
Contents

Contents 1

3 Basics of Mathematical Programming 3
3.1 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Iterative Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Gradient Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Step Size Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Newton Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Augmented Function Methods . . . . . . . . . . . . . . . . . . . . 28
3.7 Gradient Method for Constrained Problems . . . . . . . . . . . . 29

3.7.1 Simple Algorithm . . . . . . . . . . . . . . . . . . . . . . . 32
3.7.2 Complicated Algorithm . . . . . . . . . . . . . . . . . . . 37

3.8 Newton Method for Constrained Problems . . . . . . . . . . . . . 43
3.8.1 Simple Algorithm . . . . . . . . . . . . . . . . . . . . . . . 46
3.8.2 Complicated Algorithm . . . . . . . . . . . . . . . . . . . 52

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.10 Practice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1





Chapter 3

Basics of Mathematical
Programming

In Chap. 2, we discussed the conditions satisfied by a local minimum point
(the required conditions of a local minimum point) and the conditions which
guarantee it to be a minimum point (sufficient conditions for a minimum
point) under a finite-dimensional vector space setting. No detailed explanation,
however, was provided regarding the method (solution) for finding the local
minimum point. In this chapter, we would like to address this ensuing matter.
The computational formulation associated to such a problem is called an
optimization problem or a mathematical programming problem, and active
research is being conducted in the academic field referred to as operations
research (OR). Here, we will consider algorithms while showing results that
are theoretically obtained or ways to deal with the solution of optimization
problems. Much of the content covered here is also valid for abstract optimal
design problems in Chap. 7. In fact, in Chap. 7 we will see how the same
algorithms can be adapted for function spaces.

In this chapter, we assume that the cost functions (objective and constraint
functions) have computable gradients and Hessians. However, the real difficulty
from the computational point of view is how to evaluate them. We want the
reader bears this in mind.

3.1 Problem Setting

Optimal design problems, as seen in Chap. 1, were viewed as optimization
problems with equality constraints (state equations) and inequality constraints
of the cost functions f0 (ξ,u), . . . , fm (ξ,u) defined by the design variable
ξ ∈ Ξ and state variable u ∈ U . In Chap. 2, such a problem was seen as an
optimization problem constructed as f0 (ξ,u), . . . , fm (ξ,u) with x = (ξ,u) ∈
Ξ× U as a design variable.

In this chapter, we shall recall the definitions given in Chap. 1 and

3



4 Chapter 3 Basics of Mathematical Programming

let ξ be the design variable with f0 (ξ,u (ξ)), . . . , fm (ξ,u (ξ)) denoted by
f̃0 (ξ), . . . , f̃m (ξ), respectively. The differential of f̃0 (ξ), . . . , f̃m (ξ) with
respect to ξ can be obtained via adjoint variable method as seen in Section
2.8. Furthermore, f̃0 (ξ), . . . , f̃m (ξ) are assumed to be non-linear functions.
Actually, in the optimal design problem of Chap. 1 (Problem 1.1.4), even if
f0 (u) is a linear function with respect to u, the equality constraint function
h (a,u) = −K (a)u + p is non-linear with respect to (a,u), hence, f̃0 (a)
became a non-linear function.

In this chapter, by denoting the design variable ξ ∈ Ξ as x ∈ X = Rd, the
non-linear functions f̃0, . . . , f̃m as f0, . . . , fm, and the gradient of these with
respect to x as g0, . . . , gm, respectively, we can consider the following problem
which does not include any equality constraints.

Problem 3.1.1 (Non-linear optimization problem) Let X = Rd. Given
the functions f0, . . . , fm ∈ C1 (X;R), find an element x which satisfies

min
x∈X

{f0 (x) | f1 (x) ≤ 0, . . . , fm (x) ≤ 0} .

□

The structure of this chapter is as follows. In Sect. 3.2, the definitions
relating to convergence and the definition of iterative method, which is a basic
way to think about the solutions of non-linear optimization problems, will be
presented. Then, from Sect. 3.3 to Sect. 3.5, we will look at solutions with
respect to unconstrained optimization problems. After that, we will discuss the
solutions of optimization problems with inequality constraints (Problem 3.1.1)
in Sect. 3.6 and in the rest of the chapter.

3.2 Iterative Method

Given the solutions of non-linear optimization problems, there do not appear
to be any methods which allow us to obtain the optimal solution by solving
simultaneous linear equations once without any pre-processing. Usually the
iterative method shown below is the standard.

Definition 3.2.1 (Iterative method) A method whereby a non-minimum
point x0 ∈ X is chosen with respect to Problem 3.1.1, and seeking

xk+1 = xk + yg = xk + ϵ̄gȳg (3.2.1)

with respect to k ∈ N, while determining yg ∈ X is called an iterative method.

Here, yg is called a search vector and its size
∥∥yg

∥∥
X
, a step size. In contrast,

ȳg is a vector providing direction only, and in this book, it is distinguished from
a search vector by referring to it as the search direction. It is assumed that the
size of ȳg does not need to be one. ϵ̄g is a positive constant for adjusting its
size. Moreover, x0 is called the initial point and xk, where k ∈ N, is called a
trial point. □



3.3 Gradient Method 5

From this definition, given an algorithm using iterative methods, there is a
need to specify the methods for seeking the search direction ȳg and a method

to appropriately determine the step size
∥∥yg

∥∥
X
. We will look at these methods

in Sect. 3.3 onwards. Moreover, aside from this iterative method, there is a
known numerical solution to optimization problems called the direct method.
The direct method is used as a collective term for methods which allow solutions
to be sought via a finite number of steps. This method, however, will not be
discussed in this book since it is mainly used to deal with linear optimization
problems.

For the purpose of later discussions, a glossary representing the
characteristics and qualities of the iterative method will be defined.

Definition 3.2.2 (Global convergence) An iterative method is said to have
global convergence when an initial point is arbitrarily chosen and yet it generates
a sequence of iterates that converges to a point for which a necessary condition
of optimality holds. □

Definition 3.2.3 (Convergence rate) Let x be a local minimum and
{xk}k∈N be a sequence of iterates obtained through an iterative method. If
there exists an index k0 and a constant p ∈ [1,∞) such that the inequality
condition

∥xk+1 − x∥X ≤ ∥xk − x∥pX

holds for each k ≥ k0, then p is called the convergence order of the algorithm.
Here, when p = 1, r ∈ (0, 1) and when p > 1, r is a positive constant. Moreover,
when r can be replaced by a number sequence {rk}k∈N which converges to zero,
the algorithm exhibits a super pth order of convergence. □

3.3 Gradient Method

Let us first examine the gradient method as a procedure to find the search
direction ȳg. Here, let us consider choosing one cost function fi from i ∈
{0, 1, . . . ,m} and obtain the direction in which ȳgi descends. Such a ȳgi will be
referred to as the descent direction of fi.

If in Problem 3.1.1, the minimum point is a point within the admissible
set (all inequality constraints become inactive), the descent direction ȳg0 of f0
becomes the search direction ȳg of Eq. (3.2.1). Moreover, even when obtaining
the search direction ȳg in the case when any of the inequality constraint
conditions become active, as will be shown in Sect. 3.7 and beyond, the search
direction ȳg satisfying the inequality constraints can be obtained using the
descent direction ȳg0 of the objective function f0 and the descent direction
ȳgi of each the active constraint functions fi. The gradient method is used in
this case too.



6 Chapter 3 Basics of Mathematical Programming

Fig. 3.1: Definition of gradient g.

Fig. 3.2: Gradient method.

In this book, from Sect. 3.3 to Sect. 3.5, unconstrained problems will be
considered. Here, for simplicity, fi, gi and ȳgi are written as f , g and ȳg,
respectively.

Before we proceed further, let us define the symbols while referring to Fig. 3.1
and Fig. 3.2. For each k ∈ N, let xk ∈ X be a trial point and g be the gradient
of f at xk not identical to the zero vector 0X . We suppose that g is known in
advance and then seek the direction ȳg ∈ X in which f decreases.

At this point let us confirm the meaning of g. Consider the Taylor expansion
of f around xk given by

f (xk + y) = f (xk) + g · y + o (∥y∥X) . (3.3.1)

Here, if the definition of a Fréchet derivative (see Definition 4.5.4 in Chap. 4)
is used, then g is an element of the dual space X ′ (Definition 4.4.5) of X and



3.3 Gradient Method 7

the size (norm) of g is defined by

∥g∥X′ = max
y∈X

∣∣⟨g,y⟩X′×X

∣∣
∥y∥X

= max
y∈X, ∥y∥X=1

∣∣⟨g,y⟩X′×X

∣∣ .
If X = Rd, then X ′ = Rd and the dual product is given by ⟨g,y⟩X′×X = g · y.
Based on this definition, ∥g∥X′ represents the maximum value of |g · y| over
all the direction y ∈ X such that ∥y∥X = 1. Moreover, the direction of g
is perpendicular with respect to the contour lines of f . This is because in
Eq. (3.3.1), with xk + y ∈ X as a point on the contour line and y is taken to
be a sufficiently small vector,

g · y ≈ f (xk + y)− f (xk) = 0

holds. Figure 3.1 illustrates this relationship.
From these relationships, we infer that g points in the direction such

that f increases the most. Hence, from the fact that X = X ′ holds in a
finite-dimensional vector space (Section 4.4.6), if ȳg ∈ X is chosen such that

ȳg = −g, (3.3.2)

then we get

f
(
xk + ȳg

)
− f (xk) = −

∥∥ȳg

∥∥2
X
+ o

(∥∥ȳg

∥∥
X

)
.

Here, if
∥∥ȳg

∥∥
X

is sufficiently small, f decreases.
Let us generalize this method. The method for obtaining the descent

direction ȳg ∈ X as the solution to the following problem is called the gradient
method.

Problem 3.3.1 (Gradient method) Let X = Rd and let A ∈ Rd×d be a
positive definite real symmetric matrix (Definition 2.4.5). Let the gradient of f
at xk ∈ X which is not a local minimum point with respect to f ∈ C1 (X;R)
be g (xk) ∈ X ′ = Rd. In this case, obtain ȳg ∈ X which satisfies

ȳg · (Ay) = −g (xk) · y (3.3.3)

with respect to an arbitrary y ∈ X. □

Equation (3.3.3) is an expression using the inner product with an arbitrary
y ∈ X. This equation is equivalent to obtaining ȳg via

ȳg = −A−1g. (3.3.4)

The reason for using the inner product is so that when defining the gradient
method in function space in Chap. 7, it becomes a natural extension of Problem
3.3.1. Moreover, Eq. (3.3.2) is the gradient method in the case when A is the
identity matrix I. Let us confirm the fact that the solution ȳg of Problem 3.3.1
reduces f with the following theorem.



8 Chapter 3 Basics of Mathematical Programming

Theorem 3.3.2 (Gradient method) The solution ȳg of Problem 3.3.1 is the
descent direction of f at xk. □

Proof Since A is a positive definite symmetric matrix, a positive constant α exists
and the inequality

y · (Ay) ≥ α ∥y∥2X , A = A⊤,

holds with respect to an arbitrary y ∈ X. This relationship and Eq. (3.3.3) can be
used to establish

f
(
xk + ϵ̄ȳg

)
− f (xk) = ϵ̄g · ȳg + o (ϵ̄) = −ϵ̄ȳg ·

(
Aȳg

)
+ o (ϵ̄)

≤ −ϵ̄α
∥∥ȳg

∥∥2
X

+ o (ϵ̄)

with respect to the positive constant ϵ̄. Consequently, if ϵ̄ is sufficiently small, then f
decreases in value. □

Let us define the descent direction’s descent angle as follows.

Definition 3.3.3 (Descent angle) For xk ∈ X, g ∈ X ′ is taken to be the
gradient and ȳg ∈ X the descent direction. In this case, θ ∈ [0, π] is defined by

cos θ = −

〈
g, ȳg

〉
X′×X

∥g∥X′

∥∥ȳg

∥∥
X

is called the descent angle of ȳg at xk. □

IfA is set to be the identity matrix I in the gradient method (Problem 3.3.1),
the descent angle θ of ȳg vanishes. This iterative method is called the maximum
descent method. However, it is not necessarily the case that convergence is faster
with the maximum descent method. This will become clear through comparison
with the conjugate gradient method (Problem 3.4.10) which will be discussed
later in this section.

Let us consider the geometric meaning of ȳg obtained by the gradient
method. Problem 3.3.1 is equivalent to seeking ȳg ∈ X which satisfies

q
(
ȳg

)
= min

y∈X

{
q (y) =

1

2
y · (Ay) + g · y + f (xk)

}
. (3.3.5)

In fact, if the condition q′
(
ȳg

)
[y] = 0 holds true for any y ∈ X, then so does

Eq. (3.3.3) and vice versa. Figure 3.2 shows the function q in this case. Here, q is
an elliptic paraboloid and its minimum point is xk+ ȳg. The size of ȳg depends

on the choice of A. Therefore, if one wants the step size
∥∥yg

∥∥
X

=
∥∥ϵ̄gȳg

∥∥
X

to be ϵg, the following calculation should be carried out. Introduce a positive
constant ca as an adjustment parameter and change Eq. (3.3.4) to

yg = − (caA)
−1

g. (3.3.6)



3.3 Gradient Method 9

(Addition)Reduction rate α of objective function.

Fig. 3.3: Algorithm of gradient method.

