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Chapter 2

Basics of Optimization
Theory

Chapter 1 investigated explicit optimal design problems and illustrated different
approaches for obtaining optimality conditions. Terminology and results utilized
in optimization theory were also used. This chapter presents a systematic
discussion of optimization theory.

The stage of this chapter is a finite-dimensional vector space. In other words,
the linear spaces of the design and state variables are assumed to be of finite
dimension. Later in this book, optimization problems will be constructed on
function spaces and methods for their solution will be considered. However,
many of the concepts and results of this chapter can also be used in the function
space setting. In this sense, the content of this chapter can be seen as forming
the foundation of this book. In other words, the extent of the reliability of this
book is dependent on the content of this chapter. For this reason, although
the details become somewhat abstracted, concepts will be summarized in the
format of definitions and theorems. Here, in order to tie the abstract notions
together with concrete ideas, our discussions will be interlaced with examples
related to the simple spring systems that the reader is already familiar with.

2.1 Definition of Optimization Problems

Considering the problems presented in Chap. 1, let us first define the
optimization problems that will be the target of this chapter’s discussions. In
Problem 1.2.2, the cross-section was set as a ∈ X = Rn and the displacement
was u ∈ U = Rn. These were referred to as the design and state variables,
respectively, where X and U represented their linear spaces. Let us now define
several optimization problems which include this one.

With respect to the linear spaces, we will refrain from using their symbols in
ways which are not observed in other chapters. In Chap. 1, X and U represented
linear spaces containing the design and state variables. In Chap. 2, design and
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4 Chapter 2 Basics of Optimization Theory

state variables are collectively referred to as design variables, and X represents
the linear space of the design variables. That is to say, with respect to the

variables of Chap. 1, we define x =
(
a⊤,u⊤)⊤ ∈ X. The definitions must be

changed in this manner because design and state variables are not distinguished
from each other in standard optimization problems (all variables are treated as
design variables).

Next, let us define an optimization problem while considering its relationship

with a problem from Chap. 1. In Problem 1.2.2, setting x =
(
a⊤,u⊤)⊤ ∈ R2n

where n ∈ N, we had the equality constraint h (x) = K (a)u−p = 0Rn . If 2n is
replaced with d ∈ N, an optimization problem of the following type is obtained.

Problem 2.1.1 (Optimization problem) Let X = Rd and assume that

f0, f1, · · · , fm : X → R are given. Also assume that h = (h1, . . . , hn)
⊤

:
X → Rn with respect to n < d is given. Find x satisfying

min
x∈X

{f0 (x) | f1 (x) ≤ 0, . . . , fm (x) ≤ 0, h (x) = 0Rn} .

□

Moreover, an optimization problem without equality constraint can be
obtained from Problem 1.2.2 by regarding a ∈ X = Rn as the design variable,
and f̃i (a) = fi (a,u (a)). If a ∈ X = Rn is rewritten as x ∈ X = Rd, and f̃i (a)
is replaced by fi (x), then Problem 1.2.2 becomes an optimization problem as
follows:

Problem 2.1.2 (Optimization problem) Let X = Rd and suppose that
f0, f1, · · · , fm : X → R are given. Find x satisfying

min
x∈X

{f0 (x) | f1 (x) ≤ 0, . . . , fm (x) ≤ 0} .

□

Furthermore, let the set of admissible design variables (also referred to as
the feasible set) be

S = {x ∈ X | f1 (x) ≤ 0, · · · , fm (x) ≤ 0} . (2.1.1)

In this case, Problem 2.1.2 is equivalent to the following problem.

Problem 2.1.3 (Optimization problem) Let X = Rd and suppose that
f0, f1, · · · , fm : X → R are given. Let S be given by Eq. (2.1.1). Find x
satisfying

min
x∈S

f0 (x) .

□
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Fig. 2.1: The minimum when all constraints are inactive.

Fig. 2.2: The minimum when an equality constraint is active.

In this chapter, let us look at conditions that are satisfied by minimizers
of Problems 2.1.1, 2.1.2, and 2.1.3. Before beginning this topic, we would like
to draw attention to a few definitions that will be used from here on. In this
chapter, f0 is called the objective function, h is called an equality constraint
function, and f1, · · · and fm denote inequality constraint functions. Two points
are worth noting here.

The first is a cautionary remark regarding the direction of the inequality in
the inequality constraint and its relationship to the optimization of the objective
function. In particular, the maximization of f0 is equivalent to the minimization
of −f0, and so we can so f0 can be limited to minimization. Moreover, without
loss of generality, f1, . . . , fm can be restricted to be non-positive.

The second remark regards the fact that for each i ∈ {1, . . . , n} the
equality constraint hi = 0 is equivalent to imposing two simultaneous inequality
constraints: hi ≤ 0 and −hi ≤ 0. Here, by replacing hi = 0 in Problem 2.1.1
with hi ≤ 0 and −hi ≤ 0, Problem 2.1.1 can be reformulated as Problem 2.1.2.
However in this chapter, we will take a detailed look at the relationship formed
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Fig. 2.3: The minimum when an inequality constraint is active.

at the minimum of Problem 2.1.1 when the equality constraints are specified
separately. The reason for this is as follows. In an optimal design problem, state
equations always appear as equality constraints. Later on, these will become
partial differential equations of boundary value type. In this case, the method for
treating equality constraints shown in this chapter (the Lagrange multiplier or
adjoint variable method) will be the guiding principle when considering equality
constraints in the function space setting. Details related to this will be shown
in Chap. 7.

Let us illustrate the optimization problems considered in this chapter in
figures. Examples of minimizers in optimization problems when X = R2 are
shown in Figs. 2.1–2.3. Here, g0, g1, g2 and ∂Xh1 denote the gradient
(Definition 2.4.1) with respect to an arbitrary variation of f0, f1, f2, and h1

at x ∈ X. The space to which these gradients belong is referred to as the dual
space of X and is denoted by X ′ (Definition 4.4.5). However, since X ′ = X
in a finite-dimensional vector space, we can assume that X ′ = R2. When this
figure is used in Chap. 7, X ′ is treated as a different vector space than X.
Later on, whenever defining optimization problems, the variables and functions
which appear should be referenced to these figures in order to understand the
situation.

2.2 Classification of Optimization Problems

Next, in order to present a method for classifying optimization problems, let us
focus on the properties of the functions used in Problems 2.1.1–2.1.3.

If f0, . . . , fm and h1, . . . , hn are all linear functions in Problem 2.1.1, or
when f0, . . . , fm are all linear functions in Problems 2.1.2 and 2.1.3, then these
problems are referred to as linear optimization problems or linear programming
problems. Figure 2.4 shows the setting of a linear optimization problem when
X = R2. Regarding the solution of linear optimization problems, methods
such as the simplex method, which uses properties of linear functions, and
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Fig. 2.4: The minimum point in a linear optimization problem.

Fig. 2.5: Minimum point in a quadratic optimization problem.

the dual interior point method are well known. There are even cases when
non-linear optimization problems can be solved after being changed into a linear
optimization problem via successive linear approximation. However, the details
will be omitted in this book since they will not be directly used.

On the other hand, in Problem 2.1.1, if some function within f0, . . . , fm or
h1, . . . , hn is not linear, or if some function from f0, . . . , fm in Problem 2.1.2 or
Problem 2.1.3 is not a linear, then these problems are referred to as non-linear
optimization problems or as non-linear programming problems.

Moreover, when f0 is a quadratic function and each of h1, . . . , hn and
f1, . . . , fm are linear functions, or when f0 in Problem 2.1.2 and Problem 2.1.3
is a quadratic function, and f1, . . . , fm are all linear functions, these problems
are called quadratic optimization problems or quadratic programming problems.
Figure 2.5 demonstrates a quadratic optimization problem when X = X ′ = R2.

