to the neighborhood around a corner
such as x0 in Fig. 5.2. Such a corner point corresponds to looking at a point
in the perpendicular cross-section with respect to a smooth cut-out line in a
three-dimensional domain with a V-shaped cut-out.

A discontinuous point on boundary ∂Ω with respect to C1 class such as x0

on Fig. 5.2 is called a corner point. A set of corner points will be denoted by



5.3 Regularity of Solutions 15

Fig. 5.2: Two-dimensional domain with a corner.

Θ. Let r0 be a positive constant and B (x0, r0) the neighborhood (open set)
around x0 with radius r0. Set the opening angle at x0 in the internal domain
to be α ∈ (0, 2π). The boundaries (open set) on both sides of x0 in B (x0, r0)
are set to be Γ1 and Γ2, respectively. The boundaries Γ1 and Γ2 are assumed
to be smooth (C1 class). Moreover, the polar coordinates with x0 as the origin
are denoted as (r, θ).

From the fact that u is smooth (analytic) at points further away from x0, if
some r ∈ (0, r0] is fixed, u can be expanded as

u (r, θ) =
∑

i∈{1,2,...}

kiui (r) τi (θ) + uR (5.3.1)

(cf. [7], [8, Chap. 8, p. 257] , [10], [5, Preface, p. ix, and Chap. 4, p. 182]).
Here, uR expresses the remainder term determined by the regularity of the
given function. In contrast, the first term on the right-hand side of Eq. (5.3.1)
arising due to the corner point is called the main term. For each i ∈ {1, 2, . . .},
the main terms ki are real constants and ui (r) represent real-valued functions
determined dependent on r. Moreover, τi (θ) are determined in the following
way by real-valued functions of θ ∈ (0, α) dependent on boundary conditions.
When Γ1 and Γ2 are both homogeneous Dirichlet boundaries (u = 0) and both
homogeneous Neumann boundaries (∂νu = 0), these respectively become

τi (θ) = sin
iπ

α
θ, (5.3.2)

τi (θ) = cos
iπ

α
θ. (5.3.3)

In reality, Eq. (5.3.2) satisfies τi (0) = τi (α) = 0. Equation (5.3.3) satisfies
the condition that (dτi/dθ) (0) = (dτi/dθ) (α) = 0. Moreover, if Γ1 and Γ2

are mixed boundaries with a homogeneous Dirichlet and Neumann boundary, it
becomes

τi (θ) = sin
iπ

2α
θ. (5.3.4)

On the other hand, with respect to the Laplace operator ∆,

∆ (rω sinωθ) =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
(rω sinωθ) = 0 (5.3.5)
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holds, where ω is a real number satisfying ω > 1/4 which is not 1. The condition
ω > 1/4 corresponds to the fact that, in the condition shown later, as Γ1

and Γ2 have mixed boundary conditions and get closer to a crack (α → 2π),
they become ω → 1/4. Moreover, ω = 1 corresponds to the condition
that the boundary is smooth. In addition, Eq. (5.3.5) is also obtained by
Cauchy–Riemann equations, which forms a necessary and sufficient condition
for a complex function to be complex differentiable (holomorphic), with respect
to the imaginary part ui = Im [zω] = rm sinωθ of a complex function f (z) = zω

using the correspondence between a complex number z = x1 + ix2 = reiθ ∈ C
(i is the imaginary unit) and x = (x1, x2) ∈ R2. Equation (5.3.5) shows that
if a function has the format rω sinωθ, the Laplace equation (same with the
homogeneous Poisson equation) is satisfied.

Focusing on this relationship, when τi (θ) is given in the format sinωθ, if

ui (r) = rω,

the Laplace equation is satisfied. From this result, the following results are
obtained in the neighborhood B (x0, r0) ∩ Ω around x0 with radius r0:

(1) When Γ1 and Γ2 are both homogeneous Dirichlet boundaries (u = 0),

u (r, θ) = krπ/α sin
π

α
θ + uR. (5.3.6)

(2) When Γ1 and Γ2 are both homogeneous Neumann boundaries (∂νu = 0),

u (r, θ) = krπ/α cos
π

α
θ + uR. (5.3.7)

(3) If it is a mixed boundary where Γ1 is a homogeneous Dirichlet boundary
and Γ2 is a homogeneous Neumann boundary,

u (r, θ) = krπ/(2α) sin
π

2α
θ + uR. (5.3.8)

Here, k is a constant dependent on α.
Moreover, the following result can be obtained for a Sobolev space containing

functions of the format rω.

Proposition 5.3.1 (Regularity of singularity term) Let Ω be a
two-dimensional bounded domain and x0 be a corner point of opening angle
α ∈ (0, 2π) on ∂Ω. The function u is given by

u = rωτ (θ)

in the neighborhood B (x0, r0) ∩ Ω around x0, where τ (θ) is taken to be an
element of C∞ ((0, α) ,R). In this case, if

ω > k − 2

p
(5.3.9)

holds for k ∈ N ∪ {0} and p ∈ (1,∞), u is in W k,p (B (x0, r0) ∩ Ω;R). □
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Proof The k-th order derivative of u = rωτ (θ) is constructed as a sum of the terms
including rω−k τ̃ (θ). Here, τ̃ (θ) is an element of C∞ ((0, α) ,R). Hence, in order for
the p-th-order Lebesgue integral on B (x0, r0) ∩ Ω of k-th order derivative of u to be
finite, the condition∫ r0

0

∫ α

0

rp(ω−k)rτ̃ (θ) dθdr < ∞

needs to hold. For this,

p (ω − k) + 1 > −1

is obtained. This relationship gives Eq. (5.3.9). □

From the fact that the main term of solution u to the Poisson problem
around the corner point is a function of the form rω and Proposition 5.3.1, the
following results can be obtained with respect to a corner point such as that in
Fig. 5.3.