It should be noted here that if ca is made bigger, the size of yg becomes smaller.
Hence, when the step size ϵg and the solution ȳg = ȳg (x0) of the gradient
method (Problem 3.3.1) at initial point x0 are given, we have

ca =

∥∥ȳg

∥∥
X

ϵg
. (3.3.7)

Here we assume that ca is obtained in this way at the initial step (k = 0)
and its value is used in order to obtain the search vector via Eq. (3.3.6) at the
succeeding steps (k ∈ N) too. Then the step size

∥∥ygk

∥∥
X

roughly takes the
size ϵg for a while. Moreover, the step size becomes zero when the trial point
approaches the point of convergence. In this case, it is equivalent to seeking
yg ∈ X which satisfies

q
(
yg

)
= min

y∈X

{
q (y) =

1

2
y · (caAy) + g · y + f (xk)

}
. (3.3.8)

In the above equation, we emphasize that the magnitude of ca depends on
the choice of the free parameter ϵg. So, obtaining an appropriate value for ca
is clearly not straightforward. Nevertheless, if we can determine the step size,
then we can use Eq. (3.3.7) to decide for ca. In the case of domain variations,



10 Chapter 3 Basics of Mathematical Programming

discussed in Chap. 9, for instance, the magnitude of a domain variation (step
size) is defined by a norm of the strain with respect to the domain variation,
such as the square root of the integral of squared strain or the maximum strain.
In such a situation, we can imagine that a value of 0.05 for ϵg would be a good
choice. However, if we do not have any idea about the step size, then we have
to consider another way to decide the value of ca.

One possible way to determine a good choice for ca is to assume that the
objective function reduces at some rate after a domain variation.1 We illustrate
this method as follows. Suppose that the objective function f (x0) and the
gradient g (x0) at k = 0 are given, and a search vector ȳg is obtained by the
gradient method. Also, let us assume that the objective function reduces at a
rate of α ∈ (0, 1) after every domain variation. Then, we have the estimate

f
(
x0 + ϵ̄gȳg

)
− f (x0) ≈ αf (x0) ≈ ϵ̄gg (x0) · ȳg.

When ‘≈’ is considered ‘=’, ca is given by

ca =
1

ϵ̄g
=

g (x0) · ȳg

αf (x0)
. (3.3.9)

Based on the observations above, let us develop a simple algorithm based on
the gradient method. In this chapter, we shall make use of some particular
statements when stating the steps of the algorithms. More precisely, with
the supposition that optimal design problems may be solved, the following
expressions will be used. The phrase “Calculate f (xk)” will be written as
“Solve the state determination problem and calculate f (xk)”. Furthermore, we
will write “Calculate g (xk)” as “Solve the adjoint problem with respect to f
and calculate g (xk)”. The reason for these is because the calculation becomes
like that in an optimal design problem, as explained at the start of Sect. 3.1.

With this background in mind, we now provide examples of algorithms using
the gradient method, starting with the simplest one. The adjustment parameter
for determining the step size ca is assumed to be given in advance. Figure 3.3
illustrates an overview of the method.

Algorithm 3.3.4 (Gradient method) In Problem 3.1.1, f0 is denoted by f
and all inequality constraints are assumed to be inactive.

(1) Define the following parameters: initial point x0, positive definite
symmetric matrix A (I if there is no particular specification), positive
constant for adjusting the step size ca and positive constant ϵ0 needed for
the convergence check. Set k = 0.

(2) Solve the state determination problem and calculate f (xk).

(3) Solve the adjoint problem with respect to f and calculate g (xk).

(4) Calculate yg by Eq. (3.3.6).

1Julius Fergy T. Rabago (private communication).



3.3 Gradient Method 11

Fig. 3.4: Algorithm of gradient method when the initial value of the step size is
given.

(5) Let xk+1 = xk +yg. Solve the state determination problem and calculate
f (xk+1).

(6) Check the final condition |f (xk+1)− f (xk)| ≤ ϵ0.

• Proceed to (7) if the final condition is satisfied.

• Otherwise, substitute k + 1 into k and return to (3).

(7) Complete the calculation.

□

In Algorithm 3.3.4, |f (xk+1)− f (xk)| ≤ ϵ0 was used as a stopping criterion.
Other than this, conditions such as k is not over an upper limit or

∥∥yg

∥∥
X

≤ ϵ0
in which attention is given to the variation of the design variable can also be
utilized.

If one wanted ca to be determined so that the first step size is a specified ϵg
(or from the objective function reduce rate α) , the following algorithm can be
used. Figure 3.4 shows an overview of its steps.

Algorithm 3.3.5 (Gradient method with initial step size specified)
In Problem 3.1.1, f0 is denoted by f and all inequality constraints are assumed
to be inactive.

(1) Define the following parameters: initial point x0, positive definite
symmetric matrix A, positive constant for the initial step-size ϵg (or the
objective function reduce rate α) and positive constant ϵ0 needed for the
convergence check. Let ca = 1 and set k = 0.

(2) Solve the state determination problem and calculate f (xk).

(3) Solve the adjoint problem with respect to f and calculate g (xk).



12 Chapter 3 Basics of Mathematical Programming

(4) Use Eq. (3.3.6) to calculate yg.

(5) When k = 0, let yg = ȳg and obtain ca using Eq. (3.3.7). Moreover,
substitute ȳg/ca into yg.

(6) Let xk+1 = xk + yg. Solve the state determination problem and
calculatef (xk+1).

(7) Check the final condition |f (xk+1)− f (xk)| ≤ ϵ0.

• Proceed to (8) when the terminal condition is satisfied.

• Otherwise, substitute k + 1 into k and return to (3).

(8) Complete the calculation.

□

3.4 Step Size Criterion

Next let us consider a method for appropriately deciding the step size
∥∥yg

∥∥
X
.

If the search direction ȳg is already known, the variable in an optimization
problem is only ϵ̄g of Eq. (3.2.1). Hence, an optimization problem such as the
following with ϵ̄g taken to be a design variable can be considered to suggest a
method for determining the step size

∥∥ϵ̄gȳg

∥∥
X

from its solutions. This method
is called the strict line search method.

Problem 3.4.1 (Strict line search method) Let X = Rd. Given f ∈
C1 (X;R), xk ∈ X and ȳg ∈ X, obtain ϵ̄g which satisfies

min
ϵ̄g∈(0,∞)

f
(
xk + ϵ̄gȳg

)
.

□

The algorithm for solving Problem 3.4.1 employs methods to solve non-linear
equations. For example, a method such as

• Bisection method

• Secant method

can be considered. The bisection method repeats operations for finding the
mid-point of the region such as ϵ̄g in which f changes from decreasing to
increasing. In this case, the convergence order to an exact solution for ϵ̄g is
one. When using the secant method, it is viewed as a problem obtaining ϵ̄g
such that the gradient of f with respect to ϵ̄g is zero. To solve the problem, the
updating equation of the Newton–Raphson method, which will be shown later,
is used. However, in the secant method, the gradient of f is replaced with the
difference (Practices 3.1 and 3.2). It is known that the convergence order of
this method is the golden ratio

(
1 +

√
5
)
/2.



3.4 Step Size Criterion 13

The following results can be obtained regarding the convergence of an exact
solution of xk computed through the strict line search method. Assume that the
cost function is a second-order function. Suppose that the search direction is
obtained via the maximum descent method. In this case, the step size obtained
from the strict line search method is the solution of the following problem.

Problem 3.4.2 (Strict line search of 2nd-order optimization problem)
Let X = Rd. Suppose B ∈ Rd×d is a positive definite symmetric matrix, b ∈ X
is a given vector, and

f (x) =
1

2
x · (Bx) + b · x (3.4.1)

is a cost function. Given these assumptions, find ȳg ∈ X using the maximum
descent method with respect to xk ∈ X and obtain ϵ̄g ∈ (0,∞) which satisfies
Problem 3.4.1. □

Answer If f
(
xk + ϵ̄gȳg

)
is written as f̄ (ϵ̄g), we can write

f̄ (ϵ̄g) =
1

2

(
xk + ϵ̄gȳg

)
·
{
B
(
xk + ϵ̄gȳg

)}
+ b ·

(
xk + ϵ̄gȳg

)
= ϵ̄2g

1

2
ȳg ·

(
Bȳg

)
+ ϵ̄gȳg · g + f (xk) ,

where g = Bxk + b was used in the second equality. In view of the strict line search
method, the equation

df̄

dϵ̄g
= ϵ̄gȳg ·

(
Bȳg

)
+ ȳg · g = 0

yields

ϵ̄g = −
ȳg · g

ȳg ·
(
Bȳg

) .
Furthermore, if ȳg is the solution of the maximum descent method, then one has
ȳg = −g, which gives

ϵ̄g = −
ȳg · g

ȳg ·
(
Bȳg

) =
g · g

g · (Bg)
=

g · g
ȳg ·

(
Bȳg

) . (3.4.2)

□

In this way, the strict line search method can be used to provide the following
results regarding the convergence when the iterative method is repeated while
seeking ϵ̄g.

Theorem 3.4.3 (Convergence of the strict line search method) The
sequence of iterates {xk}k∈N formed by the iterative method using the solution
to Problem 3.4.2, ȳg ∈ X, and ϵ̄g satisfies

∥xk+1 − x∥B ≤
∣∣∣∣λd − λ1

λ1 + λd

∣∣∣∣ ∥xk − x∥B ,



14 Chapter 3 Basics of Mathematical Programming

where x is a local minimum point, λ1 and λd denote the minimum and maximum
eigenvalues, respectively, and ∥x∥B =

√
x · (Bx). □

Proof The objective function in Problem 3.4.2 can be written as

f (x) =
1

2

(
x+B−1b

)
·
{
B
(
x+B−1b

)}
− 1

2
b ·
(
B−1b

)
.

Observe that even if x +B−1b is replaced by x, the evaluation of xk+1 − x remains
unchanged. Moreover, since the second term on the right-hand side in the above
equation is independent of x, then even if it is omitted, the evaluation of xk+1 − x
does not change. Therefore, it suffices to consider the problem of finding the minimum
point of

f̄ (x) =
1

2
x · (Bx) .

When gk = g (xk) = Bxk, the maximum descent method can be used to obtain
ȳk = −gk. Furthermore, as a result of the strict line search method, Eq. (3.4.2) can
be used to obtain

xk+1 = xk +
gk · gk

gk · (Bgk)
ȳk

to form the point sequence. In this case,

f̄ (xk+1) =
1

2

(
xk − gk · gk

gk · (Bgk)
gk

)
·
{
B

(
xk − gk · gk

gk ·Bgk

gk

)}
=

1

2

[
xk · (Bxk)−

2 (gk · gk) {gk · (Bxk)} − (gk · gk)
2

gk · (Bgk)

]
=

1

2

{
xk · (Bxk)−

(gk · gk)
2

gk · (Bgk)

}
=

1

2
xk · (Bxk)

(
1− (gk · gk)

2

{xk · (Bxk)} {gk · (Bgk)}

)
=

(
1− (gk · gk)

2{
gk ·

(
B−1gk

)}
{gk · (Bgk)}

)
f̄ (xk)

is established. Since B is positive definite, we can apply Kantorovich’s inequality to
obtain

4λ1λd

(λ1 + λd)
2 ≤ (y · y)2{

y ·
(
B−1y

)}
{y · (By)}

,

for any y ∈ X. Therefore,

f̄ (xk+1) ≤
(
1− 4λ1λd

(λ1 + λd)
2

)
f̄ (xk) =

(
λd − λ1

λ1 + λd

)2

f̄ (xk) ,

and thus, the desired result. □

Let us consider the characteristics of the strict line search method with the
above results in mind. The strict line search method requires the minimization
problem with only the step size as a design variable to be solved accurately.



3.4 Step Size Criterion 15

Fig. 3.5: Armijo criterion.

To do this, iterative algorithms such as the bisection method or the secant
method are of great practical importance, and thus become necessary. For
problems where the calculation of the gradient is rather more difficult compared
to the calculation of the cost function with respect to the design variable,
it is considered that an effective algorithm can be formulated such that the
calculation of the gradient is unnecessary, like the bisection method. However,
once the design variable moves in the search direction, the gradient changes and
the search direction determined by the gradient method also changes. Even in
such situations, it is considered that it is not necessarily a good idea to seek the
minimum point accurately using the old search direction. In particular, in the
case when using an algorithm in which there is a need for the recalculation of
the gradient after ϵ̄g is updated, as with the secant method (Practice 3.2), it
is considered that updating the search direction via the gradient method would
improve convergence rather than just continuing to use the old search direction.

In the sequel, we shall examine a method focusing on the range over which
the non-linearity and gradient of the cost function is effective without worrying
about whether it is strictly the case. The criterion shown below provides the
upper and lower limit of the step size. With respect to the upper limit of the
step size

∥∥ϵ̄gȳg

∥∥
X
, conditions such as the one that follows are known [?].

Definition 3.4.4 (Armijo criterion) Suppose g (xk) is the gradient of
f (xk), ȳg is the search direction and ξ ∈ (0, 1) is the parameter adjusting
the upper limit of the step size. If

f
(
xk + ϵ̄gȳg

)
− f (xk) ≤ ξg (xk) ·

(
ϵ̄gȳg

)
< 0 (3.4.3)

holds for any ϵ̄g > 0, ϵ̄g satisfies the Armijo criterion. □

If the upper limit of ϵ̄g satisfying the Armijo criterion is written as ϵ̄gA,
a relationship such as shown in Fig. 3.5 is established. The left-hand side of
Eq. (3.4.3) takes a negative value by which the non-linear function f actually
reduces when x fluctuates from xk by just ϵ̄gȳg. In contrast, the quantity

g (xk)·
(
ϵ̄gȳg

)
on the right-hand side admits a negative value when the reduction

in f is estimated using the gradient. Equality holds when ϵ̄g is sufficiently
small. However, the case is different when ϵ̄g is of a certain size. Instances when



16 Chapter 3 Basics of Mathematical Programming

Fig. 3.6: Armijo criterion with respect to a second-order function.

ξ ∈ (0, 1) provides the ratio by which this difference is permitted. Making ξ
close to unity represents the fact that their difference is not allowed and making
ξ close to zero represents that their difference is permitted. Therefore, the
Armijo criterion in effect provides the condition for deciding the step size at a
level such that the estimated value using the gradient of f is not too far away
from the actual value of reduction. It must be noted that ξ is restricted on the
unit interval (0, 1) since the Armijo criterion actually fails when ξ > 1.