Furthermore, when f0, . . . , fm are convex functions (Definition 2.4.3) and
h1, · · · , hn are linear in Problem 2.1.1, or f0, . . . , fm are convex functions in
Problem 2.1.2 or Problem 2.1.3, these problems are called convex optimization
problems or convex programming problems.

Here we would like to consider a problem which can be a source of some
confusion. As can be understood from Section 1.1.7, Problem 1.1.4 is a convex
optimization problem. This is because when Problem 1.1.4 is rewritten in the



8 Chapter 2 Basics of Optimization Theory

(a) Linear space of design variables (b) Linear space of cost functions

Fig. 2.6: A set of Pareto solutions, P .

form of Problem 2.1.2, the Hesse matrix H0 of f̃0 is positive definite (Theorem
2.4.6) and f1 is a linear function with respect to the design variable (Theorem
2.4.4). However, Problem 1.1.4 does not look like a convex optimization problem
when it is rewritten in the form of Problem 2.1.1.

This is because when we set x =
(
a⊤,u⊤)⊤ and h (x) = K (a)u−p = 0Rn

in Problem 2.1.1, h (x) is not a linear function of x. Therefore it doesn’t look
like a convex optimization problem. As just described, optimization problems
are still convex when they are obtained by rewriting a problem which includes
equality constraints into a form without the equality constraints.

Also, although the problem formulation is different from Problems
2.1.1–2.1.3, optimization problems equipped with multiple objective functions
are called multi-objective optimization problems. For example, if S denotes a
subset of X = Rd and f1, . . . , fm : X → R are cost functions, then the problem
becomes one in which we seek x to satisfy

min
x∈S

f1 (x) , · · · , min
x∈S

fm (x) .

We remark that minimizers need not exist for problems of this type and that,
when the minimizer does not exist, the next best choice to use is the set of
so-called Pareto solutions. Pareto solutions are defined as a set P ⊂ S that
satisfies the following conditions (see Fig. 2.6). Given an element y of P , there
does not exist an x ∈ S such that the following holds for all i ∈ {1, . . . ,m}:

fi (x) ≤ fi (y) .

Moreover, for each fixed i ∈ {1, . . . ,m} there does not an exist x ∈ S satisfying

fi (x) < fi (y)

for all y ∈ P . In order to select a point from a set of Pareto solutions, a
selection criterion based on a concrete value system is needed. Nevertheless,
discussions surrounding such selection criteria will be avoided and multi-purpose
optimization problems will not be considered in this book.

Furthermore, when the set of admissible design variables S is a set of discrete
points (such as the integers) in Problem 2.1.3, this type of problem is referred to
as a discrete optimization problem or a discrete programming problem. These
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Fig. 2.7: A local minimizer x and the global minimizer y of function f .

problems display a property that is referred to as NP-hard, and exact solutions
cannot be easily found. Moreover, special schemes are needed in order to obtain
approximate solutions. These problems will also not be examined in this book.

2.3 Existence of a Minimum Point

Having defined optimization problems, let us now consider conditions under
which minimizers exist in our problems. Although the following may seem
obvious, failure to acknowledge such observations may lead to defining
optimization problems for which no minimum is obtained.

Let us first note the difference between a local minimum point and a
minimum point.

Definition 2.3.1 (Local and global minimizers) Let X = Rd and assume
that S is non-empty subset of X. Also let f : S → R. When a neighborhood (a
convex open set) B of x ∈ S exists and the following holds with respect to an
arbitrary y ∈ B:

f (x) ≤ f (y) ,

then we say that f (x) obtains a local minimum value at x, and that x is a
local minimizer. When the above inequality holds with respect to an arbitrary
y ∈ S, then we say that f (x) obtains its minimum value at x, and that x is
the global minimizer. □

Figure 2.7 shows a local minimum x and the global minimum y of a function
f when X = R and S ⊂ X is a bounded closed set. Definitions of terminology
such as neighborhood and open set can be found in Section A.1.1. When defining
global minimizers as in Definition 2.3.1, the well-known Weierstrass’s theorem
gives sufficient conditions for their existence (cf. [10, Theorem 13, p. 27], [1,
Section 22.6, p. 154], or [9, Theorem 4.16, p. 89]).

Theorem 2.3.2 (Weierstrass’s Theorem) Let S be a bounded closed
subset of X = Rd, and f0 : S → R be a continuous function in Problem 2.1.3.
Then there exists a global minimizer of f0 in S. □

Note that continuous functions are defined in Section A.1.2, and that
Theorem 2.3.2 still holds when continuity is replaced by lower semi-continuity
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(Section A.1.2). However, given that lower semi-continuity will not be required
in our future developments, this extension is omitted.

Let us take a look at cases where global minimizers fail to exist when S
is not a bounded closed set in Problem 2.1.3. In Problem 1.1.4, the following
assumption was made:

S =
{
a ∈ X = R2

∣∣ a ≥ a0, f1 (a) = l (a1 + a2)− c1 ≤ 0
}
.

This set is bounded and closed. However, if this is replaced by

S =
{
a ∈ X = R2

∣∣ a > 0R2 , f1 (a) = l (a1 + a2)− c1 ≤ 0
}

then it is no longer a bounded closed set. For example, when p1 6= 0 and p2 = 0,
it follows that a1 = c1/2l and a2 = 0 express the minimum of f0. However, a is
not included in S hence there are no minimizers within S.

Moreover, when the underlying function is discontinuous, or doesn’t uniquely
determine its values, there is no guarantee that a minimum value will exist.
None of the functions looked at so far has these qualities. However, if care is
not taken, functional optimization problems may well result in having to deal
with functions whose values are not uniquely defined. In Chap. 4, the linear
space in which the design variables are defined is continuous (complete), and
conditions under which the cost function are continuous will be considered.

2.4 Differentiation and Convex Functions

Before addressing the optimization problem, let us look at the basic methods of
differentiation used in optimization theory, including the definition of a convex
functions. We will use the following definition for the derivative of a function
f .

Definition 2.4.1 (Gradient and Hesse matrix) Let X = Rd and suppose
a function f : B → R is defined in the neighborhood B ⊂ X of x ∈ X. When
y = (y1, . . . , yd)

⊤ ∈ X is arbitrary and

∂Xf (x) =


limy1→0

(
f
(
x+ (y1, 0, . . . , 0)

⊤
)
− f (x)

)
/y1

...

limyd→0

(
f
(
x+ (0, . . . , yd)

⊤
)
− f (x)

)
/yd


=

∂f/∂x1

...
∂f/∂xd

 (x) = g (x)

is an element of X ′ = Rd, then f is said to be differentiable at x, and

f ′ (x) [y] = g (x) · y
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is called the derivative, or the total derivative, of f at x and g (x) is the gradient
of f at x. Likewise, when we can resolve

∂X∂⊤
Xf (x) =

∂2f/ (∂x1∂x1) . . . ∂2f/ (∂x1∂xd)
...

. . .
...

∂2f/ (∂xd∂x1) . . . ∂2f/ (∂xd∂xd)

 (x) = H (x)

as an element of Rd×d, then f is said to be second-order differentiable at x.
Moreover,

f ′′ (x) [y1,y2] = y2 · (H (x)y1)

is referred to as the second-order derivative of f at x with respect to arbitrary
variations y1,y2 ∈ X from x, and H (x) is referred to as the Hesse matrix. □

In this book, the set of functions f : X → R whose first k ∈ {0, 1, 2, · · · }
derivatives are continuous over X will be denoted by Ck (X;R) (Definition
4.2.2). Moreover, for simplicity of notation, ∂Xf , ∂Xf0, . . . , ∂Xfm will be
denoted by g, g0, . . . , gm respectively, and ∂X∂⊤

Xf , ∂X∂⊤
Xf0, . . . , ∂X∂⊤

Xfm will
be denoted by H, H0, . . . , Hm respectively. Also, when x is an element of
X, we note that ∂Xf will also be written as fx. When considering partial
differential equations, etc., we remark that ∂Xf will be expressed by ∇f .
Various types of derivatives will be defined going forward, so methods for their
expression will be needed. Definitions will be given in each situation to avoid
confusion.