Theorem 5.3.2 (Regularity of a solution around a corner) Let Ω be a
two-dimensional bounded domain and x0 ∈ Θ be a corner point of opening
angle α ∈ (0, 2π). In this case the solution u of the Poisson problem (Problem
5.1.1) is in Hs (B (x0, r0) ∩ Ω;R) in the neighborhood of x0. Here:

(1) if the boundaries Γ1 and Γ2 of both sides of x0 share the same type of
boundary condition, then α ∈ [π, 2π) implies that s ∈ (3/2, 2].

(2) if Γ1 and Γ2 are mixed boundaries, then α ∈ [π/2, π) implies s ∈ (3/2, 2]
and α ∈ [π, 2π) means that s ∈ (5/4, 3/2].

□

Proof If Γ1 and Γ2 are the same type of boundary, Eq. (5.3.6) and Eq. (5.3.7) give
ω = π/α. Here, when the opening angle is α ∈ [π, 2π), ω ∈ (1/2, 1]. In this case, if
the inequality condition

s1 −
2

p
=

3

2
− 2

2
=

1

2
< ω ≤ s2 −

2

p
= 2− 2

2
= 1

holds with respect to Eq. (5.3.9), then ω ∈ (1/2, 1] implies that s is (1).

On the other hand, if Γ1 and Γ2 are mixed boundaries, Eq. (5.3.8) gives ω =
π/ (2α). Hence, if the opening angle is α ∈ [π/2, π), then ω ∈ (1/2, 1] and s satisfying
Eq. (5.3.9) becomes a result such as that in the first half of (2). Moreover, if the
opening angle is α ∈ [π, 2π), then ω ∈ (1/4, 1/2]. In this case, if we have that

s1 −
2

p
=

5

4
− 2

2
=

1

4
< ω ≤ s2 −

2

p
=

3

2
− 2

2
=

1

2

holds with respect to Eq. (5.3.9), then s becomes a result such as the latter half of (2)
with respect to ω ∈ (1/4, 1/2]. □
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(a) Opening angle is α > π between (b) Opening angle is α > π/2.
boundaries of the same type between the mixed boundaries

Fig. 5.3: Two-dimensional domain having a corner with irregularity.

Assumptions in Theorem 5.3.2 did not include a crack (α = 2π). If x0 is a
crack tip,

u ∈ H3/2−ϵ (B (x0, r0) ∩ Ω;R) (5.3.10)

can be written with respect to ϵ > 0. Moreover, even when x0 is a boundary
of mixed boundaries and the boundary is smooth around x0 (α = π), it can be
written as Eq. (5.3.10).

In order to guarantee that u is a function of W 1,∞ class, the following result
can be used.

Theorem 5.3.3 (Regularity of a solution around a corner) Let Ω be a
two-dimensional bounded domain and x0 ∈ Θ be a corner point of opening
angle α ∈ (0, 2π). The solution u of the Poisson problem (Problem 5.1.1) is in
W 1,∞ (B (x0, r0) ∩ Ω;R),

(1) if α < π in the case that the boundaries Γ1 and Γ2 of both sides of x0

share the same type of boundary condition,

(2) if α < π/2 in the case that Γ1 and Γ2 are mixed boundaries.

□

Proof If Γ1 and Γ2 are the same type of boundary, Eq. (5.3.6) and Eq. (5.3.7) give
ω = π/α. Here, when the opening angle is α < π, ω > 1. In this case, (1) holds
with respect to Eq. (5.3.9). On the other hand, if Γ1 and Γ2 are mixed boundaries,
Eq. (5.3.8) gives ω = π/ (2α). Hence, if the opening angle is α < π/2, then ω > 1.
From Eq. (5.3.9), we have that (2) holds with respect to Eq. (5.3.9). □

Moreover, from Theorem 5.3.2 (2), if Γ1 and Γ2 are mixed boundaries, it
becomes apparent that even when the boundary is smooth, the same irregularity
is observed as that at a crack tip. One method for preventing the occurence of
such irregularity is to rewrite the mixed boundary value problem as an extended
Poisson problem, such as Problem 5.1.3. In this case, by assuming a smooth
function in c∂Ω : ∂Ω → R such that it changes from a Dirichlet boundary to a
Neumann boundary, a mixed boundary value problem with no singularities can
be constructed.
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Fig. 5.4: Two-dimensional linear elastic problem.

Fig. 5.5: Displacement u and its gradient
(
∇u⊤)⊤ in 2D linear elastic body.

5.4 Linear Elastic Problem

In this book, attempts are made to represent specific examples of shape
optimization problems using a linear elastic body and Stokes flow field. As
preparation for that, we shall now define a linear elastic problem and look at
the existence of unique solutions and their weak forms.

Let Ω ⊂ Rd be a d ∈ {2, 3}-dimensional Lipschitz domain. Let ΓD ⊂ ∂Ω be
a boundary when displacement is given (Dirichlet boundary) and the remaining
boundary ΓN = ∂Ω \ Γ̄D be a boundary where traction is given (Neumann
boundary). Moreover, Γp ⊂ ΓN is taken to represent a boundary where the
traction is non-zero. Here, Γp and ΓN \ Γ̄p are not distinguished but they will
be in Chap. 9. Figure 5.4 shows a linear elastic body in the two-dimensional
case. However, as seen in Exercise 5.2.6, in order to get rid of the uncertainty
of constant, |ΓD| > 0 is assumed. Moreover, b : Ω → Rd is taken to be a volume
force, pN : ΓN → Rd is the traction and uD : Ω → Rd is the given displacement.
A linear elastic problem is defined as a problem seeking displacements u : Ω →
Rd when these are given.