Moreover, the following results can be used as a benchmark for ξ. If f (x)
is a second-order function and the upper limit of the Armijo criterion when
ξ = 1/2 is ϵ̄gA, xk + ϵ̄gAȳg becomes the minimum point of f , see Fig. 3.6. In
fact,

f
(
xk + ϵ̄gAȳg

)
− f (xk) = g (xk) ·

(
ϵ̄gAȳg

)
+

1

2

(
ϵ̄gAȳg

)
·
(
B

(
ϵ̄gAȳg

))
(3.4.4)

is established with respect to the second-order function of Eq. (3.4.1). Here, if
xk+ ϵ̄gAȳg is a local minimum point, the Taylor expansion of g (xk) is given by

g
(
xk + ϵ̄gAȳg

)
= g (xk) +B

(
ϵ̄gAȳg

)
= 0X′ . (3.4.5)

If Eq. (3.4.5) is substituted into Eq. (3.4.4), then one obtains

f
(
xk + ϵ̄gAȳg

)
− f (xk) =

1

2
g (xk) ·

(
ϵ̄gAȳg

)
.

On the other hand, conditions such as the following are known for providing
the lower limit for the step size

∥∥ϵ̄gȳg

∥∥
X

[?].2

Definition 3.4.5 (Wolfe criterion) Let g (xk) be the gradient of f (xk), ȳg

the search direction, ξ ∈ (0, 1) the parameter used in the Armijo criterion,
µ ∈ (0, 1) the parameter which adjusts the lower limit of the step size and
suppose that 0 < ξ < µ < 1 is satisfied. In this case, if

µg (xk) ·
(
ϵ̄gȳg

)
≤ g

(
xk + ϵ̄gȳg

)
·
(
ϵ̄gȳg

)
< 0 (3.4.6)

holds with respect to ϵ̄g > 0, ϵ̄g is said to satisfy the Wolfe criterion. □
2in the literature, the Armijo criterion is in fact a special case of the Wolfe criterion, but

in this book, only the condition which gives the lower limit of ϵ̄g is referred to as the Wolfe
criterion.



3.4 Step Size Criterion 17

If the lower limit value of ϵ̄g which satisfies the Wolfe criterion is written as
ϵ̄gW, a geometric relationship such as the one shown in Fig. 3.7 is established.
The term g (xk) on the left-hand side of Eq. (3.4.6) represents the gradient of
f at xk. On the other hand, the expression g

(
xk + ϵ̄gȳg

)
on the right-hand

side represents the gradient of f obtained when moving x from xk to xk+ ϵ̄gȳg.
The following observations regarding the Wolfe criterion are established:

(1) If the condition g
(
xk + ϵ̄gȳg

)
·
(
ϵ̄gȳg

)
≤ g (xk) ·

(
ϵ̄gȳg

)
< 0 holds for some

ϵ̄g > 0, then there is no ϵ̄g > 0 such that Eq. (3.4.6) holds. This condition
expresses the fact that when x moves in the direction of ȳg, the negative
gradient which would reduce f becomes an even greater negative gradient.
It shows that in such a case there is no need to provide a lower limit to
the step size.

(2) If, for some ϵ̄g > 0, g (xk) ·
(
ϵ̄gȳg

)
< g

(
xk + ϵ̄gȳg

)
·
(
ϵ̄gȳg

)
< 0 holds,

ϵ̄g > 0 exists such that Eq. (3.4.6) holds. This condition shows, in contrast
to (1) above, that the gradient decreases when x moves in the direction
of ȳg. If µ is made smaller than one in Eq. (3.4.6), the lower limit ϵ̄gW of
ϵ̄g becomes bigger.

Hence, the Wolfe criterion is a condition which ideally requires the step size
to be large enough such that the validity of the gradient is lost to around the
proportion of µ.

Meanwhile, the requirement ξ < µ is based on the following observations.
The Taylor expansion of f about xk + ϵ̄gȳg is written as

f (xk) = f
(
xk + ϵ̄gȳg

)
− g

(
xk + ϵ̄gȳg

)
·
(
ϵ̄gȳg

)
+ o (ϵ̄g) .

In this case, if the Wolfe criterion is satisfied, then the following relations hold:

µg (xk) ·
(
ϵ̄gȳg

)
− o (ϵ̄g) ≤ g

(
xk + ϵ̄gȳg

)
·
(
ϵ̄gȳg

)
− o (ϵ̄g)

= f
(
xk + ϵ̄gȳg

)
− f (xk) .

On the other hand, if the Armijo criterion is satisfied, then we have that

f
(
xk + ϵ̄gȳg

)
− f (xk) ≤ ξg (xk) ·

(
ϵ̄gȳg

)
.

Hence, if both conditions are satisfied, then the following requirement must
hold:

(µ− ξ) g (xk) ·
(
ϵ̄gȳg

)
≤ o (ϵ̄g) .

Here, the fact that g (xk) ·
(
ϵ̄gȳg

)
≤ 0 implies that if the right-hand side is

positive, or else the absolute value is sufficiently small, then the inequality holds
when ξ < µ.

An example of an algorithm in which the step size is controlled so that the
Armijo criterion and the Wolfe criterion are satisfied is shown below. Figure 3.8
provides an overview of the steps in the algorithm.



18 Chapter 3 Basics of Mathematical Programming

Fig. 3.7: Wolfe criterion.

Fig. 3.8: Gradient method algorithm using Armijo criterion and Wolfe criterion.

Algorithm 3.4.6 (Armijo criterion and Wolfe criterion)
Consider Problem 3.1.1. Let f0 be f and all inequality constraints be inactive.

(1) Define the following parameters: the initial point x0, positive definite
symmetric matrix A, step size ϵg, convergence check value ϵ0, parameters
ξ and µ (0 < ξ < µ < 1) used in the Armijo criterion and the Wolfe
criterion, respectively. Let ca = 1 and set k = 0.

(2) Solve the state determination problem and calculate f (xk).

(3) Solve the adjoint problem with respect to f and calculate g (xk).

(4) Use Eq. (3.3.6) to calculate yg.

(5) When k = 0, let yg = ȳg and use Eq. (3.3.7) to obtain ca. Moreover,
substitute ȳg/ca into yg.



3.4 Step Size Criterion 19

(6) Let xk+1 = xk +yg. Solve the state determination problem and calculate
f (xk+1).

(7) Check the Armijo criterion (Eq. (3.4.3)).

• Proceed to the next step if satisfied.

• Otherwise, suppose α > 1, substitute αca into ca, and αyg into yg,
then return to (5).

(8) Calculate g (xk+1).

(9) Check the Wolfe criterion (Eq. (3.4.6)).

• Proceed to the next step if satisfied.

• Otherwise, suppose β < (0, 1), substitute βca into ca and substitute
βyg into yg, then return to (5).

(10) Check termination condition |f0 (xk+1)− f0 (xk)| ≤ ϵ0.

• Proceed to (11) when the stopping criterion is satisfied.

• Otherwise, substitute k + 1 into k and return to (4).

(11) Complete the calculation.

□

Concerning the sequence of iterates obtained through the algorithms in
which the step size is restricted so that the Armijo criterion and the Wolfe
criterion are satisfied, the following results relating to global convergence can
be obtained.

Theorem 3.4.7 (Global convergence theorem) Let X = Rd. Suppose
that the function f : X → R has a lower bound, is differentiable in the
neighborhood L = {x ∈ X | f (x) ≤ f (x0)} of the level set at x0 ∈ X and
the gradient g is Lipschitz continuous (Definition 4.3.1) in L. Let the search
vector at xk be ygk and suppose ygk satisfies cos θk > 0 with respect to descent

angle θk. Furthermore, suppose that the step size
∥∥ϵ̄gȳg

∥∥
X

satisfies the Armijo
criterion and the Wolfe criterion. Under these assumptions, the sequence of
iterates {xk}k∈N generated by the gradient method satisfies∑

k∈N

∥g (xk)∥2X′ cos
2 θk < ∞. (3.4.7)

□



20 Chapter 3 Basics of Mathematical Programming

Proof From the Armijo criterion, we know {xk}k∈N is in the neighborhood of L.
Moreover, the Wolfe criterion implies that the inequality

(µ− 1) g (xk) · yg ≤ (g (xk+1)− g (xk)) · yg

holds. Furthermore, since g is Lipschitz continuous, we have

(g (xk+1)− g (xk)) · yg ≤ β ∥xk+1 − xk∥X
∥∥yg

∥∥
X

= ϵ̄gβ
∥∥yg

∥∥2
X

for some some β > 0. From these equations, we get

ϵ̄g ≥
(g (xk+1)− g (xk)) · yg

β
∥∥yg

∥∥2
X

≥
(µ− 1) g (xk) · yg

β
∥∥yg

∥∥2
X

.

Substituting this equation into the Armijo criterion, we obtain

f (xk+1) ≤ f (xk) + ξϵ̄gg (xk) · yg = f (xk)− ξ
µ− 1

β

(
g (xk) · yg∥∥yg

∥∥
X

)2

= f (xk)− ξ
µ− 1

β
∥g (xk)∥2X′ cos

2 θk.

Therefore, we have

f (xk+1) ≤ f (xk)− ξ
µ− 1

β

∑
k∈{0,··· ,m}

∥g (xk)∥2X′ cos
2 θk.

Since f is bounded below, the the desired result follows. This proves the theorem.
□

Equation 3.4.7 is called Zoutendijk condition. If the result of Theorem
3.4.7 and the necessary conditions for an infinite series to converge,
limk→∞ ∥g (xk)∥2X′ cos2 θk = 0, are used, a result such as the one that follows
is obtained.

Corollary 3.4.8 (Global convergence theorem) In addition to the
suppositions of Theorem 3.4.7, if yg is not asymptotic to the direction which
crosses −g (xk) orthogonally, i.e., when cos θk > 0, we have that

lim
k→∞

g (xk) = 0X′ .

□

This result shows that given an appropriate problem setting, if the search
direction is obtained via the gradient method and the step size is chosen so
that the Armijo criterion and the Wolfe criterion are satisfied, the generated
sequence of iterates {xk}k∈N has global convergence.

For the rest of this section, we shall introduce the conjugate gradient method
as an extension of the gradient method. Let us first define the conjugates
between vectors as follows.



3.4 Step Size Criterion 21

Definition 3.4.9 (Conjugate) Suppose B ∈ Rd×d is a positive definite real
symmetric matrix. Let x ∈ X and y ∈ X. If x · (By) = 0, then x and y are
said to be conjugate. □

In view of Problem 3.4.2, the conjugate gradient method is given as follows.

Problem 3.4.10 (Conjugate gradient method) For each x0 ∈ X, the
search direction ȳg0 and the parameter ϵ̄g0 which adjusts the step size are
obtained through the steepest gradient method and the strict line search
method, respectively. For each k ∈ N, provide a value to ȳg k−1and obtain ȳgk

such that it is conjugate to ȳg k−1. In addition, find the value of the parameter
ϵ̄gk which adjusts the step size based on the strict line search method. □

Figure 3.9 shows a geometric illustration of the search vector obtained via
the conjugate gradient method when X = R2. By ȳg0 and ȳg1 being chosen
so that they are conjugates, making it a two-dimensional vector space Problem
3.4.2, the minimum point can be achieved by seeking the search vector only
twice.

Let us show an example of a conjugate gradient method. Let x0 = 0X . Use
the steepest gradient method to set the search direction to be ȳg0 = −g0 =
−g (x0) = −Bx0 − b = −b. If, with respect to k ∈ N, ȳgk and gk are given,
seek

ϵ̄gk =
ȳgk · gk

ȳgk ·
(
Bȳgk

) (3.4.8)

using Eq. (3.4.2) (the strict line search method). Furthermore, generate a
sequence of iterates for k ∈ N using

xk = xk−1 + ϵ̄g k−1ȳg k−1, (3.4.9)

gk = gk−1 + ϵ̄g k−1Bȳg k−1, (3.4.10)

βk =
gk · gk

gk−1 · gk−1

, (3.4.11)

ȳgk = −gk + βkȳg k−1. (3.4.12)

In this case, ȳg k−1 and ȳgk are conjugates (Practice 3.3).
Equation (3.4.11) is called the Fletcher–Reeves formula. Moreover, its

equivalent

βk =
gk ·

(
gk − gk−1

)
gk−1 · gk−1

is called the Polak–Ribière formula. Several formulae other than these are
known. These formulae may be equivalent with respect to second-order
optimization problems (Problem 3.4.2) but give different results when gk =
g (xk) is used in non-linear optimization problems which are not second-order.



22 Chapter 3 Basics of Mathematical Programming

Fig. 3.9: Search vector obtained via conjugate gradient method.

3.5 Newton Method

In the gradient method, the gradient g was used to obtain the search direction.
The step size was determined in order to satisfy the strict line search method,
the Armijo criterion or the Wolfe criterion. In what follows, we shall consider a
method for obtaining the search direction and step size simultaneously by using
g and the Hesse matrix H. This method is called the Newton method. This

technique is used to obtain a search vector yg ∈ X by ignoring o
(∥∥yg

∥∥
X

)
in

the Taylor expansion of g · y with respect to an arbitrary y ∈ X about xk, i.e.,

g
(
xk + yg

)
· y = g (xk) · y + yg · (H (xk)y) + o

(∥∥yg

∥∥
X

)
and then letting

g
(
xk + yg

)
· y = g (xk) · y + yg · (H (xk)y) = 0.

In other words, the Newton method can be formally described as follows.

Problem 3.5.1 (Newton method) Let X = Rd. Let the gradient and the
Hesse matrix of f at xk ∈ X which is not a local minimum point with respect to
f ∈ C2 (X;R) be g (xk) and H (xk), respectively. In this case, obtain yg ∈ X
such that

yg · (H (xk)y) = −g (xk) · y (3.5.1)

is satisfied for all y ∈ X. □

The Newton method is the gradient method when the positive definite real
symmetric matrix A used in the gradient method (Definition 3.3.1) is replaced
by a Hesse matrix and such that ϵ̄g is taken to be unity. The following result
can be obtained from the Newton method.