2.4.1 Taylor’s Theorem

Used in all kinds of situations hereafter, Taylor’s theorem is shown below.

Theorem 2.4.2 (Taylor’s theorem) Let X = Rd. Suppose that a function
f ∈ C2 (B;R) is defined in a neighborhood B of a ∈ X. If y = b − a with
respect to an arbitrary b ∈ B, then there exists θ ∈ (0, 1) satisfying

f (b) = f (a) + g (a) · y +
1

2!
y · (H (a+ θy)y) . (2.4.1)

□

Proof First assume that X = R. Let a, b and y in this case be denoted by a, b
and y respectively. Given x ∈ B, let

h (x) = f (b)−
{
f (x) + f ′ (x) (b− x) + k (b− x)2

}
,

where we have written df/dx as f ′. Moreover, the constant k is determined such that

h (a) = h (b) = 0.

We obtain

h′ (x) = −f ′ (x)− f ′′ (x) (b− x) + f ′ (x) + 2k (b− x)
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= −f ′′ (x) (b− x) + 2k (b− x) .

By Rolle’s theorem (the mean value theorem when h (a) = h (b)), there exists c in
(a, b) satisfying

h′ (c) = 0.

Hence, we can write c = a+ θy and obtain

k =
1

2
f ′′ (a+ θy) .

Substituting this result into h (a) = 0 yields the result of the theorem.
Next let X = R2. Consider the following function of t ∈ R with respect to an

arbitrary a = (a1, a2)
⊤ and y = (y1, y2)

⊤:

ϕ (t) = f (a+ ty)

= f (a) + t

(
y1

∂

∂x1
+ y2

∂

∂x2

)
f (a) +

t2

2

(
y1

∂

∂x1
+ y2

∂

∂x2

)2

f (a+ θy) .

By Taylor expanding ϕ(t) around t = 0 (as a function of one variable, X = R) the
value of ϕ(1) can be written as

ϕ (1) = f (b)

= f (a) +

(
y1

∂

∂x1
+ y2

∂

∂x2

)
f (a)

+
1

2

(
y1

∂

∂x1
+ y2

∂

∂x2

)2

f (a+ θy)

= f (a) +

{(
∂

∂x1

∂

∂x2

)
f (a)

}(
y1
y2

)

+
1

2

(
y1 y2

)
 ∂

∂x1
∂

∂x2

(
∂

∂x1

∂

∂x2

)
f (a+ θy)


(
y1
y2

)
.

When X = Rd, the above equation becomes Eq. (2.4.1). □

Taylor’s theorem can also be expressed with respect to arbitrary derivative
orders. However, our expression stops at the second-order derivative of the
function because the notation for higher-order differentials defined in Rd have
not been defined. This notation will be presented in Definition 4.2.2. Moreover,
we also refer to terms such as y · (H (a+ θy)y) /2! containing θ as remainder
terms. Also, we will make use of the Bachmann–Landau small-o symbol in this
book. This allows us to write Eq. (2.4.1) also as

f (a+ y) = f (a) + g (a) · y +
1

2!
y · (H (a)y) + o

(
‖y‖2Rd

)
, (2.4.2)

where o (ϵ) is defined to be a function such that limϵ→0 o (ϵ) /ϵ = 0. This
equation is referred to as a Taylor expansion of f around a.
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(a) X = R (b) X = R2

Fig. 2.8: S as a convex subset of the linear space X.

(a) X = R (b) X = R2 (c) X = R2

Fig. 2.9: S as a non-convex subset of the linear space X.

2.4.2 Convex Functions

Next let us take a look at a few basic definitions and results regarding convex
functions. As we will show in Theorem 2.5.6, local and global minimizers
coincide in the case of convex optimization problems. For this reason, convexity
of functions is an important and useful property in optimization theory. The
definition of a convex function is as follows.

Definition 2.4.3 (Convex functions) Let X = Rd and S be a non-empty
subset of X. A function f : S → R is said to be convex if the following holds
for arbitrary x,y ∈ S and θ ∈ (0, 1):

(1− θ)x+ θy ∈ S, (2.4.3)

f ((1− θ)x+ θy) ≤ (1− θ) f (x) + θf (y) . (2.4.4)

When the direction of the inequality is reversed, f is called a concave function.
□

Equations (2.4.3) and (2.4.4) are conditions which signify the convexity of a
set and the convexity of a function, respectively. Figures 2.8 and 2.9 illustrate
the case of convex and non-convex S. Moreover, if S is a set of integer-valued
vectors (such as in Fig. 2.9 (c)), the optimization problem becomes a discrete
programming problem. A difficulty regarding these problems can be thought
to lie in the fact that, when the admissible set consists of such vectors, points
at which the gradient of the cost function are 0X need not be included in the
admissible set. Figure 2.10 shows an example when f is a convex function. We
also note that, even if the derivative is non-continuous, convexity can still hold.

If a convex function is first-order differentiable, the following results can be
obtained.
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(a) f ∈ C1 (S;R) (b) f : linear function (c) f ∈ C0 (S;R)

Fig. 2.10: Examples of convex functions (X = R).

Theorem 2.4.4 (Convexity and first-order differentiation) Suppose
f ∈ C1 (S;R) and let S ⊆ X be an open convex set of X = Rd. A necessary and
sufficient condition for f to be a convex function is for the following inequality
to hold for arbitrary x,y ∈ S:

g (x) · (y − x) ≤ f (y)− f (x) . (2.4.5)

□

Proof We will first show the necessity (that Eq. (2.4.5) holds when f is a convex
function). Since f is a convex function, one has

f ((1− θ)x+ θy) = f (x+ θ (y − x)) ≤ f (x) + θ (f (y)− f (x)) ,

where x,y ∈ S and θ ∈ (0, 1) are arbitrary. Hence, it follows that

f (x+ θ (y − x))− f (x)

θ
≤ f (y)− f (x) . (2.4.6)

When θ → 0, we obtain Eq. (2.4.5).
Next we will show the sufficiency (that is, if Eq. (2.4.5) holds, then f is a convex

function). If we let x = (1− θ)z + θw and y = z, then Eq. (2.4.5) becomes

f (z)− f (x) ≥ g (x) · (z − x) . (2.4.7)

Similarly, if x = (1− θ)z + θw and y = w, Eq. (2.4.5) becomes

f (w)− f (x) ≥ g (x) · (w − x) . (2.4.8)

Multiplying Eq. (2.4.7) by (1− θ), and Eq. (2.4.8) by θ and taking their sum yields:

(1− θ) f (z) + θf (w)− f (x) ≥ g (x) · {(1− θ)z + θw − x} = 0.

In other words, since S is a convex set, we obtain the convexity of f :

(1− θ) f (z) + θf (w) ≥ f ((1− θ)z + θw) .

□

Figure 2.11 illustrates the content of Theorem 2.4.4.
Additionally, properties of Hesse matrices can be obtained when convex

functions are second-order differentiable. In order to derive the result, let us
define the notion of a positive definite real symmetric matrix.
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Fig. 2.11: Convexity and the first-order derivative (X = R).

Fig. 2.12: Convexity and the second-order derivative (X = R).