5.4.1 Linear Strain

A linear elastic problem of a one-dimensional continuous body was defined in
Chap. 1. Here, let us extend this to d ∈ {2, 3} dimensions. Firstly, let us define
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(a) ε11 (b) ε22 (c) ε12 = ε21 (d) r12

Fig. 5.6: Linear strain E (u) and rotation tensor R (u) in 2D linear elastic body.

the term strain. In a one-dimensional linear elastic body, the displacement u
was a real-valued function defined on (0, l). Strain was defined using its gradient
du/dx. If the linear elastic body is d ∈ {2, 3}-dimensional, the displacement

u becomes a d-dimensional vector and its gradient
(
∇u⊤)⊤ = (∂ui/∂xj)ij

becomes a second-order tensor (matrix) with the value Rd×d. Figure 5.5 shows

the relationship between u and
(
∇u⊤)⊤. This tensor is split into the symmetric

and non-symmetric components as(
∇u⊤)⊤ = E (u) +R (u) (5.4.1)

In this case,

E (u) = E⊤ (u) = (εij (u))ij =
1

2

(
∇u⊤ +

(
∇u⊤)⊤) , (5.4.2)

R (u) = −R⊤ (u) = (rij (u))ij =
1

2

((
∇u⊤)⊤ −∇u⊤

)
. (5.4.3)

Here, the symmetric component E (u) represents the deformations such as those
from (a) to (c) in Fig. 5.6 when Ω is a two-dimensional domain, and is called
the linear strain, or simply strain of a d-dimensional linear elastic body if there
is no confusion. Moreover, the non-symmetric component R (u) represents the
rotational motion such as (d) in Fig. 5.6 with respect to a two-dimensional
domain Ω, and is called the rotation tensor of a d-dimensional linear elastic
body.

The linear strain and rotation tensor defined in Eq. (5.4.2) and Eq. (5.4.3)
were defined using the gradient tensor of u when u is 0Rd (before deformation).
Hence, there is a need to focus on the fact that u cannot take a large value.
When it is assumed that u is finite, finite deformation theory using Green strain
or Almansi strain which is defined with the second-order terms of elements of
the gradient tensor of displacement is employed. In this case the differential
equation becomes non-linear. The non-linearity in this case is called a geometric
non-linearity. This book is limited to linear problems.

5.4.2 Cauchy Tensor

In contrast, with respect to a linear strain defined from displacement, stress
can be defined from the distribution of force. Consider a small domain inside



5.4 Linear Elastic Problem 21

(a) Small line component dγ in domain. (b) Cauchy stress and stress.

Fig. 5.7: Cauchy stress S and stress p of 2D linear elastic body.

Fig. 5.8: Cauchy stress S and stress p of 3D elastic body.

the domain Ω. When d = 2, a triangle such as the one in Fig. 5.7 (b) is
imagined, while when d = 3, a triangular pyramid such as that in Fig. 5.8 is
considered. The normal of their tilt boundary is ν. Force per unit boundary
measure (length when d = 2, area when d = 3) working on the tilt boundary
is taken to be p ∈ Rd. The function p represents the stress. Moreover, with
respect to i, j ∈ {1, . . . , d}, when σij is the force in the xj-direction per unit
boundary measure working on a boundary with normal in the xi-direction, S =
(σij) ∈ Rd×d is called Cauchy stress, or simply stress if there is no confusion.

Cauchy stress S and stress p can be related in the following way.

Proposition 5.4.1 (Cauchy tensor) When p is a stress and S is its Cauchy
stress,

S⊤ν = Sν = p (5.4.4)

holds. □

Proof We will show the case when d = 2. From the balance of force in the direction
xi with respect to i ∈ {1, 2}, the relation

σ1idγ1 + σ2idγ2 = pidγ

holds (Fig. 5.7 (b)). Here, using ν1 = dγ1/dγ and ν2 = dγ2/dγ gives

σ1iν1 + σ2iν2 = pi. (5.4.5)

Equation (5.4.5) represents Eq. (5.4.4). On the other hand, the identity

σ21 = σ12
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Fig. 5.9: Balance of moments at a small area in a two-dimensional linear elastic
body (ϵ ≪ 1).

holds from the balance of moments (Fig. 5.9). A similar relationship holds when d = 3
too. □

5.4.3 Constitutive Equation

In a similar way to that used in Chap. 1 when one-dimensional linear elastic
problems were defined, constitutive equation or constitutive law, which relates
the strain defined using displacement and the stress defined using force, is now
needed. In a linear elastic body of d dimensions, it is given by

S (u) = S⊤ (u) = (σij (u))ij

= CE (u) =

 ∑
(k,l)∈{1,...,d}2

cijklεkl (u)


ij

. (5.4.6)

Here, C = (cijkl)ijkl : Ω → Rd×d×d×d is a function of fourth-order tensor value
representing the rigidity and assumes the following characteristics. Firstly, from
the symmetry of S (u) and E (u), the relationships

cijkl = cjikl, cijkl = cijlk. (5.4.7)

hold. Moreover, assuming C is L∞ class, there exist positive constants α and
β such that

A · (CA) ≥ α ∥A∥2 , (5.4.8)

|A · (CB)| ≤ β ∥A∥ ∥B∥ (5.4.9)

hold almost everywhere in Ω with respect to arbitrary symmetric tensor A =
(aij)ij ∈ Rd×d and B = (bij)ij ∈ Rd×d. In this book, the scalar product of

matrices is represented as A ·B =
∑

i,j{1,...,d} aijbij . The fact that Eq. (5.4.8)

holds is referred to as C being elliptic. Moreover, the fact that Eq. (5.4.9) holds
is referred to as C being bounded. When C is not a function of u (stress is a
linear function of strain), Eq. (5.4.6) is referred to as the generalized Hooke’s
law. The non-linearity such that C becomes a function of u is called material
non-linearity. This sort of non-linearity will also not be treated in this book.