Theorem 3.5.2 (Newton method) Suppose f is twice differentiable in the
neighborhood of the local minimum point x and the Hesse matrix H is Lipschitz
continuous (Definition 4.3.1). Moreover, H (x) is assumed to be positive
definite. In this case, with a point sufficiently close to a local minimum point
taken to be x0, the sequence of iterates {xk}k∈N generated by the Newton
method is second-order convergent. □



3.5 Newton Method 23

Proof Let the local minimum point be x. From the fact that the Hesse matrix H
is Lipschitz continuous around x and H (x) is regular, a point xk sufficiently close to
a local minimum point can be selected such that∥∥H−1 (x) (H (xk)−H (x))

∥∥
Rd×d ≤

∥∥H−1 (x)
∥∥
Rd×d β ∥xk − x∥Rd <

1

2
(3.5.2)

is satisfied with respect to some β > 0, where∥∥H−1 (x)
∥∥
Rd×d = max

y∈Rd, ∥y∥Rd=1

∥∥H−1 (x)y
∥∥
Rd .

In view of the above relationships, and using a standard result in Banach perturbation
theory (cf. [?, p. 240]), we have that

∥∥H−1 (xk)
∥∥
Rd×d ≤

∥∥H−1 (x)
∥∥
Rd×d

1−
∥∥H−1 (x) (H (xk)−H (x))

∥∥
Rd×d

< 2
∥∥H−1 (x)

∥∥
Rd×d .

(3.5.3)

Now, using xk+1 = xk + yg, Eq. (3.5.1) and g (x) = 0Rd , we obtain

xk+1 − x = xk −H−1 (xk) g (xk)− x+H−1 (xk) g (x)

= −H−1 (xk) {g (xk)− g (x)−H (xk) (xk − x)} . (3.5.4)

On the other hand, we have

∥g (xk)− g (x)−H (xk) (xk − x)∥Rd

=

∥∥∥∥∫ 1

0

(H (x+ t (xk − x))−H (xk)) (xk − x) dt

∥∥∥∥
Rd

≤ ∥xk − x∥Rd

∫ 1

0

∥H (x+ t (xk − x))−H (xk)∥Rd×d dt

≤ ∥xk − x∥Rd

∫ 1

0

β ∥xk − x∥Rd (1− t) dt

=
1

2
β ∥xk − x∥2Rd .

Therefore, from Eq. (3.5.2), Eq. (3.5.3) and Eq. (3.5.4), it follows that

∥xk+1 − x∥Rd ≤ 1

2

∥∥H−1 (xk)
∥∥
Rd×d β ∥xk − x∥2Rd <

1

2
∥xk − x∥Rd . (3.5.5)

The relationship between the right-most side and the left-hand side of Eq. (3.5.5)
confirms the convergence of the sequence of iterates to the local minimum point x.
Meanwhile, the quadratic convergence of the method follows from the relationship
between the first right-hand side and the left-hand side of Eq. (3.5.5). □

An example of an algorithm using the Newton method is shown below.
Figure 3.10 illustrates an overview of the method.

Algorithm 3.5.3 (Newton method) In Problem 3.1.1, f0 is written as f and
all inequality constraints are taken to be inactive.



24 Chapter 3 Basics of Mathematical Programming

Fig. 3.10: Newton algorithm.

(1) Determine the initial value x0 and convergence criterion value ϵ0. Set
k = 0.

(2) Solve the state determination problem and calculate f (xk).

(3) By solving the adjoint problem with respect to f , calculate g (xk) and
H (xk).

(4) Calculate yg using Eq. (3.5.1).

(5) Let xk+1 = xk +yg. Solve the state determination problem and calculate
f (xk+1).

(6) Check the termination condition |f0 (xk+1)− f0 (xk)| ≤ ϵ0.

• Proceed to (7) when the termination condition is satisfied.

• Otherwise, substitute k + 1 into k and return to (3).

(7) Complete the calculation.

□

Let us emphasize the following properties of the Newton method.

Remark 3.5.4 (Newton method) The Newton method has the following
quality:

(1) The Newton method requires the Hesse matrix. The amount of calculation
of the Hesse matrix is proportional to the square of the design variable if
the matrix is dense. However, when the Hesse matrix is a diagonal matrix,
it is proportional to the design variable. Actually, the Hesse matrix in
Problem 1.1.4 in Chap. 1 was a diagonal matrix.

(2) The Newton method has convergence of order two (Theorem 3.5.2).



3.5 Newton Method 25

(a) Non-convergent case. (b) Convergent case at a local maximizer.

Fig. 3.11: Newton method.

(3) If the Hesse matrix is not positive definite, there may be cases when
convergence does not occur with the Newton method. Moreover, if it
is indefinite, it may converge to the local maximum value (Fig. 3.11).

(4) When the Hesse matrix H is a singular (non-invertible) matrix, or there is
a large condition number (rate of the maximum eigenvalue to the minimum
eigenvalue) of the matrix even if it is not singular, the calculation of the
inverse matrix becomes difficult. In fact, if the Hesse matrix is close to
a singular matrix, the inverted matrix may be unstable and the solution
may diverge.

□

Looking at it in this way, the gradient method (Problem 3.3.1) is a method
which replaces the Hesse matrix in the Newton method (Problem 3.5.1) with
a positive definite real symmetric matrix. Hence, by updating the positive
definite symmetric matrices so that they are asymptotic to the Hesse matrix,
gradient methods with qualities similar to the Newton method can be studied.
These are called quasi-Newton methods. The following are among the known
representative updated equations. For details, we refer the interested readers to
textbooks on mathematical programming.

• Davidon–Fletcher–Powell method

• Broyden–Fletcher–Goldfarb–Shanno method

• Broyden method

The principle of the Newton method is also used when seeking for solutions of
non-linear equations. In such a case, it is also called Newton–Raphson method.
The Newton–Raphson method will also be used in Algorithm 3.7.6 which will
be shown later. Hence, let us provide an explanation for it here. Problems to
which the Newton–Raphson method applies are such as the one below.

Problem 3.5.5 (Non-linear equation) Let X = Rd. With respect to f ∈
C1

(
Rd;Rd

)
, obtain x ∈ X such that the equation

f (x) = 0Rd (3.5.6)

is satisfied. □



26 Chapter 3 Basics of Mathematical Programming

Let the trial point of Problem 3.5.5 be written as xk for k ∈ N. Also,
assume that f evaluated at xk and its gradient G = (∂fi/∂xj)(i,j)∈{1,...,d}2

are computable. Under these assumptions, find yg such that xk+1 = xk + yg

becomes x. The Taylor expansion of f about xk can be written as

f
(
xk + yg

)
= f (xk) +G (xk)yg + o

(∥∥yg

∥∥
Rd

)
.

Here, if o
(∥∥yg

∥∥
Rd

)
is ignored, then we will get

f
(
xk + yg

)
= f (xk) +G (xk)yg = 0Rd . (3.5.7)

Consider the following problem based on Eq. (3.5.7).

Problem 3.5.6 (Newton–Raphson method) Suppose the function value
f (xk) and its gradient G (xk) at the trial point xk are given with respect
to Problem 3.5.5. Obtain the search vector using

yg = −G−1 (xk)f (xk) . (3.5.8)

□

The Newton–Raphson method is a method for obtaining a sequence of
iterates {xk}k∈N which converges to the solution x of Problem 3.5.5 from
xk+1 = xk + yg using the solution yg of Problem 3.5.6. If g and H of the
Newton method (Problem 3.5.1) are replaced by f and G, respectively, it should
be understood that it agrees with the Newton–Raphson method (Problem 3.5.6).

Before we end this section, let us consider the Newton method in the
case of using the second-order derivative of a cost function derived through
the Lagrange multiplier method as explained in the last part of Section 1.1.6.
Particularly, we assume that the second-order derivative of a cost function is
obtained as the Hesse gradient in Eq. (1.1.49). In this case, H0b1 is obtained as
gH0 (a, b1), then we can consider the gradient method using gH0 (a, b1) as the
gradient. However, in order to obtain gH0 (a, b1), the adjoint problem (Problem
1.1.6) with respect to the first derivative of the cost function must be solved.
Moreover, to solve the adjoint problem, b1 should be given. Considering these
conditions, we proceed with solving the following problem.

Problem 3.5.7 (Newton method using Hesse gradient) Let X = Rd,
A ∈ Rd×d and ca be a positive definite real symmetric matrix and a positive
constant. Moreover, let the gradient, the search vector and the Hesse gradient of
f at xk ∈ X which is not a local minimum point with respect to f ∈ C2 (X;R)
be g (xk), ȳg and gH

(
xk, ȳg

)
, respectively. In this case, obtain yg ∈ X such

that

yg · (caA (xk)y) = −
(
g (xk) + gH

(
xk, ȳg

))
· y (3.5.9)

is satisfied for all y ∈ X. □



3.5 Newton Method 27

Fig. 3.12: Algorithm of Newton method using Hesse gradient.

The solution yg of Problem 3.5.7 accords with the solution of the Newton
method if caA (xk) = I and ȳg = yg. An example of an algorithm using the
solution of Problem 3.5.7 is shown below. Figure 3.12 illustrates an overview of
the method.

Algorithm 3.5.8 (Newton method using Hesse gradient)
In Problem 3.1.1, f0 is written as f and all inequality constraints are taken to
be inactive.

(1) Determine the initial value x0 and convergence criterion value ϵ0. Set
k = 0.

(2) Solve the state determination problem and calculate f (xk).

(3) By solving the adjoint problem with respect to f , calculate g (xk).

(4) Calculate yg using the gradient method (Eq. (3.3.6)).

(5) By solving the adjoint problem with respect to f ′, calculate the Hesse
gradient gH

(
xk,yg

)
.

(6) Calculate yg by the Newton method (Eq. (3.5.9)) using gH

(
xk,yg

)
.

(7) Let xk+1 = xk +yg. Solve the state determination problem and calculate
f (xk+1).

(8) Check the termination condition |f0 (xk+1)− f0 (xk)| ≤ ϵ0.

• Proceed to (9) when the termination condition is satisfied.

• Otherwise, substitute k + 1 into k, solve the adjoint problem with
respect to f , calculate g (xk) and return to (5).



28 Chapter 3 Basics of Mathematical Programming

(9) Complete the calculation.

□

3.6 Augmented Function Methods

Numerical solutions with respect to unconstrained optimization problems were
considered from Sect. 3.3 to Sect. 3.5. Beyond this section, we shall revert to
Problem 3.1.1 and consider the case when the inequality constraint becomes
active at the local minimum point. We start this section by considering
the method of replacing Problem 3.1.1 with an unconstrained problem by
adding constraint functions multiplied by a constant representing weight to
the objective function. Methods such as this are called augmented function
methods. Methods for obtaining the minimum value of augmented functions
make use of the solutions of unconstrained optimization problems shown from
Sect. 3.3 to Sect. 3.5.

An augmented function method is a method that sets a point which satisfies
all inequality constraints (inner point) as the initial point and utilizes an
expansion function designed in a way that it would not fall outside of the
admissible set. The method of obtaining a solution to Problem 3.1.1 by using the
convergence point of the sequence of iterates {xk}k∈N obtained in the following
way is called the barrier method or inner point method.

Problem 3.6.1 (Barrier method, inner point method) Let {ρk}k∈N be a
positive monotonically decreasing sequence. Suppose that x0 ∈ X is given such
that the inequalities f1 (x0) < 0, . . . , fm (x0) < 0 hold. For k ∈ N, provide a
value for ρk and trial point xk−1 and obtain xk = xk−1 + y such that

min
y∈X

{
f̂k (xk, ρk) = f0 (xk)− ρk

m∑
i=1

log (−fi (xk))

}
.

□

There is another augmented function method which uses an initial point that
does not satisfy the inequality constraint conditions and an expansion function
such that the trial point is pushed toward being within the admissible set. The
method of obtaining a solution for Problem 3.1.1 from the convergence point
of the sequence of iterates {xk}k∈N obtained in the following way is called the
penalty method or outer point method.

Problem 3.6.2 (Penalty method, outer point method) Let {ρk}k∈N be
a positive monotonically increasing sequence. Suppose that x0 ∈ X is given.
For k ∈ N, provide a value for ρk and trial point xk−1 and obtain xk = xk−1+y
such that

min
y∈X

f̂k (xk, ρk) = f0 (xk) + ρk
∑

i∈{1,...,m}

max {0, fi (xk)}

 .



3.7 Gradient Method for Constrained Problems 29

□

From the definitions given above, the augmented function method should
be easy to use from the fact that the principles are clear. However, in order
to use this method, it is necessary to choose an appropriate monotonically
decreasing sequence or monotonically increasing sequence {ρk}k∈N depending
on the problem. In this book we will not touch upon the details of its selection
method.

3.7 Gradient Method for Constrained Problems

In this section, and in Sect. 3.8, we shall turn our attention to a method that
employs the KKT conditions. The algorithms that will be shown here will be
used in Chap. 7 and beyond. To begin with, let us consider the gradient method
for constrained problems.

The admissible set for which the inequality constraints are satisfied with
respect to Problem 3.1.1 is written as

S = {x ∈ X | f1 (x) ≤ 0, . . . , fm (x) ≤ 0} . (3.7.1)

Moreover, for each x ∈ S, we shall denote by

IA (x) = { i ∈ {1, . . . ,m} | fi (x) ≥ 0} =
{
i1, . . . , i|IA(x)|

}
(3.7.2)

the set of subscripts for active constraints. When there is no confusion, IA (xk)
is written as IA.

The gradient method was considered as a Newton method when cost function
f is approximated by a second-order approximate function q (y) in Eq. (3.3.8)
around the trial point xk ∈ S, for k ∈ N. So, with respect to Problem 3.1.1,
assume the cost function to be q (y) in Eq. (3.3.8) and consider the problem in
which the inequality constraint is approximated by a first-order function using
the gradient such as the following.