Definition 2.4.5 (Positive definite real symmetric matrix) Let A =
A⊤ ∈ Rd×d. Then A is said to be positive definite if there exists α > 0
satisfying

x · (Ax) ≥ α ‖x‖2Rd ,

for all x ∈ Rd. When there only exists α ≥ 0 satisfying the above, then A is
said to be semi-positive definite. Similarly, when α > 0 exists and

x · (Ax) ≤ −α ‖x‖2Rd ,

for all x ∈ Rd, then A is said to be negative definite. In the case that there
only exists α ≥ 0 satisfying the above, we say that A is semi-negative definite.
□

IfA in Definition 2.4.5 is positive definite, then its eigenvalues are all positive
and α is equal to their minimum value. Moreover, if A is negative definite, then
all its eigenvalues are negative and −α is equal to their maximum value. The
reader is encouraged to confirm these facts in Exercise 2.1.

When a convex function is second-order differentiable, these definitions can
be used to formulate the following result (illustrated in Fig. 2.12).

Theorem 2.4.6 (Convexity and second-order differentiation) Let X =
Rd, S ⊆ X be an open convex set and f ∈ C2 (S;R). Then the necessary and
sufficient condition for f to be a convex function is that the Hesse matrix H (x)
is semi-positive definite with respect to arbitrary x ∈ S. □

Proof We will first show necessity. Since f is a convex function, Eq. (2.4.6) holds
for arbitrary x,y ∈ S and θ ∈ (0, 1). Since f ∈ C2 (S;R), given x,y ∈ S there exists
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ϑ ∈ (0, 1) such that the right-hand-side of Eq. (2.4.6) can be written as

f (y)− f (x) = g (x) · (y − x) +
1

2
(y − x) · {H ((1− ϑ)x+ ϑy) (y − x)} .

(2.4.9)

Writing θ = ϑ, the left-hand side of Eq. (2.4.6) can be expressed as

f (x+ ϑ (y − x))− f (x)

ϑ

= g (x) · (y − x) +
1

2
ϑ (y − x) · {H ((1− ϑ)x+ ϑy) (y − x)} . (2.4.10)

Therefore, substituting Eq. (2.4.9) and Eq. (2.4.10) into Eq. (2.4.6) when θ = ϑ we
obtain:

(1− ϑ) (y − x) · {H ((1− ϑ)x+ ϑy) (y − x)} ≥ 0.

When ϑ → 0, H (x) is semi-positive definite.
Next let us show sufficiency. Given x,y ∈ S there exists ϑ ∈ (0, 1) such that

Eq. (2.4.9) is satisfied. Since H ((1− ϑ)x+ ϑy) is semi-positive definite, the second
term on the right-hand side of Eq. (2.4.9) is non-zero, and thus

f (y)− f (x) ≥ g (x) · (y − x) .

From Theorem 2.4.4 it follows that f is a convex function. □

2.4.3 Exercises in Differentiation and Convex Functions

Let us make use of the previous theorems involving differentiation and convex
functions in relation to simple problems from mechanics. Let us first confirm
that the potential energy in the one-degree-of-freedom spring system considered
in Exercise 1.1.1 is positive definite.

Exercise 2.4.7 (Potential energy of a 1DOF spring system) The
potential energy in a one-degree-of-freedom spring system (such as is shown in
Fig. 1.1.2) is given by

π (u) =

∫ u

0

(kv − p) dv =
1

2
ku2 − pu.

Show that π is a convex function. □

Answer With respect to π, we obtain

d2π

du2
= k > 0.

By Theorem 2.4.6, π is a convex function. □

Let us also confirm that the potential energy of a two-degree-of-freedom
spring system is a convex function.
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Exercise 2.4.8 (Potential energy of a 2DOF spring system) The
potential energy of a two-degree-of-freedom spring system (such as is shown in
Fig. 1.1.3) is given by

π (u) =
1

2
k1u

2
1 +

1

2
k2 (u2 − u1)

2 − (p1u1 + p2u2) .

Show that π is a convex function. □

Answer The Hesse matrix of π is

H =

(
k1 + k2 −k2
−k2 k2

)
.

The eigenvalues of H are λ satisfying

det

∣∣∣∣k1 + k2 − λ −k2
−k2 k2 − λ

∣∣∣∣ = 0,

which leads to

λ1, λ2 =
k1 + 2k2 ±

√
(k1 + 2k2)

2 − 4k1k2

2
.

It follows that λ1 and λ2 are greater than zero whenever k1, k2 > 0. Therefore, since
all of its eigenvalues are positive, H is positive definite (Theorem A.2.1). By Theorem
2.4.6, π is a convex function. □

Let us finish this section by taking a look at an example involving a familiar
function which is not convex.

Exercise 2.4.9 (Area of a rectangle) Let x1 ∈ R and x2 ∈ R denote the
length and width of a rectangle. Show that the area f (x) = x1x2 is not a
convex function. □

Answer Upon substituting x = (1, 0)⊤ and y = (0, 1)⊤ into Eq. (2.4.4), we obtain

f ((1− θ)x+ θy) = {(1− θ)x1 + θy1} {(1− θ)x2 + θy2} = (1− θ) θ

≥ (1− θ) f (x) + θf (y) = 0.

Therefore, f is not a convex function (see Fig. 2.13). □

2.5 Unconstrained Optimization Problems

We will now consider various cases of Problems 2.1.1–2.1.3 and look at
foundational theorems of optimization theory. We will first consider the case
when there are no constraints. This can be thought of as the case where all of
the constraints are inactive. Namely, in Problem 2.1.3, that the minimum point
is an interior point of S ⊆ X = Rd. In this section, we will assume that S is an
open set and denote f0 by f in order to consider the following problem.
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Fig. 2.13: The function f (x) = x1x2.

Problem 2.5.1 (Unconstrained optimization problems) Let X = Rd

and S be an open subset of X. When f : S → R is given, find x satisfying

min
x∈S

f (x) .

□

2.5.1 A Necessary Condition for Local Minimizers

The conditions satisfied when x ∈ S is a local minimizer are referred to as
necessary conditions for local minimization. When f is first-order differentiable,
its derivative is defined and we obtain the following result expressing necessary
conditions satisfied by local minimizers.

Theorem 2.5.2 (Necessary conditions for local minimizers) Let f ∈
C1 (S;R) in Problem 2.5.1. If x ∈ S is a local minimizer, then

g (x) = 0Rd . (2.5.1)

Equivalently, for all y ∈ X

g (x) · y = 0. (2.5.2)

□

Proof Suppose for contradiction that g (x) ̸= 0Rd . If we set y = −g (x), then
g (x) · y = −∥g (x)∥2Rd < 0. Since g is continuous, there exists t1 such that

g (x+ ty) · y < 0

for all t ∈ [0, t1]. By the mean value theorem, given t ∈ (0, t1] there exists θ ∈ (0, 1)
such that

f (x+ ty) = f (x) + tg (x+ θty) · y.

Since θt ∈ (0, t1) we have g (x+ θty) ·y < 0. Substituting this relation into the above
equation yields a contradiction f (x+ ty) < f (x). □
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Theorem 2.5.2, signifies that vector equalities (such as Eq. (2.5.1)) are
equivalent to the condition that the inner product with any arbitrary vector
(such as in Eq. (2.5.2)) is 0. Equivalence is obtained because Eq. (2.5.2) is
required to hold for all y ∈ X. Such expressions involving arbitrary vectors
will appear frequently in this book, and it is thus important for the reader to
understand this notion here.

If f is second-order differentiable, its Hesse matrix can be defined and the
following results can be obtained.