Moreover, the following can be said about the number of real numbers which
can be chosen independently in the rigidity C, when d = 3:
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(1) C is constructed of 34 = 81 real numbers.

(2) It reduces to 36 from Eq. (5.4.7).

(3) If strain energy density w exists and

w =
1

2
E (u) · (CE (u)) , S (u) =

∂w

∂E (u)

holds, the the relation

cijkl = cklij (5.4.10)

holds by the symmetry of second-order form. In this case it reduces down
to 21.

(4) It reduces to nine in the case of orthotropic materials.

(5) It reduces to two in the case of isotropic materials.

Suppose the two constants in the case of isotropic material are written as
λL and µL and

S (u) = 2µLE (u) + λLtr (E (u)) I,

where tr (E (u)) =
∑

i∈{1,...,d} eii (u). In this case, the quantities λL and µL are
called Lamé’s parameters. Moreover, µL is also referred to as shear modulus.
In addition, when the two constants are expressed as eY and νP and

E (u) =
1 + νP
eY

S (u)− νP
eY

tr (S (u)) I

is assumed, eY and νP are called longitudinal elastic modulus (Young’s modulus)
and Poisson’s ratio, respectively. Other than this, bulk modulus kb is also used.
A relationship such as

kb = λL +
2µL

3
, eY = 2µL (1 + νP) , λL =

2µLνP
1− 2νP

holds with respect to these constants.

5.4.4 Equilibrium Equations of Force

A linear elastic problem is constructed using the balance condition of forces
based on a linear strain and Cauchy stress being linked via generalized Hooke’s
law Eq. (5.4.6).

When an arbitrary small square element is chosen within a two-dimensional
linear elastic body, the force working on that element is as shown by the arrows
in Fig. 5.10. Here, the equilibrium equation of force in the x1-direction and
x2-direction becomes

∂σ11

∂x1
+

∂σ21

∂x2
+ b1 = 0,
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Fig. 5.10: Balance of forces in a small area (ϵ ≪ 1).

∂σ12

∂x1
+

∂σ22

∂x2
+ b2 = 0.

In the case of a d ∈ {2, 3}-dimensional linear elastic body, it can be written as

−∇⊤S (u) = b⊤. (5.4.11)

Eq. (5.4.11) is a second-order differential equation with respect to u if we look

at the fact that ∇⊤S (u) = ∇ ·
{
C

(
1
2

(
∇u⊤ +

(
∇u⊤)⊤))}. Furthermore,

from the fact that C satisfies ellipticity, Eq. (5.4.11) is classed as an elliptic
partial differential equation.

Adding boundary conditions to the equilibrium equation (Eq. (5.4.11)) of
force gives a linear elastic problem such as the one below.

Problem 5.4.2 (Linear elastic problem) Let the functions b : Ω → Rd,
pN : ΓN → Rd and uD : Ω → Rd be given. Obtain u : Ω → Rd which satisfies

−∇⊤S (u) = b⊤ in Ω, (5.4.12)

S (u)ν = pN on ΓN, (5.4.13)

u = uD on ΓD. (5.4.14)

□

5.4.5 Weak Form

In order to show the existence of a unique solution to the linear elastic problem,
let us rewrite Problem 5.4.2 in the weak form. Let the function space with
respect to u be

U =
{
v ∈ H1

(
Ω;Rd

) ∣∣ v = 0Rd on ΓD

}
. (5.4.15)

By multiplying both sides of Eq. (5.4.12) by an arbitrary v ∈ U and integrating
over Ω, then using the Gauss–Green theorem (Theorem A.8.2), the equation

−
∫
Ω

(
∇⊤S (u)

)
v dx = −

∫
ΓN

(S (u)ν) · v dγ +

∫
Ω

S (u) ·E (v) dx



5.4 Linear Elastic Problem 25

=

∫
Ω

b · v dx (5.4.16)

can be obtained. Moreover, if both sides of Eq. (5.4.13) are multiplied by an
arbitrary v ∈ U and integrated over ΓN, the equation∫

ΓN

(S (u)ν) · v dγ =

∫
ΓN

pN · v dγ (5.4.17)

is obtained. Substituting Eq. (5.4.17) in the first term of the second equation
in Eq. (5.4.16) gives∫

Ω

S (u) ·E (v) dx =

∫
Ω

b · v dx+

∫
ΓN

pN · v dγ.

This equation, which holds for arbitrary v ∈ U , is referred to as the weak form
of the linear elastic problem.

Also, if we set

a(u,v) =

∫
Ω

S (u) ·E (v) dx, (5.4.18)

l (v) =

∫
Ω

b · v dx+

∫
ΓN

pN · v dγ, (5.4.19)

the weak-form linear elastic problem becomes as follows.

Problem 5.4.3 (Weak form of linear elastic problem) Let U be given by
Eq. (5.4.15) and the functions b ∈ L2

(
Ω;Rd

)
, pN ∈ L2

(
ΓN;Rd

)
, uD ∈

H1
(
Ω;Rd

)
and C ∈ L∞ (

Ω;Rd×d×d×d
)
. Set a ( · , · ) and l ( · ) as Eq. (5.4.18)

and Eq. (5.4.19), respectively. In this case, seek ũ = u−uD ∈ U which satisfies

a (u,v) = l (v)

with respect to an arbitrary v ∈ U . □

5.4.6 Existence of Solution

If v is viewed as a virtual displacement, from the fact that l (v) is the virtual
work done by external forces and a (u,v) is the virtual work done by internal
forces, the weak form of a linear elastic problem represents the principle of
virtual work. The existence of unique solutions with respect to this weak form
is shown as follows.