Problem 3.7.1 (Gradient method for constrained problems) For
a trial point xk ∈ S in Problem 3.1.1, let f0 (xk), fi1 (xk) = 0, . . . ,
fi|IA| (xk) = 0, and g0 (xk), gi1 (xk), . . . , gi|IA|

(xk) be given. Moreover, let

A ∈ Rd×d be a positive definite real symmetric matrix and ca be a positive
constant. Obtain xk+1 = xk + yg which satisfies

q
(
yg

)
= min

y∈X

{
q (y) =

1

2
y · (caAy) + g0 (xk) · y + f0 (xk)

∣∣∣∣
fi (xk) + gi (xk) · y ≤ 0 for i ∈ IA (xk)

}
.

□



30 Chapter 3 Basics of Mathematical Programming

Fig. 3.13: Gradient method for constrained problems.

Problem 3.7.1 can be classified as a second-order optimization problem based
on the classification of optimization problems in Section 2.2. Furthermore, with
the fact that A is a positive definite symmetric real matrix, it is a convex
optimization problem. Therefore yg, which satisfies the KKT conditions with
respect to this problem, is the minimum point of Problem 3.7.1 (Fig. 3.13). Let
us examine a method for finding yg.

Let the Lagrange function of Problem 3.7.1 be

LQ (y,λk+1) = q (y) +
∑

i∈IA(xk)

λi k+1 (fi (xk) + gi (xk) · y) . (3.7.3)

The KKT conditions for Problem 3.7.1’s minimum point yg are as follows:

caAyg + g0 (xk) +
∑

i∈IA(xk)

λi k+1gi (xk) = 0X′ , (3.7.4)

fi (xk) + gi (xk) · yg ≤ 0 for i ∈ IA (xk) , (3.7.5)

λi k+1

(
fi (xk) + gi (xk) · yg

)
= 0 for i ∈ IA (xk) , (3.7.6)

λi k+1 ≥ 0 for i ∈ IA (xk) . (3.7.7)

If the inequality constraints are assumed to be active with respect to i ∈ IA (xk),
Eq. (3.7.4) and Eq. (3.7.5) become(

caA G⊤

G 0R|IA|×|IA|

)(
yg

λk+1

)
= −

(
g0

(fi)i∈IA

)
, (3.7.8)

where

G⊤ =
(
gi1 (xk) · · · gi|IA(xk)|

(xk)
)
.

In this case if gi1 , . . . , gi|IA|
are linearly independent, Eq. (3.7.8) is solvable

about
(
yg,λk+1

)
. With respect to the solutions of these simultaneous linear



3.7 Gradient Method for Constrained Problems 31

equations, denote by

II (xk) = { i ∈ IA (xk) | λi k+1 < 0} (3.7.9)

the set of inactive constraint conditions. If it happens that II (xk) ̸= ∅, IA (xk)\
II (xk) is replaced with IA (xk) and Eq. (3.7.8) should be solved again. The pair(
yg,λk+1

)
∈ X × R|IA| obtained in this way satisfies Eq. (3.7.4) to Eq. (3.7.7).

The iterative method, leaving only the active constraints for each iteration, is
called the active set method [?, Section 10.10.6, p. 447].

On the other hand, a method can be considered in which, instead of solving
Eq. (3.7.8) directly, results in using the gradient method with respect to fi for
each i ∈ IA (xk). This method is described as follows. The functions g0, gi1 ,
. . . , gi|IA|

are used and the gradient method is applied individually. In other

words, yg0, ygi1 , . . . , ygi|IA|
is sought so that

ygi = − (caA)
−1

gi (3.7.10)

is satisfied. Here, the Lagrange multiplier λk+1 ∈ R|IA| is taken to be an
unknown variable and

yg = yg (λk+1) = yg0 +
∑

i∈IA(xk)

λi k+1 ygi. (3.7.11)

It can be verified that yg satisfies the first row of Eq. (3.7.8). On the other
hand, the second row of Eq. (3.7.8) becomes

gi1 · ygi1 · · · gi1 · ygi|IA|
...

. . .
...

gi|IA|
· ygi1 · · · gi|IA|

· ygi|IA|


 λi1 k+1

...
λi|IA| k+1



= −

 fi1 + gi1 · yg0
...

fi|IA| + gi|IA|
· yg0

 ,

which can equivalently be written as(
gi · ygj

)
(i,j)∈I2

A

(λj k+1)j∈IA
= −

(
fi + gi · yg0

)
i∈IA

. (3.7.12)

Again, in this case, if gi1 , . . . , gi|IA|
are linearly independent, then λk+1 are

uniquely determined by Eq. (3.7.12). The active constraint method is then
applied with respect to the solution of these simultaneous linear equations. In
other words, when the set II (xk) in Eq. (3.7.9) is non-empty, IA (xk) \ II (xk)
is replaced by IA (xk) and Eq. (3.7.8) is solved again. The pair

(
yg,λk+1

)
∈

X × R|IA| obtained in this way should satisfy Eq. (3.7.4) to Eq. (3.7.7).
Moreover, in Eq. (3.7.12), if all the values of active constraint functions fi1 ,

. . . , fi|IA| are zero, even if all of yg0, ygi1 , . . . , ygi|IA|
are multiplied by an



32 Chapter 3 Basics of Mathematical Programming

arbitrary constant, λk+1 remains unchanged. This shows that even if the step
size

∥∥yg

∥∥
X

has not been appropriately selected, λk+1 can be obtained. This
relationship is used in Sect. 3.7.2 in order to determine ca such that the initial
value of the step size becomes the desired size.

The above discussion is summarized as follows: the gradient method for
constrained problems is an iterative method, whereby yg is updated by either
directly solving for the search vector yg and the Lagrange multiplier λk+1 using
Eq. (3.7.8), or by solving for ygi with Eq. (3.7.10) for each i ∈ IA (xk), using
those to obtain λk+1 from Eq. (3.7.12), and substituting them into Eq. (3.7.11)
in order to obtain yg.

Before showing specific algorithms, let us consider several situations. One
is a situation whereby the inequality constraint of Problem 3.1.1 is replaced
by equality constraint fi (x) = 0. In reality, the inequality constraints are
treated in the same manner when the equality constraints are active, and so,
this situation can always arise. This type of equality constraint can be replaced
by two inequality constraints fi (x) ≤ 0 and −fi (x) ≤ 0. However, when these
two inequality constraints are non-linear, determining x so that they are strictly
satisfied is generally difficult. Hence, there is a need to determine a positive
constant ϵi and relax the constraint such as by |fi (x)| ≤ ϵi. In algorithms that
will be shown later, only inequality constraints are assumed; it may be thought
that there is no need to relax the constraints using ϵi. However, if inequality
constraints are active, they have the same meaning as the equality constraints
fi (x) = 0 and there is a need to relax the constraint using a positive constant
ϵi.

Additionally, we suppose a situation in which all inequality constraints are
satisfied at the initial point x0. If this type of condition is not satisfied, x0 ∈ S
which satisfies all the inequality constraints can be found by carrying out the
following steps for pre-processing. If they cannot be found, there is a need to
review the problem set-up.

(0) Let the cost function f0 be zero and g0 be equal to the zero vector 0Rd

and then repeat the established steps in the algorithm that will be shown
later until all the inequality constraints are satisfied.

3.7.1 Simple Algorithm

With all the things looked at already in mind, let us now examine a simple
algorithm in the succeding discussion. In this section, the parameter ca for
adjusting the step size is given in advance, and an example of an algorithm
when inequality constraint checks are not carried out after updating the design
variables is shown. Figure 3.14 shows the flow diagram for the algorithm.

Algorithm 3.7.2 (Gradient method without parameter adjustment)
Obtain the local minimum point of Problem 3.1.1 in the following way:

(1) Determine the initial point x0 so that the inequality constraints f1 (x0) ≤
0, . . . , fm (x0) ≤ 0 are satisfied. Determine the positive definite matrix



3.7 Gradient Method for Constrained Problems 33

Fig. 3.14: Algorithm of gradient method for constraint problems without
parameter adjustment.

A of Eq. (3.7.10), positive constant ca for adjusting the step size, positive
constant ϵ0 used for the check of convergence of f0 as well as the positive
constants ϵ1, . . . , ϵm providing the permissible ranges of f1, . . . , fm. Set
k = 0.

(2) Solve the state determination problem for xk and calculate f0 (xk),
f1 (xk), . . . , fm (xk). Moreover, let

IA (xk) = { i ∈ {1, . . . ,m} | fi (xk) ≥ −ϵi} .

(3) Solve the adjoint problem with respect to f0, fi1 , . . . , fi|IA| and for xk,

calculate g0, gi1 , . . . , gi|IA|
.

(4) Calculate yg0, ygi1 , . . . , ygi|IA|
with Eq. (3.7.10).

(5) Use Eq. (3.7.12) to seek λk+1. If II (xk) in Eq. (3.7.9) is non-empty,
replace IA (xk) \ II (xk) by IA (xk) and solve Eq. (3.7.12) again.

(6) Use Eq. (3.7.11) to seek yg, and letting xk+1 = xk + yg, calculate
f0 (xk+1), f1 (xk+1), . . . , fm (xk+1). Moreover, define

IA (xk+1) = { i ∈ {1, . . . ,m} | fi (xk+1) ≥ −ϵi} .

(7) Check the terminal condition |f0 (xk+1)− f0 (xk)| ≤ ϵ0.

• Proceed to (8) when the terminal condition is satisfied.

• Otherwise substitute k + 1 into k and revert to (3).

(8) End the calculation.

□



34 Chapter 3 Basics of Mathematical Programming

(a) Movement of trial point.

(b) History of cost function. (c) Distance ∥ak − a∥R2 .

Fig. 3.15: Numerical example of mean compliance minimization problem
via gradient method with respect to constraint problem without parameter
adjustment.

Let us seek the trial points with respect to Exercise 1.1.7 (numerical example
of mean compliance minimization problem) in Chap. 1 using Algorithm 3.7.2.

Exercise 3.7.3 (Mean compliance minimization problem)

Consider Exercise 1.1.7. Let the initial point be a(0) = (1/2, 1/2)
⊤

and use
Algorithm 3.7.2 in order to obtain the trial points for k ∈ {0, 1}. Here, the
required matrix and numerical values should be determined appropriately. □

Answer The mean compliance f̃0 (a) and volume constraint function f1 (a) are given
by

f̃0 (a) =
4

a1
+

1

a2
, (3.7.13)

f1 (a) = a1 + a2 − 1 (3.7.14)

respectively. Moreover, their cross-sectional derivative will be

g0 = −

( 4
a2
1
1
a2
2

)
, (3.7.15)



3.7 Gradient Method for Constrained Problems 35

g1 =

(
1
1

)
. (3.7.16)

Numerical values are sought along with Algorithm 3.7.2. Here, the design variable is
written as a(k) for each step number k ∈ N. The same is true for bg0(k), bg1(k) and
λ1(k).

(1) At initial point a(0) = (1/2, 1/2)⊤, f1
(
a(0)

)
= 0 is satisfied. Let the positive

definite matrix of Eq. (3.7.10) be A = I, and the positive constant for adjusting
the step size be ca = 100 (step size is

∥∥bg(0)∥∥R2 = 0.0848528 from calculation

shown later on) and ϵ0 = 10−3f̃0
(
a(0)

)，ϵ1 = 10−3. Set k = 0.

(2) Equations (3.7.13) and (3.7.14) give f̃0
(
a(0)

)
= 10 and f1

(
a(0)

)
= 0. Moreover,

let IA
(
a(0)

)
= {1}.

(3) Equations (3.7.15) and (3.7.16) give g0(0) = − (16, 4)⊤, g1(0) = (1, 1)⊤.

(4) Equation (3.7.10 gives bg0(0) = (0.16, 0.04)⊤, bg1(0) = − (0.01, 0.01)⊤.

(5) Equation (3.7.12 gives λ1(1) = 10.

(6) Equation (3.7.11 gives bg(0) = (0.06,−0.06)⊤ and letting a(1) = a(0) + bg(0) =

(0.56, 0.44)⊤ give f̃0
(
a(1)

)
= 9.41558, f1

(
a(1)

)
= 0. Moreover, let IA

(
a(1)

)
=

{1}.

(7)
∣∣∣f̃0 (a(1)

)
− f̃0

(
a(0)

)∣∣∣ = 0.584416 ≥ ϵ0 = 0.01 suggests that the terminal

condition is not satisfied and hence substitute 1 into k and revert to (3).

(3) Equations (3.7.15) and (3.7.16) give g0(1) = − (12.7551, 5.16529)⊤, g1(1) =

(1, 1)⊤.

(4) Equation (3.7.10 gives bg0(1) = (0.127551, 0.0516529)⊤ and bg1(1) =

− (0.01, 0.01)⊤.

(5) Equation (3.7.12 gives λ1(2) = 8.9602.

(6) Equation (3.7.11 gives bg(1) = (0.0379491,−0.0379491)⊤ and letting a(2) =

a(1) + bg(1) = (0.597949, 0.402051)⊤ gives f̃0
(
a(2)

)
= 9.17678, f1

(
a(2)

)
= 0.

Moreover, let IA
(
a(1)

)
= {1}.

(7)
∣∣∣f̃0 (a(2)

)
− f̃0

(
a(1)

)∣∣∣ = 0.238804 ≥ ϵ0 = 0.01 shows that the terminal condition

is not satisfied and so substitute 2 into k and return to (3).

Figure 3.15 illustrates the above computations as well as the later computations. Here,
f0 init denotes the value of f0 at k = 0. □

Next, let us change the cost function and constraint function of Exercise
1.1.7.

Exercise 3.7.4 (Volume minimization problem) Let the cost function
and constraint function be

f0 (a) = a1 + a2, (3.7.17)

f̃1 (a) =
4

a1
+

1

a2
− 9, (3.7.18)



36 Chapter 3 Basics of Mathematical Programming

(a) Movement of trial point.

(b) History of cost function. (c) Distance ∥ak − a∥R2 .