Theorem 2.5.3 (2nd-order necessary condition for a local minimizer)
Consider Problem 2.5.1 and let f ∈ C2 (S;R). If x ∈ S is a local minimizer,
then the Hesse matrix H (x) is semi-positive definite. □

Proof If x is a local minimizer, then by Definition 2.3.1 there exists a neighborhood
B ⊂ S of x such that the following holds for all y ∈ B:

f (y)− f (x) ≥ 0.

Additionally, since x is a local minimum, it follows from Taylor’s theorem that

f (y)− f (x) =
1

2
(y − x) · {H (x) (y − x)}+ o

(
∥y − x∥2Rd

)
.

If z ∈ X is arbitrary and we multiply both sides of the above by 2z/ ∥y − x∥2Rd and
take y → x, then we obtain

z · (H (x)z) ≥ 0.

□

2.5.2 Sufficient Conditions for Local Minimizers

Next, let us take a look at conditions guaranteeing when x ∈ S is a local
minimum. In order to do so, we now give the definition of a stationary point.

Definition 2.5.4 (Stationary Point) Let S ⊆ X be an open set and x an
element of S. When

g (x) = 0Rd

we say that x is a stationary point. □

If f is second-order differentiable, then the following sufficient condition for
attaining a local minimum can be obtained.

Theorem 2.5.5 (2nd-order sufficient condition for a local minimizer)
Consider Problem 2.5.1 and let f ∈ C2 (S;R). If x ∈ S is a stationary point
and the Hesse matrix H (x) is positive definite, then x is a local minimizer. □



20 Chapter 2 Basics of Optimization Theory

Proof Let B ⊂ S be a neighborhood around a stationary point x. Given x+y ∈ B
there exists θ ∈ (0, 1) such that

f (x+ y)− f (x) =
1

2
y · (H (x+ θy)y) .

Since H (x+ θy) is positive definite, the result follows:

f (x+ y) > f (x) .

□

2.5.3 Sufficient Conditions for Global Minimizers

The previous section established conditions satisfied by local minimizers. Let
us now take a look at conditions established in the case of global minimizers. In
particular, if Problem 2.5.1 is a convex optimization problem, then the following
result can be obtained.

Theorem 2.5.6 (Sufficient conditions for a global minimizer) In
Problem 2.5.1, let S ⊆ X be a non-empty open convex set and f : S → R be a
convex function. If x ∈ S is a local minimizer, then x yields the minimum over
S. □

Proof If x is a local minimizer, then there exists a neighborhood B ⊂ S around x
such that x yields the minimum value over B. If we suppose that there exists another
minimizer y ∈ S which is different from x, then for sufficiently small θ ∈ (0, 1) we can
find z ∈ B such that

(1− θ) f (x) + θf (y) ≥ f ((1− θ)x+ θy) = f (z) .

This is contrary to the fact that x is a local minimizer. Hence, x is the only local
minimizer. □

2.5.4 Example of Unconstrained Optimization Problem

As in the previous section, let us now confirm the results thus far in relation
to unconstrained problems involving systems of springs. Let us first consider a
one-degree-of-freedom spring system.

Exercise 2.5.7 (Force equilibrium equation in a 1DOF spring system)
Show that if u satisfies the force equilibrium equation of the
one-degree-of-freedom spring system shown in Fig. 1.1.2, then it minimizes the
potential energy π in Exercise 2.4.7. □

Answer By Exercise 2.4.7, π is a convex function. If u satisfies the force equilibrium
equation, then by Theorem 2.5.5 it is a local minimizer. By Theorem 2.5.6, it is also
a global minimizer. □

Next, let us treat a system involving multiple degrees-of-freedom.
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Exercise 2.5.8 (Force equilibrium equation in a 2DOF spring system)
Show that if u satisfies the force equilibrium equation of the
two-degree-of-freedom spring system shown in Fig. 1.1.3, then it minimizes the
potential energy π in Exercise 2.4.8. □

Answer By Exercise 2.4.8, π is a convex function. If u satisfies the force equilibrium
equation, then by Theorem 2.5.5 it is a local minimizer. By Theorem 2.5.6, it is also
a global minimizer. □

2.5.5 Considerations Relating to the Solutions of
Unconstrained Optimization Problems

Combining the results from this section with results which will be shown
later allows us to conclude the following about solutions of the unconstrained
optimization problem (Problem 2.5.1).

(1) By Theorem 2.5.2, if a point is a local minimizer, it is also a stationary
point. Hence stationary points are candidates for local minimizers.

(2) If after obtaining a stationary point x the Hesse matrix H (x) is found to
be positive definite, then by Theorem 2.5.5 x can be deemed to be a local
minimizer.

(3) If f is a convex function, any stationary point x which is also a local
minimizer is necessarily a global minimizer by Theorem 2.5.6.

(4) When the convexity of f is unknown, local minimizers can be sought
using various trial points and optimization methods developed in Chap.
3, amongst which the global minimizer can be found.

2.6 Optimization Problems with Equality
Constraints

We will now consider Problem 2.1.1 in the case where the equality constraint
h (x) = 0Rn is active but all inequality constraints are inactive. As explained
at the start of Sect. 2.1, this problem corresponds to the case where the

cross-section a and displacement u of Problem 1.2.2 are x =
(
a⊤,u⊤)⊤, and

where the cost function f0 (u) = p ·u is written as f0 (x) and the state equation
K (a)u− p = 0Rn is expressed as an equality constraint h (x) = 0Rn .

In the case that n < d equality constraints are given, it is considered that
n elements become dependent variables. Therefore, putting u ∈ U = Rn and

ξ ∈ Ξ = Rd−n for the remaining elements, we can write x =
(
ξ⊤,u⊤

)⊤
∈

X = Ξ × U . In optimum design problems, ξ is called the design variable. In
this section, while being careful that X = Ξ × U , let us consider the following
problem. Since f1, . . . , fm do not appear in this section, we denote f0 by f .
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Problem 2.6.1 (Optimization problems with equality constraints)

Let X = Rd. If f : X → R and h = (h1, . . . , hn)
⊤

: X → Rn are given with
n < d, find x satisfying

min
x∈X

{f (x) | h (x) = 0Rn} .

□

2.6.1 A Necessary Condition for Local Minimizers

Let us consider a relationship that is established when x is a local minimizer
of Problem 2.6.1. Figure 2.14 illustrates a local minimum when X = R2 and
n = 1. Let us consider this figure in order to describe the relationship that is
established at local minimums and then consider the general case.

Let x in Fig. 2.14 designate a local minimum. That is, if we let BX denote
a neighborhood of x and move x to x + y ∈ BX while satisfying the equality
constraint h1 (x+ y) = 0, then f (x) ≤ f (x+ y). Here it is assumed that f
and h1 are elements of C1 (BX ;R). Then ∂Xf = g and ∂Xh1 can be defined
and the following relationships hold:

(1) y and ∂Xh1 are orthogonal,

(2) y and g are orthogonal.

Relationship (1) expresses that the constraint is satisfied along the direction y
of a point that satisfies the constraint. In fact, we have

h1 (x+ y) = h1 (x) + ∂Xh1 · y + o (‖y‖Rd) ,

and if h1 (x+ y) = h1 (x) at a point x+ y ∈ BX of a neighborhood of x, then
∂Xh1 · y = 0. On the other hand, (2) states that the value of the cost function
does not change even when it is moved in the direction of the constraint. This
relationship is the same as in Eq. (2.5.2), where the variation in the direction
of the cost function is limited to y in Theorem 2.5.2. Let us now generalize
these relationships and consider necessary conditions relating local minimizers
of optimization problems with equality constraints.