Exercise 5.4.4 (Existence of unique solution to linear elastic problem)
In Problem 5.4.3, show that the solution ũ = u − uD ∈ U exists uniquely for
|ΓD| > 0. □
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Answer Let us confirm that the assumptions of the Lax–Milgram theorem hold. Let
U be a Hilbert space and let

l̂ (v) = l (v)− a (uD,v)

with respect to an arbitrary v ∈ U . Problem 5.4.3 can be rewritten as the problem
seeking ũ = u− uD ∈ U which satisfies

a (ũ,v) = l̂ (v) .

Under these assumptions, the fact that the Lax–Milgram theorem holds can be
confirmed in the following ways:

(1) a is coercive. In fact, the rigid motion is not generated because of |ΓD| > 0.
Therefore, from Korn’s second inequality (Theorem A.9.6), the estimate

∥v∥2
H1(Ω;Rd) ≤ c ∥E (v)∥2

L2(Ω;Rd×d)

holds with respect to a positive constant c. From ellipticity of C due to
Eq. (5.4.8), the inequality

a (v,v) =

∫
Ω

E (v) · (CE (v)) dx

≥ c1 ∥E (v)∥2
L2(Ω;Rd×d) ≥

c1
c
∥v∥2

H1(Ω;Rd)

holds with respect to v ∈ U . Here, c1 is a positive constant multiplying together
α of Eq. (5.4.8) and |Ω|. If c1/c is reset to be α, from Definition 5.2.1, a is
coercive.

(2) a is bounded. In fact, if the positive constant multiplying β of Eq. (5.4.9) and
|Ω| is replaced by β, Definition 5.2.2 confirms the boundedness of a.

(3) l̂ ∈ U ′. In fact, since ∂Ω assumes a Lipschitz boundary, the norm
∥γ∥L(H1(Ω;Rd);H1/2(∂Ω;Rd)) of the trace operator (Theorem 4.4.2) is bounded.

Let this be c2 > 0. Moreover, using Hölder’s inequality, the following result
holds: ∣∣∣l̂ (v)∣∣∣ ≤ ∫

Ω

|b · v| dx+

∫
ΓN

|pN · v| dγ +

∫
Ω

β |E (uD) ·E (v)| dx

≤ ∥b∥L2(Ω;Rd) ∥v∥L2(Ω;Rd) + ∥pN∥L2(ΓN;Rd) ∥v∥L2(ΓN;Rd)

+ β ∥E (uD)∥L2(Ω;Rd×d) ∥E (v)∥L2(Ω;Rd×d)

≤
(
∥b∥L2(Ω;Rd) + c2 ∥pN∥L2(ΓN;Rd)

+ β ∥E (uD)∥L2(Ω;Rd×d)

)
∥v∥H1(Ω;Rd) .

Therefore, from the Lax–Milgram theorem there is a unique ũ = u − uD ∈ U which
satisfies Problem 5.4.3. □
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Fig. 5.11: Two-dimensional Stokes problem.

5.5 Stokes Problem

Next, let us define a Stokes problem as an example of a flow field and look at its
weak form and the existence of a unique solution. A Stokes problem is used as a
mathematical model of a flow field which is slow so that inertia can be ignored
relative to viscosity in the flow field of a viscous fluid.

In this case too, Ω ⊂ Rd is taken to be a Lipschitz domain of d ∈ {2, 3}
dimensions. Again, let b : Ω → Rd be the volume force. Let the entire boundary
∂Ω of Ω be a Dirichlet boundary with respect to flow velocity given by uD :
Ω → Rd such that

∇ · uD = 0 in Ω. (5.5.1)

Let µ be a positive constant representing coefficient of viscosity. Figure 5.11
shows a Stokes problem in two dimensions.

When these assumptions are given, a Stokes problem can be defined as a
problem seeking flow velocity u : Ω → Rd and pressure p : Ω → R in the

following way. Here, (ν ·∇)u =
(
∇u⊤)⊤ ν is written as ∂νu.

Problem 5.5.1 (Stokes problem) Let b : Ω → Rd, uD : Ω → Rd and µ ∈ R
be given. Find (u, p) : Ω → Rd+1 such that the following equations,

−∇⊤ (
µ∇u⊤)+∇⊤p = b⊤ in Ω, (5.5.2)

∇ · u = 0 in Ω, (5.5.3)

u = uD on ∂Ω, (5.5.4)∫
Ω

p dx = 0, (5.5.5)

are satisfied. □

In Problem 5.5.1, Eq. (5.5.2) is called a Stokes equation and Eq. (5.5.3)
is called a continuity equation. These are used to model the flow field of an
incompressible fluid with the Newton viscosity.

Moreover, Eq. (5.5.2) can be written as

−∇⊤ (
µ∇u⊤ − pI

)
= b⊤ in Ω, (5.5.6)
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where I represents a unit matrix of d-th order. Moreover, defining Cauchy stress
as

S (u, p) = −pI + 2µE (u) (5.5.7)

using E (u) defined in Eq. (5.4.2), Eq. (5.5.2) can be written as

−∇⊤S (u, p) = b⊤ in Ω. (5.5.8)

If Eq. (5.5.3) holds, these are equivalent to one another. In this chapter,
Eq. (5.5.2) is used in order to look at the relationship with the abstract saddle
point variational problem in Sect. 5.6.