Fig. 3.16: Numerical example of volume minimizing problem using gradient
method without parameter adjustment.

respectively. In this case, under the constraint which satisfies f̃1 (a) ≤ 0, let the
initial point with respect to the problem minimizing f0 (a) (volume minimizing

problem with mean compliance constraint) be a(0) = (16/31, 4/5)
⊤ ≈

(0.516, 0.8)
⊤

and use Algorithm 3.7.2 in order to obtain the trial point for
k ∈ {0, 1}. Here, the required matrices and numerical values should be
appropriately determined. □

Answer The cross-sectional derivatives of the cost functions f0 (a) and f̃1 (a) are

g0 =

(
1
1

)
, (3.7.19)

g1 = −

( 4
a2
1
1
a2
2

)
. (3.7.20)

The numerical values are sought alongside Algorithm 3.7.2. In this case, the design
variables are again denoted by a(k) for each step number k ∈ N. The same applies to
bg0(k), bg1(k) and λ1(k).



3.7 Gradient Method for Constrained Problems 37

(1) f̃1
(
a(0)

)
= 0 is satisfied when the initial point is a(0) = (16/31, 4/5)⊤. Let

the positive definite matrix of Eq. (3.7.10) be A = I, positive constant ca = 10
which adjusts the step size to be ca = 10 (step size is

∥∥bg(0)∥∥R2 = 0.089113 based

on calculations shown later) and ϵ0 = 10−3f0
(
a(0)

)，ϵ1 = 9× 10−3. Moreover,
let k = 0.

(2) Equations (3.7.17) and (3.7.18) give f0
(
a(0)

)
= 1.31613 and f̃1

(
a(0)

)
= 0.

Moreover, let IA
(
a(0)

)
= {1}.

(3) Equations (3.7.15) and (3.7.16) give g0(0) = (1, 1)⊤, g1(0) =

− (15.0156, 1.5625)⊤.

(4) Equation (3.7.10) gives bg0(0) = − (0.1, 0.1)⊤ and bg1(0) = (1.50156, 0.15625)⊤.

(5) Equation (3.7.12) gives λ1(1) = 0.0727397.

(6) Equation (3.7.11) gives bg(0) = (0.00922315,−0.0886344)⊤ and lets a(1) = a(0)+

bg(0) = (0.525352, 0.711366)⊤ gives f0
(
a(1)

)
= 1.23672, f̃1

(
a(1)

)
= 0.019687.

Moreover, let IA
(
a(1)

)
= {1}.

(7)
∣∣f0 (a(1)

)
− f0

(
a(0)

)∣∣ = 0.0794113 ≥ ϵ0 = 0.00131613 suggests that the
terminal condition is not yet satisfied, so substitute 1 into k and revert to (3).

(3) Equations (3.7.15) and (3.7.16) give g0(1) = (1, 1)⊤, g1(1) =

− (14.493, 1.97612)⊤.

(4) Equation (3.7.10) gives bg0(1) = − (0.1, 0.1)⊤ and bg1(1) = (1.4493, 0.197612)⊤.

(5) Equation (3.7.12) gives λ1(2) = 0.0778958.

(6) Equation (3.7.11) gives bg(1) = (0.0128945,−0.0846068)⊤ and by letting a(2) =

a(1) + bg(1) = (0.538247, 0.626759)⊤, f0
(
a(2)

)
= 1.16501 and f̃1

(
a(2)

)
=

0.0270467 can be obtained. Moreover, let IA
(
a(1)

)
= {1}.

(7) From
∣∣f0 (a(2)

)
− f0

(
a(1)

)∣∣ = 0.0717123 ≥ ϵ0 = 0.00131613, the terminal
condition is seen to not be satisfied, 2 is substituted in for k and reverts to
(3).

Figure 3.16 shows these results and later computed values. □

In Exercise 3.7.3, the constraints were always satisfied as f1
(
a(1)

)
=

f1
(
a(2)

)
= 0. However, in Exercise 3.7.4, the constraints were not satisfied

since f̃1
(
a(1)

)
= 0.019687 and f̃1

(
a(2)

)
= 0.0459682 and their excess values

increased with each reiteration. Methods for preventing such a situation will be
considered in the next section.

3.7.2 Complicated Algorithm

Let us consider adding the following type of function to a simple algorithm
(Algorithm 3.7.2):

(i) A function for determining ca such that, given the initial step size ϵg (or
the objective function reduce rate α),

∥∥yg

∥∥
X

= ϵg.

(ii) A function for correcting λk+1 = (λi k+1)i∈IA(xk+1)
such that, when design

variable is updated to xk+1, |fi (xk+1)| ≤ ϵi and λi k+1 ≥ 0 are satisfied
with respect to i ∈ IA (xk+1).



38 Chapter 3 Basics of Mathematical Programming

(iii) A function for adjusting the permissible values ϵ1, . . . , ϵm for constraint
functions f1, . . . , fm with respect to the convergence check value ϵ0 for
cost function f0.

(iv) A function for adjusting the step size
∥∥yg

∥∥
X

so that global convergence
is guaranteed.

(i) above can be solved, as with Algorithm 3.3.5, by seeking ca with
Eq. (3.3.7). It is included in step (6) in Algorithm 3.7.6 which will be shown
later.

Moreover, the following types of methods can be thought of with respect to
(ii). Even if the value of λk+1 calculated in step (5) of Algorithm 3.7.2 satisfies
the KKT conditions of the gradient method for constrained problems (Problem
3.7.1), the non-linearity of active inequality constraint functions suggest that it
is not necessarily satisfied in the specified permissible range at xk+1.

In order for it to be satisfied within the permissible range, where each of the
inequality constraint is specified by xk+1, λk+1 needs to be amended and this
requires modifying Eq. (3.7.11), so that xk+1 = xk+yg will be updated. In this
case, let us consider setting λk+1 = λk+1 0, we provide λk+1 l for l ∈ {0, 1, 2, . . .}
and repeat the calculations seeking λk+1 l+1. To do this, the Newton–Raphson
method (Problem 3.5.6), which is used to solve non-linear equations, will be
applied.

The method is described as follows. For each i ∈ IA (xk+1), write
fi
(
xk + yg (λk+1 l)

)
as f̄i (λk+1 l). In the explanation of the Newton–Raphson

method, a function f
(
xk + yg

)
= 0Rd of Eq. (3.5.7) with respect to k ∈

N was considered. Here, we shall consider
(
f̄i (λk+1 l + δλ)

)
i∈IA

= 0R|IA|
where l ∈ {0, 1, 2, . . .}. Moreover, by taking into account the fact that
yg (λk+1 l) is a first-order function of λk+1 l defined by Eq. (3.7.11), consider(
gi (λk+1 l) · ygj (λk+1 l)

)
(i,j)∈I2

A

instead of G (xk) of Eq. (3.5.7). In this case,

the following can be obtained analogous to Eq. (3.5.8):

δλ = (δλj)j∈IA

= −
(
gi (λk+1 l) · ygj (λk+1 l)

)−1

(i,j)∈I2
A

(fi (λk+1 l))i∈IA
. (3.7.21)

Using δλ of Eq. (3.7.21), the value of λk+1 is updated using the recursion
λk+1 l+1 = λk+1 l+δλ. Furthermore, from Eq. (3.7.11), yg is modified, replacing
it by yg (λk+1 l+1). As a result, xk+1 = xk + yg is changed to xk+1 l+1 =
xk + yg (λk+1 l+1). This update is used in step (11) of Algorithm 3.7.6 which
will be shown later.

Now, let us discuss a method to correctly modify λk+1 with respect to
Exercise 3.7.4.

Exercise 3.7.5 (Volume minimizing problem) Recall from Exercise 3.7.4
that f̃1

(
a(1)

)
= 0.019687. Using Eq. (3.7.21), correctly adjust λ1(1) = 0.0727397

and obtain a trial point a(1)[l] such that f̃1
(
a(1)[l]

)
≤ 10−4 holds. In this



3.7 Gradient Method for Constrained Problems 39

calculation, the adjusted value of λ1, for each step number k, should be written
as λ1(k+1)[l], where l denotes the step number for the adjustment procedure. □

Answer Consider Eq. (3.7.21) as the example problem. Applying this to Exercise
3.7.4, we get

δλ1 = −
f̃1
(
a(1)[l]

)
g1(0)[l] · bg1(0)[l]

. (3.7.22)

When l = 0, a(1)[0] = a(1), g1(0)[0] = g1(0) and bg1(0)[0] = bg1(0), giving us δλ1 =
0.000863807. At this point, λ1 should be updated to

λ1(1)[1] = λ1 + δλ1 = 0.0736035.

If this λ1(1)[1] is brought in and Eq. (3.7.11) is used to calculate bg(0), we will get

bg(0)[1] = (0.0105202,−0.0884995)⊤ .

Using this search vector to update the design variables will yield

a(1)[1] = a(1) + bg(0)[1] = (0.526649, 0.711501)⊤ .

These calculations imply that f̃1
(
a(1)[1]

)
= 0.00066837 > 10−4. Clearly, the permitted

constraint is not satisfied. Then, let l = 1 and repeat the steps above. From
Eq. (3.7.22), one obtains

δλ1 = −
f̃1
(
a(1)[1]

)
g1(0)[1] · bg1(0)[1]

= 0.000029326.

Here, λ1 is updated to

λ1(1)[2] = λ1(1)[1] + δλ1 = 0.0736328.

If λ1(1)[2] and Eq. (3.7.11) is used to recalculate bg(0), then we get

bg(0)[2] = (0.0105202,−0.0884995)⊤ .

If this search vector is used to update the design variables, then we will have

a(1)[2] = a(1) + bg(0)[2] = (0.526693, 0.711505)⊤ .

At this point, f̃1
(
a(1)[2]

)
= 0.0000243138 ≤ 10−4. □

Meanwhile, the following method can be used to address the issue stated
in (iii). The Lagrange function of the original problem (Problem 3.1.1) can be
defined by

L (x,λ) = f0 (x) +
∑

i∈IA(x)

λifi (x) . (3.7.23)

If with respect to i ∈ IA (xk), |fi (xk)| ≤ ϵi is satisfied in order for L (xk,λk) ≈
f0 (xk) to hold, then the inequality

ϵ0 ≫
∑

i∈IA(xk)

λkiϵi (3.7.24)



40 Chapter 3 Basics of Mathematical Programming

must hold true. Hence, in order for this condition to hold, we require that
a positive constant σ be sufficiently small relative to the unity, and that the
criteria of constraint permissible values satisfy the following relation:

ϵi ≤
σϵ0

|IA (xk)|λki
, (3.7.25)

for all i ∈ IA (xk). If there is a case when there is an index i for which this
condition does not hold, the criteria can be satisfied by substituting in a value
smaller than σϵ0/ (|IA (xk)|λki) in ϵi. Such criteria for constraint concerning
permissible values are used in Step (12) of Algorithm 3.7.6 that will be shown
later.

On the other hand, a method to determine the step size
∥∥yg

∥∥
X

(in other
words, ca) so that the Armijo and Wolfe criteria are satisfied with respect to the
Lagrange function can be thought of in connection with (iv) above. Theorem
3.4.7 became the basis to guarantee global convergence for unconstrained
problems. Here it is assumed that the KKT conditions for the Lagrange
multipliers and inequality constraints are satisfied at xk and xk+1 = xk + yg

from (ii) and (iii) above (in Algorithm 3.7.6, which will be shown later, the
KKT conditions for the Lagrange multipliers and inequality constraints are
satisfied after the step size is adjusted). Here, the Lagrange function matches
f0 and it becomes possible to use Armijo and Wolfe criteria with respect to
unconstrained problems. Let us describe this more formally as follows. Let the
Lagrange function of the original problem (Program 3.1.1) be Eq. (3.7.23). Let
the gradient of f0 (xk), fi1 (xk), . . . , fi|IA| (xk) be written as g0 (xk), gi1 (xk),

. . . , gi|IA|
(xk), respectively, and the gradient of f0

(
xk + yg

)
, fi1

(
xk + yg

)
,

. . . , fi|IA|

(
xk + yg

)
as g0

(
xk + yg

)
, gi1

(
xk + yg

)
, . . . , gi|IA|

(
xk + yg

)
as

well. Here, the Armijo criterion with respect to ξ ∈ (0, 1) is given by

L
(
xk + yg,λk+1

)
− L (xk,λk)

≤ ξ

g0 (xk) +
∑

i∈IA(xk)

λkigi (xk)

 · yg. (3.7.26)

Moreover, the Wolfe criterion with respect to µ (0 < ξ < µ < 1) is given by

µ

g0 (xk) +
∑

i∈IA(xk)

λkigi (xk)

 · yg

≤

g0

(
xk + yg

)
+

∑
i∈IA(xk+1)

λi k+1gi

(
xk + yg

) · yg. (3.7.27)

These criteria are used in steps (8) and (10) of Algorithm 3.7.6 which is shown
below.

An example of an algorithm including the method such as the one above is
shown next. Figure 3.17 shows its flow diagram.



3.7 Gradient Method for Constrained Problems 41

Fig. 3.17: Algorithm for the gradient method with respect to constraint
problems with parameter adjustment.

Algorithm 3.7.6 (Gradient method with parameter adjustment)
Obtain the local minimum point of Problem 3.1.1 in the following way:

(1) Determine the initial point x0 so that f1 (x0) ≤ 0, . . . , fm (x0) ≤ 0 are
satisfied. Also, determine the positive definite matrix A of Eq. (3.7.10) and
initial step size ϵg (or the objective function reduce rate α), convergence
check value ϵ0 for f0，initial values ϵ1, . . . , ϵm of permissible ranges for f1,
. . . , fm, and Armijo and Wolfe standard values ξ and µ (0 < ξ < µ < 1)
as well as the standard value σ (≪ 1) of the constraint permissible values.
Moreover, let ca = 1, and set k = l = 0.

(2) Solve the state determination problem and calculate f0 (xk), f1 (xk), . . . ,
fm (xk). Moreover, define

IA (xk) = { i ∈ {1, . . . ,m} | fi (xk) ≥ −ϵi} .