We begin by generalizing relationship (1). Let the admissible set be

V = {x ∈ X | h (x) = 0Rn} . (2.6.1)

Figure 2.14 shows a curve of points satisfying h1 = 0, where a neighborhood of
x ∈ V is denoted by BX ⊂ X. When h ∈ C1 (BX ;Rn),

TV (x) = {y ∈ X | hx⊤ (x)y = 0Rn } (2.6.2)

is called the feasible direction set or the tangent plane at x. Here, hx⊤ =
(∂hi/∂xj) = (∂Xh1, . . . , ∂Xhn)

⊤ ∈ Rn×d corresponds to the Jacobi matrix of
h with respect to x. The rank of this matrix is n (in other words, ∂Xh1, . . . ,
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Fig. 2.14: A local minimizer of an optimization problem under an equality
constraint (X = R2, n = 1).

∂Xhn are all linearly independent) and we remark that the tangent to the curve
h1 = 0 at x is denoted by TV (x) in Fig. 2.14.

The cases of n = 1 and n = 2 are easy to imagine when X = R3. Figure 2.15
shows TV (x) in these cases. When n = 1, the set of points V satisfying h1 = 0
forms a surface and TV (x) is the tangent plane at x to this surface. When
n = 2, the set of points V simultaneously satisfying h1 = 0 and h2 = 0 is a
curve and TV (x) is its tangent at x. When n = 2, the fact that the rank of

hx⊤ (x) = (∂Xh1 (x) , ∂Xh2 (x))
⊤
is n = 2 indicates that ∂Xh1 (x) and ∂Xh2 (x)

face different directions. Based on Eq. (2.6.2), the definitions of the null space
and the image space (also referred to as the kernel space and the range space
in Section A.3, respectively) allow one to write:

TV (x) = Kerhx⊤ (x) .

The generalization of condition (2) is as follows. Condition (2) expresses
that g is orthogonal to all of the vectors contained in TV (x). We let

T ′
V (x) = (TV (x))

′
= {z ∈ X ′ | z · y = 0 for all y ∈ TV (x)} . (2.6.3)

and call T ′
V (x) the dual set or the dual plane of TV (x). Then, if f and h are

first-order differentiable and T ′
V can be evaluated, one can obtain the following

result.

Theorem 2.6.2 (1st-order necessary conditions for a local minimizer)
Let f ∈ C1 (X;R) and h ∈ C1 (X;Rn) in Problem 2.6.1 and ∂Xh1 (x), . . . ,
∂Xhn (x) be linearly independent at x ∈ V . Then if x is a local minimizer

g (x) · y = 0 (2.6.4)

for all y ∈ TV (x). Moreover,

g (x) ∈ T ′
V (x) . (2.6.5)

□
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(a) n = 1 (b) n = 2

Fig. 2.15: Local minimizers in optimization problems with equality constraints
(X = R3 and X ′ = R3 are superimposed).

Proof If we let y ∈ TV (x) be arbitrary and suppose that g (x) · y ̸= 0, then there
exists y such that g · y < 0. Then a contradiction similar to Theorem 2.5.2 can be
obtained and Equation (2.6.5) is equivalent to Eq. (2.6.4) by the definition of T ′

V (x).
□

2.6.2 The Lagrange Multiplier Method

Formulated using arbitrary y ∈ TV (x) or T ′
V (x), Theorem 2.6.2 expresses a

condition that is established when x ∈ V is a local minimizer. Nevertheless, even
if the theorem’s meaning is easy to understand, its evaluation is not necessarily
so simple. For this reason, let us consider a method which does not make use
of arbitrary y ∈ TV (x) or T ′

V (x).
Before making a generalization, let us confirm the fundamental relationship

illustrated in Fig. 2.14. Here we assume that both f and h1 belong to
C1 (BX ;R). We also remark that g is orthogonal to y ∈ TV (x) and that
y ∈ TV (x) is also orthogonal to ∂Xh1. This relationship is equivalent to the
fact that g and ∂Xh1 are oriented in the same direction. This relationship
asserts that there exists λ1 ∈ R satisfying the following:

g + λ1∂Xh1 = 0R2 . (2.6.6)

In particular, λ1 satisfying Eq. (2.6.6) cannot exist when g and ∂Xh1 are
non-zero vectors pointing in different directions. The reader is invited to confirm
that when two vectors a, b ∈ Rd are fixed and have different directions, that
there does not exist a λ ∈ R satisfying a+ λb = 0Rd .

Now let us generalize Eq. (2.6.6). At first, we will generalize the condition:

• y ∈ TV (x) and g are orthogonal.

This condition can be obtained from the condition that the gradient of cost
function f becomes zero when the variable x moves to the direction where the
equality constraints are satisfied. Let V denote the admissible set in Eq. (2.6.1)
and assume that the following conditions are satisfied:
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(a) ξ–u coordinate system (b) ξ coordinate system

Fig. 2.16: A set satisfying an equality constraint and the ξ–u local coordinate
system.

Hypothesis 2.6.3 (Implicit function theorem assumptions) Let d > n
and X = Rd = Ξ × Rn. Also assume that h : X → Rn satisfies the following

conditions in a neighborhood BX = BΞ ×BRn of x =
(
ξ⊤0 ,u

⊤
0

)⊤
:

(1) h (x) = 0Rn (in other words x ∈ V ),

(2) h ∈ C0 (BX ;Rn),

(3) h (ξ, · ) belongs to C1 (BRn ;Rn) whenever x̃ =
(
ξ⊤,u⊤

)⊤
∈ BΞ ×BRn ,

(4) the Jacobi matrix hu⊤ (x) is invertible at x.

□

By the implicit function theorem (Theorem A.4.1), there exists a
neighborhood (a convex open set) UΞ × URn ⊂ BΞ × BRn and a continuous
function υ : UΞ → URn (the letter υ is a bold Greek upsilon) and h (x) = 0Rn

is equivalent to

u = υ (ξ) . (2.6.7)

Together with the ξ–u local coordinate system, Figure 2.16 also shows a set
satisfying the equality constraint when X = R2 and n = 1.

If we set

x̃ (ξ) =
(
ξ⊤,υ⊤ (ξ)

)⊤
,

then x̃ (ξ) ∈ V and ξ is called the local coordinate of V .
Furthermore, a generalization of

• y ∈ TV (x) and ∂Xh1 are orthogonal.

can be obtained from the conditions that the variable x satisfies the equality
conditions. Let f̃ (ξ) = f (x̃ (ξ)). If f ∈ C1 (BX ;Rn), then when ξ ∈ BΞ and
x = x̃ (ξ) ∈ BX are local minimizers one has:

∂Ξf̃ (ξ) =

(
∂x̃

∂ξ⊤
(ξ)

)⊤
∂f

∂x
(x) =

(
x̃ξ⊤ (x)

)⊤
g (x) = 0Rd−n . (2.6.8)
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The definitions of the null and image spaces allow us to rewrite this relationship
as

g (x) ∈ T ′
V (x) = Ker

(
x̃ξ⊤ (x)

)⊤
. (2.6.9)

On the other hand, differentiating both sides of h (x) = h (x̃ (ξ)) = 0Rn

with respect to ξ yields

∂h

∂x⊤ (x)
∂x̃

∂ξ⊤
(ξ) = hx⊤ (x) x̃ξ⊤ (x) = 0Rn×(d−n) . (2.6.10)

According to the definitions of the null and image spaces, since the image space
of x̃ξ⊤ (x) is the null space of hx⊤ (x), we can write

TV (x) = Kerhx⊤ (x) = Im x̃ξ⊤ (x) . (2.6.11)

These relationships lead us to the following necessary condition for attaining
a local minimizer without using TV (x) or T ′

V (x).