The weak form with respect to Problem 5.5.1 can be obtained in the following
way. Let the function space with respect to u be

U = H1
0

(
Ω;Rd

)
=

{
u ∈ H1

(
Ω;Rd

) ∣∣ u = 0Rd on ∂Ω
}
. (5.5.9)

Multiplying both sides of Eq. (5.5.2) by an arbitrary v ∈ U and integrating over
Ω, then using the Gauss–Green theorem (Theorem A.8.2) gives∫

Ω

{
∇⊤ (

µ∇u⊤)−∇⊤p+ b⊤
}
v dx

=

∫
∂Ω

(µ∂νu− pν) · v dγ

+

∫
Ω

(
−µ

(
∇u⊤) · (∇v⊤)+ p∇ · v + b · v

)
dx

=

∫
Ω

(
−µ

(
∇u⊤) · (∇v⊤)+ p∇ · v + b · v

)
dx

= 0.

The fact that this equation holds with respect to an arbitrary v ∈ U is referred
to as the weak form of the Stokes equation.

On the other hand, let the function space with respect to p be

P =

{
q ∈ L2 (Ω;R)

∣∣∣∣ ∫
Ω

q dx = 0

}
. (5.5.10)

Multiplying Eq. (5.5.3) by an arbitrary q ∈ P and integrating over Ω gives∫
Ω

q∇ · udx = 0.

The fact that this equation holds with respect to an arbitrary q ∈ P is called
the weak form of the continuity equation.

With respect to the Stokes problem, let

a (u,v) =

∫
Ω

µ
(
∇u⊤) · (∇v⊤) dx, (5.5.11)
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b (v, q) = −
∫
Ω

q∇ · v dx, (5.5.12)

l (v) =

∫
Ω

b · v dx. (5.5.13)

In this case, the weak form of the Stokes problem can be written as follows.

Problem 5.5.2 (Weak form of Stokes problem) Let U and P be given by
Eq. (5.5.9) and Eq. (5.5.10), respectively. Suppose uD ∈ H1

(
Ω;Rd

)
satisfies

Eq. (5.5.1). Let µ be a positive constant and a ( · , · ), b ( · , · ) and l ( · ) are taken
to be Eq. (5.5.11), Eq. (5.5.12) and Eq. (5.5.13), respectively. In this case, find
(ũ, p) = (u− uD, p) ∈ U × P such that

a (u,v) + b (v, p) = l (v) , (5.5.14)

b (u, q) = 0, (5.5.15)

for an arbitrary (v, q) ∈ U × P . □

5.6 Abstract Saddle Point Variational Problem

Now we have the weak form of the Stokes problem, let us look at what
assumptions guarantee the existence of a unique solution of the given weak
form.

A linear elastic problem is an elliptic partial differential equation with respect
to displacement u. Hence, the existence of a unique solution could be shown
using the results with respect to an abstract variational problem or an abstract
minimization problem. In contrast, a Stokes problem demands that the pressure
p is added as an unknown variable in addition to the flow velocity u, and that
the continuity equation is satisfied simultaneously. This structure can seen to
be a problem called the abstract saddle point variational problem or abstract
saddle point problem corresponding to the abstract variational problem with
constraints or abstract minimization problem with constraints. Here, let us
show the existence of a unique solution with respect to the Stokes problem
using certain definitions and results.

Let U and P be real Hilbert spaces, and the functions a : U × U → R and
b : U × P → R be bounded bilinear operators defined on U × U and U × P ,
respectively (Section 4.4.4). Also, let their norms be given by

∥a∥ = ∥a∥L(U,U ;R) = sup
u,v∈U\{0U}

|a (u,v)|
∥u∥U ∥v∥U

,

∥b∥ = ∥b∥L(U,P ;R) = sup
u∈U\{0U}, q∈P\{0P }

|b (u, q)|
∥u∥U ∥q∥P

,

respectively.
A set of functions which satisfy the continuity equation that become Hilbert

spaces is defined as follows.
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Definition 5.6.1 (Divergence free Hilbert space Udiv) Let b : U×P → R
be a bilinear form. In this case,

Udiv = {v ∈ U | b (v, q) = 0 for all q ∈ P}

is called a divergence free Hilbert space of U . □

Using these definitions, we consider the following problem.

Problem 5.6.2 (Abstract saddle point variational problem) Let a :
U × U → R and b : U × P → R be bounded bilinear operators and l ∈ U ′ and
r ∈ P ′ be given. Find (u, p) ∈ U × P such that

a (u,v) + b (v, p) = ⟨l,v⟩ ,
b (u, q) = ⟨r, q⟩ ,

with respect to an arbitrary (v, q) ∈ U × P . □

5.6.1 Existence Theorem of Solution

In reference to the existence of a unique solution to the abstract saddle point
variational problem (Problem 5.6.2), the following result is known (cf. [4,
Corollary 4.1, p. 61], [1, Theorem 1.1, p. 42], [6, Theorem 7.3, p. 135], [9,
Theorem 4.3, p. 116]).

Theorem 5.6.3 (Solution to abstract saddle point variational problem)
Suppose a : U × U → R is a coercive and bounded bilinear operator on Udiv

(i.e., there exists some α > 0 and

|a (v,v)| ≥ α ∥v∥2U

is satisfied with respect to an arbitrary v ∈ Udiv). Also, let b : U × P → R be a
bounded bilinear operator and that some β > 0 exists satisfying the inequality

inf
q∈P\{0P }

sup
v∈U\{0U}

b (v, q)

∥v∥U ∥q∥P
≥ β. (5.6.1)

In this case, the solution (u, p) ∈ U × P to Problem 5.6.2 exists uniquely and
with respect to c > 0 depending on α, β, ∥a∥ and ∥b∥,

∥u∥U + ∥p∥P ≤ c (∥l∥U ′ + ∥r∥P ′)

holds. □

Equation (5.6.1) is called the inf-sup condition or
Ladysenskaja–Babuška–Brezzi condition, Babuška–Brezzi–Kikuchi condition,
etc.