42 Chapter 3 Basics of Mathematical Programming

(3) Solve the adjoint problem with respect to f0, fi1 , . . . , fi|IA| and calculate

g0, gi1 , . . . , gi|IA|
at xk.

(4) Calculate yg0, ygi1 , . . . , ygi|IA|
using Eq. (3.7.10).

(5) Seek λk+1 = λk+1 l using Eq. (3.7.12). If II (xk) in Eq. (3.7.9) is
non-empty, replace IA (xk) \ II (xk) with IA (xk) and solve Eq. (3.7.12)
again.

(6) Obtain yg with Eq. (3.7.11). When k = 0, let yg = ȳg and use Eq. (3.3.7)
(or Eq. (3.3.9)) to obtain ca. Moreover, for i ∈ IA (xk), substitute ȳgi/ca
into ygi.

(7) Let xk+1 l = xk + yg (λk+1 l) and calculate f0 (xk+1 l), f1 (xk+1 l), . . . ,
fm (xk+1 l). Moreover, define

IA (xk+1) = { i ∈ {1, . . . ,m} | fi (xk+1 l) ≥ −ϵi} .

(8) Let λk+1 = λk+1 l and check the Armijo criterion (Eq. (3.7.26)).

• If satisfied, proceed to the next step.

• Otherwise, let α > 1, substitute αca into ca and yg0/ca, ygi1/ca, . . . ,
ygi|IA|

/ca into yg0, ygi1 , . . . , ygi|IA|
and then revert to (7).

(9) Calculate g0, gi1 , . . . , gi|IA|
at xk+1.

(10) Let λk+1 = λk+1 l and check the Wolfe criterion (Eq. (3.7.27)).

• If satisfied, proceed to the next step.

• Otherwise, let β ∈ (0, 1) and substitute βca into ca and βyg0, βygi1 ,
. . . , βygi|IA|

into yg0, ygi1 , . . . , ygi|IA|
and then return to (7).

(11) For i ∈ IA (xk+1), determine |fi (xk+1)| ≤ ϵi.

• If satisfied, proceed to the next step.

• Otherwise, at xk+1, calculate g0, gi1 , . . . , gi|IA|
and also yg0, ygi1 ,

. . . , ygi|IA|
using Eq. (3.7.10), seek δλ with Eq. (3.7.21) and let

λk+1 l+1 = λk+1 l+ δλ. Afterwards, substitute l+1 into l and return
to (7).

(12) For i ∈ IA (xk+1), check the criteria for the permissible values of the
constraint (Eq. (3.7.25)).

• If satisfied, proceed to the next step.

• Otherwise, let β ∈ (0, 1) with respect to unsatisfied i, substitute
βσϵ0/ (|IA (xk+1)|λi k+1) into ϵi and revert to (7).



3.8 Newton Method for Constrained Problems 43

(13) Check the terminal condition |f0 (xk+1)− f0 (xk)| ≤ ϵ0.

• When the terminal condition is satisfied, proceed to the next step.

• Otherwise, substitute k + 1 into k, let l = 0 and revert to (3).

(14) End the calculation.

□

3.8 Newton Method for Constrained Problems

If Hesse matrices of cost functions relating to the variation of x can be obtained,
the Newton method can be used instead of the gradient method. We shall refer
to this method as the Newton method for constrained problems. In this case,
the Hesse matrices of f0, f1, . . . , fm are expressed as H0, H1, . . . , Hm,
respectively. Moreover, if there is no confusion, IA (xk) is written as IA.

The Lagrange function LS of Eq. (3.7.3) defined with respect to the gradient
method for constrained problems (Problem 3.7.1) is then replaced by

LQ (y,λk+1)

=
1

2
y · (H0 (xk)y) + g0 (xk) · y + f0 (xk)

+
∑

i∈IA(xk)

{
λi k+1 (fi + gi (xk) · y) + λik

1

2
y · (Hi (xk)y)

}
. (3.8.1)

In the above formula, λk = (λik)i denotes the Lagrange multiplier obtained
in the previous step. When k = 0, it is supposed that it is determined via a
method used in the gradient method for constrained problems. Let LS denote
the Lagrange function in the next problem.

Problem 3.8.1 (Newton method for constrained problems) Let xk ∈
X be a trial point in Problem 3.1.1, and λk ∈ R|IA| be the Lagrange multiplier
satisfying Eq. (3.7.5) to Eq. (3.7.7). Moreover, let f0 (xk), fi1 (xk) = 0,
. . . , fi|IA| (xk) = 0 as well as g0 (xk), gi1 (xk), . . . , gi|IA|

(xk) and H0 (xk),

Hi1 (xk), . . . , Hi|IA| (xk) be known, and define

HL (xk) = H0 (xk) +
∑

i∈IA(xk)

λikHi (xk) . (3.8.2)

Under these assumptions, find xk+1 = xk + yg which satisfies

q
(
yg

)
= min

y∈X

{
q (y) =

1

2
y · (HL (xk)y) + g0 (xk) · y + f0 (xk)

∣∣∣∣
fi (xk) + gi (xk) · y ≤ 0 for i ∈ IA (xk)

}
.

□



44 Chapter 3 Basics of Mathematical Programming

Problem 3.8.1 can be classified as a second-order optimization problem. The
expression HL (xk) need not be a positive definite real matrix, but if it is,
Problem 3.8.1 is a convex optimization problem. Let us also consider the method
for finding yg using KKT conditions with respect to this problem.

The KKT conditions at minimum point yg of Problem 3.8.1 are as follows:

HL (xk)yg + g0 (xk) +
∑

i∈IA(xk)

λi k+1gi (xk) = 0X′ , (3.8.3)

fi (xk+1) = fi (xk) + gi (xk) · yg ≤ 0 for i ∈ IA (xk) ,

(3.8.4)

λi k+1

(
fi (xk) + gi (xk) · yg

)
= 0 for i ∈ IA (xk) ,

(3.8.5)

λi k+1 ≥ 0 for i ∈ IA (xk) .
(3.8.6)

The pair
(
yg,λk+1

)
∈ X × R|IA| satisfying these conditions can be obtained in

the following way. Suppose that those inequality constraints are active for all
i ∈ IA (xk). Then, Eq. (3.8.3) and Eq. (3.8.4) become(

HL G⊤

G 0R|IA|×|IA|

)(
yg

λk+1

)
= −

(
g0

(fi)i∈IA

)
, (3.8.7)

where

G⊤ =
(
gi1 , . . . , gi|IA|

)
.

If gi1 , . . . , gi|IA|
are linearly independent and HL is regular, Eq. (3.8.7)

becomes solvable around
(
yg,λk+1

)
. With respect to these simultaneous

first-order equations, define

II (xk) = { i ∈ IA (xk) | λi k+1 < 0} (3.8.8)

as the set of inactive constraint conditions, and when II (xk) is non-empty,
replace IA (xk) \ II (xk) by IA (xk) and then solve Eq. (3.8.7) again. The pair(
yg,λk+1

)
∈ X × R|IA| obtained in this way satisfies Eq. (3.8.3) to Eq. (3.8.6).

Moreover, as also seen in the gradient method for constrained problems (Sect.
3.7), the following method can also be considered instead of directly solving the
simultaneous first-order equations of Eq. (3.8.7). For each i ∈ IA (xk) and with
respect to gi, seek yg0, ygi1 , . . . , ygi|IA|

so that the equation

ygi = −H−1
L gi (3.8.9)

holds. Furthermore, seek λk+1 using Eq. (3.7.12). In this case, if II (xk) is
non-empty, replace IA (xk) \ II (xk) by IA (xk) and solve Eq. (3.7.8) again.
From these results, yg is obtained through Eq. (3.7.11).



3.8 Newton Method for Constrained Problems 45

The difference between this method and the gradient method for constrained
problems is that caA is replaced by HL . However, the search vector yg

obtained with this method can be expected to have the characteristics of the
Newton method mentioned in Remark 3.5.4 because it uses the Hesse matrices
of the cost functions. However, the following issues must be noted.

Remark 3.8.2 (Newton method for constrained problems) The cost
function q of Problem 3.8.1 has the Hesse matrices of the constraint functions
multiplied by the Lagrange multipliers of the previous step added on. As a
result, the Hesse matrix is not used in the constraint conditions. From this,
with respect to problems in which Lagrange multipliers satisfying the KKT
conditions change a lot and for which the non-linearity of constraint functions
is strong, there are cases when no convergence occurs unless the step size is
made small enough. □

If the second-order derivative of a cost function is already obtained as the
Hesse gradient, then the Newton method can now be illustrated as follows. In
this case, Problem 3.8.1 is replaced with the following problem.

Problem 3.8.3 (Newton method using Hesse gradient) Let X = Rd,
A ∈ Rd×d and ca be a positive definite real symmetric matrix and a positive
constant. Moreover, let xk ∈ X be a trial point in Problem 3.1.1, and λk ∈ R|IA|

be the Lagrange multiplier satisfying Eq. (3.7.5) to Eq. (3.7.7) (where k + 1
replaces k). Furthermore, let f0 (xk), fi1 (xk) = 0, . . . , fi|IA| (xk) = 0 as well

as g0 (xk), gi1 (xk), . . . , gi|IA|
(xk), a search vector ȳg and the Hesse gradients

gH0

(
xk, ȳg

)
, gHi1

(
xk, ȳg

)
, . . . , gHi|IA|

(
xk, ȳg

)
be known, and define

gHL

(
xk, ȳg

)
= gH0

(
xk, ȳg

)
+

∑
i∈IA(xk)

λikgHi

(
xk, ȳg

)
. (3.8.10)

Under these assumptions, find xk+1 = xk + yg which satisfies

q
(
yg

)
= min

y∈X

{
q (y) =

1

2
y · (caAy) +

(
g0 (xk) + gHL

(
xk, ȳg

))
· y

+ f0 (xk)

∣∣∣∣ fi (xk) + gi (xk) · y ≤ 0 for i ∈ IA (xk)

}
for all y ∈ X. □

In solving Problem 3.8.3, particularly in the part where we employ the
method using the search vectors obtained with respect to each cost function,
the same algorithm with the Newton method can be applied by using

ygi = − (caA)
−1

(gi + gHi) (3.8.11)

instead of Eq. (3.8.9).



46 Chapter 3 Basics of Mathematical Programming

Fig. 3.18: Newton method algorithm with respect to constrained problems.

3.8.1 Simple Algorithm

Bearing in mind the ideas above, let us examine a simple algorithm based
on the concept of the Newton method with respect to constrained problems.
Figure 3.18 shows the flow diagram of the algorithm. Here, a method for seeking
ygi via Eq. (3.8.9) using gi for every i ∈ IA (xk) is used.

Algorithm 3.8.4 (Newton method for constrained problems) Obtain
the local minimum point of Problem 3.1.1 in the following way:

(1) Determine the initial point x0 so that f1 (x0) ≤ 0, . . . , fm (x0) ≤ 0
are satisfied. Determine the positive constant ϵ0 used for the convergence
check of f0 and the positive constants ϵ1, . . . , ϵm which give the permissible
range of f1, . . . , fm. Set an iteration number kN at which the Newton
method starts, and k = 0.

(2) Solve the state determination problem and calculate f0 (xk), f1 (xk), . . . ,
fm (xk). Moreover, define

IA (xk) = { i ∈ {1, . . . ,m} | fi (xk) ≥ −ϵi} .

(3) Do the following when k < kN:

(3.1) Solve the adjoint problem with respect to f0, fi1 , . . . , fi|IA| and solve

g0, gi1 , . . . , gi|IA|
at xk.



3.8 Newton Method for Constrained Problems 47

(3.2) Use Eq. (3.7.10) to calculate yg0, ygi1 , . . . , ygi|IA|
.

(3.3) Use Eq. (3.7.12) to seek λk+1. If, in Eq. (3.7.9), II (xk) is non-empty,
replace IA (xk) \ II (xk) with IA (xk) and solve Eq. (3.7.12) again.

(3.4) Use Eq. (3.7.11) to seek yg and let xk+1 = xk + yg in order to
calculate f0 (xk+1), f1 (xk+1), . . . , fm (xk+1). Moreover, let

IA (xk+1) = { i ∈ {1, · · · ,m} | fi (xk+1) ≥ −ϵi} .

(3.5) Substitute k + 1 into k. When k < kN, revert to (3.1). Otherwise,
proceed to (4).

(4) Solve the adjoint problem with respect to f0, fi1 , . . . , fi|IA| and calculate

g0, gi1 , . . . , gi|IA|
and H0, Hi1 , . . . , Hi|IA| at xk.

(5) Calculate yg0, ygi1 , . . . , ygi|IA|
using Eq. (3.8.9).

(6) Use Eq. (3.7.12) to seek λk+1. If II (xk) in Eq. (3.7.9) is non-empty,
replace IA (xk) \ II (xk) with IA (xk) and solve Eq. (3.7.12) again.

(7) Use Eq. (3.7.11) to seek yg. Let xk+1 = xk + yg and solve the state
determination problem in order to calculate f0 (xk+1), f1 (xk+1), . . . ,
fm (xk+1). Moreover, let

IA (xk+1) = { i ∈ {1, . . . ,m} | fi (xk+1) ≥ −ϵi} .

(8) Check the terminal condition |f0 (xk+1)− f0 (xk)| ≤ ϵ0.

• When the terminal condition is satisfied, proceed to (9).

• Otherwise, substitute k + 1 into k and revert to (4).

(9) End the calculations.

□

Let us use Algorithm 3.8.4 in order to find the trial points for Exercise 1.1.7
in Chap. 1.

Exercise 3.8.5 (Mean compliance minimization problem) Consider

Exercise 1.1.7. Let the initial point be a(0) = (1/2, 1/2)
⊤

and use Algorithm
3.8.4 in order to obtain the trial points when k ∈ {0, 1}. Here, kN should
be taken as small as possible, and the numerical values required should be
determined appropriately. □



48 Chapter 3 Basics of Mathematical Programming

(a) Movement of the trial point.