Theorem 2.6.4 (1st-order necessary condition for local minimizers)
Consider Problem 2.6.1 with f ∈ C1 (X;R) and h ∈ C1 (X;Rn). Let ∂Xh1 (x),
. . . , ∂Xhn (x) be linearly independent at x ∈ X. If x is a local minimizer, then
there exists λ ∈ Rn satisfying

g (x) + ∂Xh⊤ (x)λ = 0Rd , (2.6.12)

h (x) = 0Rn . (2.6.13)

□

Proof By assumption, Hypothesis 2.6.3 holds at x. If x is a local minimizer of
Problem 2.6.1, then Eq. (2.6.9) holds. Furthermore, if Eq. (2.6.11) is used, then we
have

g (x) ∈ T ′
V (x) = (TV (x))⊥ =

(
Im x̃ξ⊤ (x)

)⊥
= (Kerhx⊤ (x))⊥

and Lemma A.3.1 (relating the orthogonal complement of the null and image spaces)
yields

g (x) ∈ (Kerhx⊤ (x))⊥ = Im (hx⊤ (x))⊤ = Im (∂Xh1, . . . , ∂Xhn) .

This relationship is equivalent to Eq. (2.6.12). Moreover, Eq. (2.6.13) holds whenever
x is a local minimizer of Problem 2.6.1. □

The relation shown at the last part of the proof in Theorem 2.6.4 is
a generalization of Eq. (2.6.6). In other words, g (x) can be given as a
linear combination of ∂Xh1, . . . , ∂Xhn. In Theorem 2.6.4, the vector λ =
(λ1, . . . , λn)

⊤ ∈ Rn is called a Lagrange multiplier with respect to the equality
constraint h (x) = 0Rn . Furthermore, Eq. (2.6.12) and Eq. (2.6.13) are called
the first-order necessary conditions for the existence of local minimizers under
the Lagrange method. The reason for this is because the following relationship
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holds. The Lagrange function for the optimization problem of Problem 2.6.1 is
defined as

L (x,λ) = f (x) + λ · h (x) . (2.6.14)

The derivative of L with respect to an arbitrary variation
(
y, λ̂

)
∈ X ×Rn of

(x,λ) is

L ′ (x,λ)
[
y, λ̂

]
= f ′ (x) [y] + λ · (∂x⊤h (x)y) + λ̂ · h (x)

= g (x) · y +
(
∂Xh⊤ (x)λ

)
· y + λ̂ · h (x) . (2.6.15)

Eq. (2.6.12) and Eq. (2.6.13) of Theorem 2.6.4 are equivalent to the first-order
necessary (stationary) condition for the existence of a local minimizer of the

Lagrange function, L ′ (x,λ)
[
y, λ̂

]
= 0 for all

(
y, λ̂

)
∈ X × Rn.

We can thus consider using the solution of the following problem as a method
for producing candidate solutions to Problem 2.6.1. This method is called
the Lagrange multiplier method for optimization problems under an equality
constraint.

Problem 2.6.5 (Lagrange multiplier method for equality constraints)
With respect to Problem 2.6.1, let L (x,λ) be given by Eq. (2.6.14). Find
(x,λ) satisfying the stationary condition of L (x,λ):

∂XL (x,λ) = g (x) + ∂Xh⊤ (x)λ = 0Rd , (2.6.16)

∂L

∂λ
(x,λ) = h (x) = 0Rn . (2.6.17)

□

The Lagrange multiplier method will be used in various scenarios going
forward. Please note that this method expresses conditions satisfied at local
minimizers of Problem 2.6.1, and that it does not directly solve Problem 2.6.1.

Next, let us look at the physical meaning of Lagrange multipliers. Equation
(2.6.16) can be written as

λi = −

(
g (x) +

∑
j∈{1,...,n}, j ̸=i λj∂Xhj (x)

)
· y

∂Xhi (x) · y
, (2.6.18)

where y ∈ X is arbitrary. When f and h1, . . . , hn are mechanical quantities,
λi is also a mechanical quantity with units f/hi. In fact, in Problem 1.1.4, the
equality constraint K (a)u = p has the unit of force [N], f0 = p ·u has the unit
of work [Nm], and v0 (introduced as a Lagrange multiplier (adjoint variable)
with respect to a state equation) has the unit of displacement [m = Nm/N]. The
physical meaning of the Lagrange multiplier method for optimization problems
with inequality constraints is also the same. In Problem 1.1.4, f1 and f0 had
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the units of volume [m3] and work [Nm], respectively. The Lagrange multiplier
λ1 thus has the unit of energy density [N/m2 = Nm/m3].

The cost function in Theorem 2.6.4 was assumed to be first-order
differentiable. If it is further assumed to be twice differentiable, then the
following results can be obtained. Hereafter, we will write the Hesse matrix
with respect to variation of x of the Lagrange function by ∂X∂⊤

XL (x,λ) =
HL (x,λ) ∈ Rd×d.

Theorem 2.6.6 (2nd-order necessary condition) Let f ∈ C2 (X;R) and
h ∈ C2 (X;U) in Problem 2.6.1. Also let ∂Xh1 (x), . . . , ∂Xhn (x) be linearly
independent at x ∈ V . If x is a local minimizer

y · (HL (x,λ)y) ≥ 0

for arbitrary y ∈ TV (x). □

Proof Calculations similar to Eq. (2.6.8) yield

∂2f̃

∂ξ∂ξ⊤ (ξ) =

(
∂y

∂ξ⊤ (ξ)

)⊤
∂2f

∂x∂x⊤ (x)
∂y

∂ξ⊤ (ξ)

=
(
yξ⊤ (x)

)⊤
∂X∂⊤

Xf (x)yξ⊤ (x) ∈ R(d−n)×(d−n).

If x is a local minimizer, ∂2f̃/∂ξ∂ξ⊤ (ξ) is positive definite and Eq. (2.6.10) yields

(
∂y

∂ξ⊤ (ξ)

)⊤
∂hi

∂x∂x⊤ (y)
∂y

∂ξ⊤ (ξ)

=
(
yξ⊤ (x)

)⊤
∂X∂⊤

Xhi (x)yξ⊤ (x) = 0R(d−n)×(d−n) .

Since L (x,λ) = f (x) + λ · h (x), the theorem is established. □

Based on Theorem 2.6.6, when x is a local minimizer the Lagrange function
L (x,λ) can be interpreted as a quadratic approximation of f̃ (ξ) in the tangent
plane TV (x). In fact, if x is a local minimizer, ∂f̃/∂ξ = 0Rd−n and the proof
of Theorem 2.6.6 leads to

∂2f̃

∂ξ∂ξ⊤
(ξ) =

(
yξ⊤ (x)

)⊤
∂X∂⊤

X

f (x) +
∑

i∈{1,...,n}

λihi

yξ⊤ (x)

=
(
yξ⊤ (x)

)⊤
∂X∂⊤

XL (x,λ)yξ⊤ (x) .

Therefore, if η ∈ Rd−n is arbitrary and we set y = yξ⊤ (x)η ∈ TV (x) then

f̃ (ξ + η) = L (x,λ) + y⊤∂X∂⊤
XL (x,λ)y + o

(
‖y‖2X

)
.
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Fig. 2.17: Spring combination problem.

2.6.3 Sufficient Conditions for Local Minimizers

Regarding sufficient conditions for attaining local minimizers, the following
results can be obtained.

Theorem 2.6.7 (2nd-order sufficient conditions) Let f ∈ C2 (X;R) and
h ∈ C2 (X;U) in Problem 2.6.5. Also let ∂Xh1 (x), . . . , ∂Xhn (x) be linearly
independent at x ∈ X. If x solves Problem 2.6.5, and if there exists a (x,λ)
satisfying

y · (HL (x,λ)y) > 0

for arbitrary y ∈ TV (x), then x is a local minimizer of Problem 2.6.1. □

Proof Apply the proof of Theorem 2.5.5 to f̃ . □

2.6.4 An Optimization Problem with an Equality
Constraint

Let us consider a spring system and apply the Lagrange multiplier method to
solve an optimization problem with an equality constraint.