If Theorem 5.6.3 is used, the existence of a unique solution to the Stokes
problem can be shown in the following way.
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Exercise 5.6.4 (Existence of unique solution to the Stokes problem)
In Problem 5.5.2, it is supposed that some function ũ = u − uD ∈ Udiv exists
and satisfies ũ = 0Rd on ∂Ω. In this case, show that (ũ, p) ∈ U × P satisfying
Eq. (5.5.14) and Eq. (5.5.15) exists uniquely. □

Answer Let us confirm that the assumptions of Theorem 5.6.3 hold in the following
way. Let U and P be Hilbert spaces. Moreover, Problem 5.5.2 is equivalent to a
problem seeking (ũ, p) ∈ U × P which satisfies

a (ũ,v) + b (v, p) = l̂ (v) , b (ũ, q) = r̂ (q) ,

with respect to an arbitrary (v, q) ∈ U × P , where

l̂ (v) = l (v)− a (uD,v) , r̂ (q) = −b (uD, q) .

We show that a is bounded and coercive on Udiv. Clearly, a is bounded and coercive on
U in view of Exercise 5.4.4. Next, we note that b is bounded and satisfies the inf-sup
condition. In fact, when U⊥

div is taken to be the orthogonal complement of Udiv, an
operator such that the domain of operator div is limited to U⊥

div is taken to be τ . τ
is bounded (|divv| / ∥v∥U < ∞), linear and injective (with respect to v1,v2 ∈ U⊥

div, if
τv1 = τv2, then v1 = v2). This is because with respect to v ∈ U⊥

div, if τv = divv = 0,
then v ∈ Udiv, and we get v ∈ U⊥

div ∩ Udiv = {0U}. Furthermore, it can be shown
that τ is a surjection from U⊥

div to P (see, e.g., [4] for the proof). Hence, the following
inequalities,

inf
q∈P\{0P }

sup
v∈U\{0U}

b (v, q)

∥v∥U ∥q∥P

= inf
q∈P\{0P }

sup
v∈U\{0U}

(−divv, q)L2(Ω;R)

∥v∥U ∥q∥P

≥ inf
q∈P\{0P }

sup
v∈U\{0U}

(−τv, q)P
∥τ−1 (−q)∥U ∥q∥P

≥ inf
q∈P\{0P }

(q, q)P
∥τ−1 (−q)∥U ∥q∥P

≥ 1

∥τ−1∥L(P ;U⊥
div)

> 0,

are established. On the other hand, l̂ ∈ U ′ is already verified in Exercise 5.4.4.
Moreover, from assumptions of Eq. (5.5.1), we see that r̂ (q) = 0 ∈ P ′. As seen above,
Theorem 5.6.3 can be applied and (u− uD, p) ∈ U ×P satisfying Problem 5.5.2 exists
uniquely. □

5.6.2 Abstract Saddle Point Problem

In the abstract saddle point variational problem (Problem 5.6.2), if a : U×U →
R is symmetric, its abstract saddle point variational problem is equivalent to an
abstract saddle point problem such as the one below.

Problem 5.6.5 (Abstract saddle point problem) Let a : U × U → R and
b : U × P → R be bounded bilinear operators. Given (l, r) ∈ U ′ × P ′, define

L (v, q) =
1

2
a (v,v) + b (v, q)− ⟨l,v⟩ − ⟨r, q⟩ .
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In this case, find (u, p) ∈ U × P such that

L (u, q) ≤ L (u, p) ≤ L (v, p)

for any (v, q) ∈ U × P . □

The following results can be obtained with respect to Problem 5.6.5 (cf. [4,
Theorem 4.2, p. 62], [9, Theorem 4.4, p. 118]).

Theorem 5.6.6 (Agreement of abstract saddle point problems) If a is
symmetric (a (u,v) = a (v,u)) and semi-positive definite (with respect to an
arbitrary v ∈ U , a (v,v) ≥ 0 holds), then the solution to Problem 5.6.2 and the
solution to Problem 5.6.5 agree. □

Let us check that in an abstract saddle point problem (Problem 5.6.5), q ∈ P
is a Lagrange multiplier with respect to equality constraint such as the continuity
equation. Problem 5.6.5 is the problem, when setting

f (v) =
1

2
a (v,v)− ⟨l,v⟩ ,

seeking (v, q) which satisfies

min
(v,q)∈U×P

{f (v) | b (v, q)− ⟨r, q⟩ = 0} . (5.6.2)

Here, L (v, q) of Problem 5.6.5 is the Lagrange function of this problem and
q ∈ P is a Lagrange multiplier with respect to equality constraints. Theorem
5.6.6 which shows that the solution to Eq. (5.6.2) matches the saddle points of
Problem 5.6.5 is a result corresponding to the duality theorem (Theorem 2.9.2).

5.7 Summary

In Chap. 5, we defined boundary value problems of elliptic partial differential
equations, sought their weak form and studied the existence of a solution and
its regularity. The key points from this chapter are as follows.

(1) The existence of a unique solution for a boundary value problem of an
elliptic partial differential equation (Poisson problem) is guaranteed when
the assumptions of the Lax–Milgram theorem are satisfied with respect to
the weak form (Sections 5.1 and 5.2).

(2) The regularity of a solution with respect to a boundary value problem of
an elliptic partial differential equation depends on the regularity of given
functions and the regularity of the boundary (Sect. 5.3).