(b) History of cost function. (c) Distance ∥ak − a∥R2 .

Fig. 3.19: Numerical example of mean compliance minimization problem using
Newton method.

Answer The mean compliance f̃0 (a) and the constraint function f1 (a) with respect
to volume are given respectively by Eq. (3.7.13) and Eq. (3.7.14). Moreover, their
cross-sectional derivatives are given by Eq. (3.7.15) and Eq. (3.7.16). The Hesse matrix
of f̃0 (a) is

H0 =

(
8/a3

1 0
0 2/a3

2

)
. (3.8.12)

Moreover, H1 = 0R2×2 and λ1 is not required in Eq. (3.8.2), so we can take kN = 0. Let
us seek numerical values using Algorithm 3.8.4. The design variable is again denoted
by a(k) for each step number k. The same is the case with bg0(k), bg1(k) and λ1(k).

(1) At the initial point a(0) = (1/2, 1/2)⊤, f1
(
a(0)

)
= 0 is satisfied. Let ϵ0 =

10−3f̃0
(
a(0)

)
, ϵ1 = 10−6. Set k = 0.

(2) Equations (3.7.13) and (3.7.14) give f̃0
(
a(0)

)
= 10 and f1

(
a(0)

)
= 0,

respectively. Let IA
(
a(0)

)
= {1}.

(3) Since k = kN, proceed to the next step.

(4) Equations (3.7.15) and (3.7.16) give g0(0) = − (16, 4)⊤, g1(0) = (1, 1)⊤.

(5) From Eq. (3.8.9), we get bg0(0) = (1/4, 1/4)⊤, bg1(0) = − (1/64, 1/16)⊤.

(6) Equation (3.7.12) gives λ1(1) = 6.4.



3.8 Newton Method for Constrained Problems 49

(7) Equation (3.7.11) gives bg(0) = (0.15,−0.15)⊤ and letting a(1) = a(0) + bg(0) =

(0.65, 0.35)⊤ gives f̃0
(
a(1)

)
= 9.01099, f1

(
a(1)

)
= 0. Moreover, let IA

(
a(1)

)
=

{1}.

(8) Since
∣∣∣f̃0 (a(1)

)
− f̃0

(
a(0)

)∣∣∣ = 0.989011 ≥ ϵ0 = 0.01, the terminal condition is

not satisfied. Then, set k = 1 and revert to (4).

(4) Equations (3.7.15) and (3.7.16) give g0(1) = − (9.46746, 8.16327)⊤, g1(1) =

(1, 1)⊤.

(5) From Eq. (3.8.9), bg0(1) = (0.325, 0.175)⊤, bg1(1) = − (0.0343281, 0.0214375)⊤

can be obtained.

(6) Equation (3.7.12) is used to obtain λ1(2) = 8.9661.

(7) Equation (3.7.11) gives bg(1) = (0.0172107,−0.0172107)⊤, let a(2) = a(1) +

bg(1) = (0.667211, 0.332789)⊤ which gives f̃0
(
a(2)

)
= 9.00001, f1

(
a(2)

)
=

1.11022× 10−16. Moreover, let IA
(
a(1)

)
= {1}.

(8)
∣∣∣f̃0 (a(2)

)
− f̃0

(
a(1)

)∣∣∣ = 0.010977 ≥ ϵ0 = 0.01 shows that the terminal condition

is not satisfied, then substitute 2 into k and revert to (4).

Figure 3.19 shows these results and the succeding computed values. The calculation

terminates at k = 3, since
∣∣∣f̃0 (a(3)

)
− f̃0

(
a(2)

)∣∣∣ = 0.0000119968 ≤ ϵ0 = 0.01. □

An algorithm via the Newton method using Hesse gradients for the
second-order derivatives of cost functions is obtained by replacing Steps (4)
and (5) in Algorithm 3.8.4 as follows:

(4) Solve the adjoint problems with respect to f0, fi1 , . . . , fi|IA| and calculate

g0, gi1 , . . . , gi|IA|
. Moreover, solve the adjoint problems with respect to

f ′
0, f

′
i1
, . . . , f ′

i|IA|
and calculate gH0, gHi1 , . . . , gHi|IA|

.

(5) Calculate yg0, ygi1 , . . . , ygi|IA|
using Eq. (3.8.11).

Figures 3.20 and 3.21 show the result by the Newton method using the Hesse
gradient gH0 of f0 in Exercise 1.1.7 from the initial point a(0) = (1/2, 1/2)

⊤

together with the results by the gradient method (Exercise 3.7.3) and the
Newton method (Exercise 3.8.5). In the gradient method, we set A = I and
the parameter value ca = 200 was assumed. For the Newton method, using the
Hesse gradient, we again set A = I and chose ca = 200 in the gradient method
at k = 0 but took ca = 100 for k ≥ kN = 1.

Figure 3.20 (a) plots the cost functions f0/f0init and 1+ f1 normalized with
f0 at the initial shape denoted by f0init and the volume at the initial shape
denoted by c1 = 1, respectively, at every iteration number k. Figure 3.20 (b)

shows those values with respect to the distance
∑k

i=0

∥∥bg(i)∥∥X on the search path

in X = R2. The graphs of f0’s gradient (the gradient of the Lagrange function
L = L0+λ1f1) calculated by gL ·bg(k)/

∥∥bg(k)∥∥X are shown in Fig. 3.20 (c) and
(d) with respect to the iteration number and the search distance, respectively.
Moreover, Fig. 3.20 (e) and (f) shows the graphs of f0’s second-order derivative



50 Chapter 3 Basics of Mathematical Programming

0 2 4 6 8 10

0.90

0.92

0.94

0.96

0.98

1.00

C
o
st

 f
u
n
ct

io
n

Iteration number

(a) Cost functions (b) Cost functions (search distance)

(c) Gradient of f0 on the search path (d) Gradient of f0 on the search path
(search distance)

(e) Hessian of f0 on the search path (f) Hessian of f0 on the search path
(search distance)

Fig. 3.20: Numerical example of mean compliance minimization: cost functions,
gradients and Hessians of f0 on the search path (gL : Gradient method,
h0, gL : Newton method, gH0, gL : Newton method using Hesse gradient).



3.8 Newton Method for Constrained Problems 51

(a) Iteration history (b) (k − 1)-th vs. k-th plot

Fig. 3.21: Numerical example of mean compliance minimization: error value
∥ak − a∥R2 between the exact minimum point a and k-th approximation ak

(gL : Gradient method, h0, gL : Newton method，gH0, gL : Newton method
using Hesse gradient).

hL

[
bg(k), bg(k)

]
/
∥∥bg(k)∥∥2X (in the case of the Newton method using the Hesse

gradient,
(
gH0 · bg(k) + λ1h1

[
bg(k), bg(k)

])
/
∥∥bg(k)∥∥2X = gH0 · bg(k)/

∥∥bg(k)∥∥2X)
with respect to the iteration number and the search distance, respectively.

From Fig. 3.20, it can be confirmed that the graphs with respect to the
iteration number vary by the difference of the convergence speed, while the
graphs with respect to the search distance are almost indistinguishable. The
reason is that the search paths are the same as shown in Fig. 3.15 (a) and
Fig. 3.19 (a). Such graphs will be shown in Chaps. 8 and 9, too. In these cases,
however, it is quite difficult to obtain accurate plots of the search paths so they
will no longer be illustrated graphically. Nevertheless, we want the reader to
visualize them on their own.

In addition, Fig. 3.21 (a) shows the graphs of the error-norm ∥ak − a∥X
between the minimum point a and the k-th approximation ak obtained by the
three methods. From this figure, it can be confirmed that the convergence
order of the Newton method is higher than the first-order. Moreover, Fig. 3.21
(b) plots the k-th distance ∥ak − a∥X with respect to the (k − 1)-th distance
∥ak−1 − a∥X . The indicated slopes of the graphs actually show the convergence
order of each method, respectively. This is basically due to the fact that when
the equation

∥∥a(k) − a
∥∥
X

= r
∥∥a(k−1) − a

∥∥p
X

is assumed, one also has the
relation

log10
∥∥a(k) − a

∥∥
X

= p log10
∥∥a(k−1) − a

∥∥
X
+ log10 r. (3.8.13)

From the above equation, it is clear that the gradient of the graph (or simply
the slope of the graph) corresponds to the order p and the shift of the graph
from the diagonal line corresponds to log10 r. Based on the slopes of the above



52 Chapter 3 Basics of Mathematical Programming

Fig. 3.22: Numerical example of a volume minimization problem using the
Newton method.

plots, we can confirm that the convergence orders of the gradient and Newton
method are of first and second order, respectively.

The above sample calculations confirm that the Newton method functions
effectively with respect to mean compliance minimization problems. On the
other hand, if the Newton method is used with respect to a volume minimization
problems, such as Exercise 3.7.4, the resulting values will not reach convergence
and will diverge instead. Figure 3.22 shows the movement of a trial point given
by Algorithm 3.8.4. Here, for Lagrange multiplier λ1(0) when k = 0, λ1(1) in
Exercise 3.7.4 was used. In this problem, the Hesse matrix of f0 was 0R2×2 and
Hesse matrix of f1 was positive definite. In other words, the conditions pointed
out in Remark 3.8.2 are established. To make it possible to use the Newton
method even in situations like this, there is a need to adjust the step size.

3.8.2 Complicated Algorithm

If the situation is such as that shown in Fig. 3.22 is considered, then there is a
need to add a functionality for adjusting the step size as well as a functionality
explained in Sect. 3.7.2. The relationship between these functionalities and
algorithm are shown in Sect. 3.7.2, and so, we shall not repeat them here.

Meanwhile, if the Hesse matrix is not positive definite, there are known
methods such as making it positive definite by adding a positive definite matrix
or making it positive by removing the components of eigenmodes with negative
eigenvalues. Furthermore, if it is not positive definite, a gradient method could
be used in order to switch to the Newton method once it nears convergence.



3.9 Summary 53

3.9 Summary

Chapter 3 looked at methods for seeking the local minimum points with respect
to non-linear optimization problems in finite-dimensional vector space. The key
points are as follows:

(1) Iterative methods are used as standard techniques for solving non-linear
optimization problems. An iterative method is one in which an initial
point is provided and a trial point is updated while appropriately
determining a search vector (search direction and step size) (Sect. 3.2).

(2) A representative method determining the search direction with respect to
unconstrained optimization problem is the gradient method. This method
is used for determining the search direction defined by the gradient of cost
function with respect to the design variable (Sect. 3.3).

(3) With respect to unconstrained optimization problem, Armijo and Wolfe
criteria are known as criteria for determinining the appropriateness of the
step size. An iterative method, in which the step size has been decided in
order to satisfy these criteria, has global convergence (Sect. 3.4).

(4) If the Hesse matrix and the gradient of the cost function with respect to
an unconstrained optimization problem can be calculated, then by using
a Newton method, the search direction and step size can be determined
simultaneously. The trial point obtained via a Newton method converges
quadratically. However, the calculation of the Hesse matrix can be costly
(Sect. 3.5).

(5) The augmented function methods are known as a class of methods for
solving optimization problems with inequality constraints. These methods
are methods in which the constraint functions are multiplied by a constant
representing weight and added to the objective function to make the
problem an unconstrained one. However, in order to use these methods,
there is a need to find an appropriate monotonic sequence of the constant
for each problem (Sect. 3.6).

(6) A method for solving using KKT conditions can be considered in order
to solve optimization problems with inequality constraints. If all the
gradients of cost functions are computable, the gradient method with
respect to constrained problems is used. In this method, the Lagrange
multipliers are determined using the matrix constructed of search vectors
which, on the other hand, are obtained through the gradient method using
the gradients for each cost function, as well as the gradients themselves.
This relationship is used effectively when considering a practical algorithm
(Sect. 3.7).

(7) If the Hesse matrices of the cost functions in an optimization problem
with inequality constraints can be calculated, the Newton method with



54 Chapter 3 Basics of Mathematical Programming

respect to constrained problems is used. In this method, the positive
definite symmetric matrix used in the gradient method with respect to
constrained problems is simply replaced by a Hesse matrix and the same
algorithm is used as for the gradient method. In order for this method to
function effectively, the non-linearity of the constrained functions should
be weak (Sect. 3.8).

3.10 Practice Problems

3.1 Consider a problem seeking x ∈ R which satisfies the gradient g (x) = 0
with respect to the non-linear function f ∈ C2 (R;R). With respect to
k ∈ N, when xk ∈ R and g (xk) are given, show the equation for obtaining
xk+1 with the Newton–Raphson method (Problem 3.5.6). Moreover, show
the equation for obtaining xk+1 when replacing g (xk) with the difference

f (xk)− f (xk−1)

xk − xk−1
.

This demonstrates a formula for the secant method.

3.2 Consider using the secant method as an algorithm to solve Problem 3.4.1
(the strict line search method). When ϵ̄gl is given with respect to l ∈
{0, 1, 2, . . .}, show the equation for obtaining ϵ̄g l+1.

3.3 Check that the search direction ȳg k+1 calculated in the equations from
Eq. (3.4.8) to Eq. (3.4.12) shown as an example of a conjugate gradient
method (Problem 3.4.10) is conjugate to ȳgk.

3.4 Consider a problem seeking the design variable a (the length of two edges)
in Practice 1.6 for which the cost function f (a) (volume of a tetrahedron)
is minimized. Obtain the search vector b using the Newton method when
the initial value of the design variable a0 = (a01, a02)

⊤
is given.


	Contents
	3 Basics of Mathematical Programming
	3.1 Problem Setting
	3.2 Iterative Method
	3.3 Gradient Method
	3.4 Step Size Criterion
	3.5 Newton Method
	3.6 Augmented Function Methods
	3.7 Gradient Method for Constrained Problems
	3.7.1 Simple Algorithm
	3.7.2 Complicated Algorithm

	3.8 Newton Method for Constrained Problems
	3.8.1 Simple Algorithm
	3.8.2 Complicated Algorithm

	3.9 Summary
	3.10 Practice Problems