(3) A linear elastic problem is a boundary value problem of an elliptic partial
differential equation. The existence of a unique solution with respect to
this problem is guaranteed when the assumptions of the Lax–Milgram
theorem are satisfied with respect to the weak form (Sect. 5.4).
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Fig. 5.12: Cantilever problem of linear elastic body.

(4) A Stokes problem is a boundary value problem of an elliptic partial
differential equation with a continuity equation as equality constraint.
The existence of a unique solution of a Stokes problem is guaranteed when
the assumptions for the existence of solutions with respect to an abstract
saddle point variational problem using an inf-sup condition with respect
to the weak form (Sect. 5.5) are satisifed.

5.8 Practice Problems

5.1 With respect to b : Ω → R, uD : Ω → R, obtain the weak form of the
boundary value problem seeking u : Ω → R satisfying

−∆u+ u = b in Ω,

u = uD on ∂Ω.

Moreover, determine the appropriate function spaces for b and uD with
respect to the unique solution u of the corresponding weak form of the
above system.

5.2 Consider a cantilever problem of a linear elastic body such as that in
Fig. 5.12. In this case, show that, even though the point xA is not a
singular point, xB is.

5.3 A dynamic linear elastic problem can be expressed as follows: “With
respect to b : Ω× (0, tT) → Rd, pN : ΓN× (0, tT) → Rd, uD : Ω× (0, tT) →
Rd, uD0 : Ω → Rd, uD⊤ : Ω → Rd and ρ > 0, obtain u : Ω× (0, tT) → Rd

which satisfies

ρü⊤ −∇ · S (u) = b⊤ in Ω× (0, tT) ,

S (u)ν = pN on ΓN × (0, tT) ,

u = uD on ΓD × (0, tT) ,

u = uD0 in Ω× {0} ,
u = uD⊤ in Ω× {tT} ,

where u̇ = ∂u/∂t with respect to time t ∈ (0, tT).” Obtain the weak form
of this problem.
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5.4 In Exercise 5.3, when b = 0Rd , pN = 0Rd and uD = 0Rd , when with
respect to (x, t) ∈ Ω× (0, tT), a solution of variable separation (standing
wave) is assumed to be

u (x, t) = ϕ (x) eλt.

The problem of seeking ϕ : Ω → Rd and λ ∈ R is called an eigenfrequency
problem. Obtain the weak form of this problem.

5.5 With respect to b : Ω × (0, tT) → Rd, uD : Ω × (0, tT) → Rd, µ > 0 and
ρ > 0, the problem seeking (u, p) : Ω× (0, tT) → Rd × R which satisfies

ρu̇+ ρ (u ·∇)u− µ∆u+∇p = b in Ω× (0, tT) ,

∇ · u = 0 in Ω× (0, tT) ,

u = uD on {∂Ω× (0, tT)} ∪ {Ω× {0}}

is called a Navier–Stokes problem. The first equation is called a
Navier–Stokes equation and the second equation is called a continuity
equation. Obtain the weak form of this problem.

5.6 With respect to an isotropic linear elastic body, show that the relationship
eY = 2µL (1 + νP) holds between Young’s modulus eY, elastic shear
modulus µL and Poisson’s ratio νP.



References

[1] Brezzi, F. and Fortin, M. Mixed and Hybrid Finite Element Methods.
Springer, New York; Tokyo, 1991.

[2] Ciarlet, P. G. Finite Element Methods. Handbook of Numerical Analysis,
P.G. Ciarlet, J.L. Lions, general editors. Elsevier, Amsterdam; Tokyo:
North-Holl, 1991.

[3] Evans, L. C. and Gariepy, R. F. Measure Theory and Fine Properties of
Functions. CRC Press, Boca Raton, 1992.

[4] Girault, V. and Raviart, P. A. Finite Element Methods for Navier-Stokes
Equations: Theory and Algorithms. Springer, Berlin; Tokyo, 1986.

[5] Grisvard, P. Elliptic Problems in Nonsmooth Domains. Pitman Advanced
Pub. Program, Boston, 1985.

[6] Kikuchi, F. Mathematics of Finite Element Method: Mathematical Basics
and Error Analysis (in Japanese). Baifukan, Tokyo, 1994.

[7] Lehman, R. S. Developments at an analytic corner of solutions of
elliptic partial differential equations. Journal of Applied Mathematics and
Mechanics, 8:727–760, 1959.

[8] Strang, G. and Fix, G. J. An Analysis of the Finite Element Method.
Prentice-Hall, Englewood Cliffs, N.J., 1973.

[9] Tabata, M. Numerical Analysis of Partial Differential Equations (in
Japanese). Iwanami Kouza Applied Mathematics. Iwanami Shoten, Tokyo,
2010.

[10] Tabata, M., Fujii, H., and Miyoshi, T. Finite element mthod using singular
function (in Japanese). bit, 5:1035–1040, 1973.

35


	Contents
	5 Boundary Value Problems of Partial Differential Equations
	5.1 Poisson Problem
	5.1.1 Extended Poisson Problem

	5.2 Abstract Variational Problem
	5.2.1 Lax–Milgram Theorem
	5.2.2 Abstract Minimization Problem

	5.3 Regularity of Solutions
	5.3.1 Regularity of Given Functions
	5.3.2 Regularity of Boundary

	5.4 Linear Elastic Problem
	5.4.1 Linear Strain
	5.4.2 Cauchy Tensor
	5.4.3 Constitutive Equation
	5.4.4 Equilibrium Equations of Force
	5.4.5 Weak Form
	5.4.6 Existence of Solution

	5.5 Stokes Problem
	5.6 Abstract Saddle Point Variational Problem
	5.6.1 Existence Theorem of Solution
	5.6.2 Abstract Saddle Point Problem

	5.7 Summary
	5.8 Practice Problems

	References
	Index