Exercise 2.6.8 (A combined spring problem) Consider the two-degree-
of-freedom spring system shown in Fig. 2.17 and let k1 and k2 be positive
real constants representing the rigidity of the springs. Also let a be a positive
real constant expressing the gap (length) of the spring. Find the displacement

u = (u1, u2)
⊤ ∈ R2 at which the potential energy is minimized when the springs

are combined. In other words, find u satisfying

min
u∈R2

{
f (u) =

1

2
k1u

2
1 +

1

2
k2u

2
2

∣∣∣∣ h1 (u) = a− (u1 + u2) = 0

}
.

□

Answer Let us first solve the problem using the substitution method. If we let
u2 = a− u1, then we can write

f (u) = f̄ (u1) =
1

2
k1u

2
1 +

1

2
k2 (a− u1)

2 .

Since

df̄

du1
(u1) = k1u1 − k2 (a− u1) = (k1 + k2)u1 − k2a = 0,
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the stationary point of f̄ becomes

u1 =
k2

k1 + k2
a, u2 = a− u1 =

k1
k1 + k2

a.

Furthermore, since

d2f̄

du2
1

(u1) = k1 + k2 > 0,

(u1, u2)
⊤ is a minimizer.

Next, let us solve the same problem using the Lagrange multiplier method. Let
the Lagrange function be

L (u, λ) =
1

2
k1u

2
1 +

1

2
k2u

2
2 + λ (a− u1 − u2) .

The stationary condition for L (u, λ) becomesLu1

Lu2

Lλ

 =

 k1u1 − λ
k2u2 − λ

a− u1 − u2

 =

0
0
0

 ,

which can be writtenk1 0 −1
0 k2 −1
1 1 0

u1

u2

λ

 =

0
0
a

 .

The solution of the above is readily obtained:

u1

u2

λ

 =
1

k1 + k2

 1 −1 k2
−1 1 k1
−k2 −k1 k1k2

0
0
a

 =


k2

k1 + k2
a

k1
k1 + k2

a

k1k2
k1 + k2

a

 .

We remark that u agrees with the results from the substitution method and that
λ = k1u1 = k2u2 carries the meaning of an internal force.

Moreover, the Hesse matrix of the Lagrange function with respect to variation of
u ∈ U = R2 is positive definite and independent of u and λ:

∂U∂
⊤
U L (u, λ) = HL (u, λ) =

(
k1 0
0 k2

)
.

By Theorem 2.6.7, u is a local minimizer. In fact, by Corollary 2.7.10 of Theorem
2.7.9 (shown later), it can be shown that u is a global minimizer. □

2.6.5 Direct Differentiation and Adjoint Variable
Methods

So far we have investigated necessary and sufficient conditions for the existence
of local minimizers with respect to optimization problems under equality
constraints (Problem 2.6.1). Let us now replace Problem 2.6.1 with the format
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of the optimization problem presented in Chap. 1 and look at methods for
calculating the derivative of the cost function with respect to variation of the
design variable. Chapter 1 referred to these as the direct differentiation method
and the adjoint variable method, where only their procedures were considered.
Hence we will now define these methods and show the equivalence of the adjoint
variable method and the Lagrange multiplier method.

The state determination problem of the optimal design problem presented
in Chap. 1 corresponds to an equality constraint. Here, the state determination
problem will be defined as follows.

Problem 2.6.9 (Linear system problem) Let Ξ = Rd−n and U = Rn.
Assume that K : Ξ → Rn×n and b : Ξ → Rn are given. When ξ ∈ Ξ, find
u ∈ U satisfying

K (ξ)u = b (ξ) . (2.6.19)

□

An optimization problem where a state determination problem such as the
previous imparts an equality constraint is defined as follows.

Problem 2.6.10 (Optimization problem with an equality constraint)
In Problem 2.6.9, let K ∈ C1 (Ξ;Rn×n) and b ∈ C1 (Ξ;Rn). When
f ∈ C1 (Ξ× U ;R) is given, find (ξ,u) which satisfies

min
(ξ,u)∈Ξ×U

{f (ξ,u) | Problem 2.6.9 } .

□

Before beginning our explanation, we remark that the derivative of a cost
functional (referred to as the cross-sectional derivative in Chap. 1) with respect
to variation of a design variable is defined differently than g (x) from Sect. 2.6.
In fact, in Eq. (2.6.8), the derivative of f̃ (ξ) = f (ξ,υ (ξ)) with respect to

ξ ∈ Ξ was written ∂Ξf̃ (ξ) =
(
yξ⊤ (x)

)⊤
g (x), where g (x) was used to refer

to ∂Xf ∈ Rd. On the other hand, ∂Ξf̃0 ∈ Rd−n was written as g0 in Chap. 1.
Here, in keeping with the notation in Chap. 2, we will write g̃ = ∂Ξf̃ .

Let us begin by defining the direct differentiation method. If f , K and b
are first-order differentiable, then

g̃ = ∂Ξf̃ (ξ) =
∂f

∂ξ
(ξ,u) +

(
∂u

∂ξ⊤
(ξ)

)⊤
∂f

∂u
(ξ) . (2.6.20)

On the other hand, the column vector resulting from the partial derivatives of
Eq. (2.6.19) with respect to ξ1, . . . , ξd−n can be written in a matrix fashion:

∂K

∂ξ⊤
u+K

∂u

∂ξ⊤
=

∂b

∂ξ⊤
.
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In other words we set

∂K

∂ξ⊤
u =

(
∂K

∂ξ1
u, . . . ,

∂K

∂ξd−n
u

)
∈ Rn×(d−n). (2.6.21)

Therefore

∂u

∂ξ⊤
= K−1

(
∂b

∂ξ⊤
− ∂K

∂ξ⊤
u

)
. (2.6.22)

The right-hand side of the above equation can be calculated and substituted
into Eq. (2.6.20) to obtain g̃. This method is referred to as the direct
differentiation method. Here we view ∂f/∂ξ, ∂f/∂u, ∂K/∂ξ⊤ and ∂b/∂ξ⊤

as being analytically computable.
In contrast, the adjoint variable method is defined below. First of all, the

adjoint problem with respect to f is defined as follows.

Problem 2.6.11 (Adjoint problem with respect to f) Let K and f be
given with respect to ξ ∈ Ξ in Problem 2.6.10. Find v ∈ U satisfying

K⊤v =
∂f

∂u
. (2.6.23)

□

The solution v of Problem 2.6.11 is called an adjoint variable. Combining
Eq. (2.6.22) and Eq. (2.6.23) yields(

∂u

∂ξ⊤

)⊤
∂f

∂u
=

(
∂b

∂ξ⊤
− ∂K

∂ξ⊤
u

)⊤

K−⊤K⊤v =

(
∂b

∂ξ⊤
− ∂K

∂ξ⊤
u

)⊤

v.

(2.6.24)

Substituting Eq. (2.6.24) into Eq. (2.6.20) gives

g̃ =
∂f

∂ξ
+

(
∂b

∂ξ⊤
− ∂K

∂ξ⊤
u

)⊤

v ∈ Rd−n. (2.6.25)

The method of calculating g̃ by solving Problem 2.6.11 for v and using
Eq. (2.6.25) is called the adjoint variable method. In this approach, the
definition of the Lagrange function is not required. Nevertheless, it can be
shown that the Lagrange multiplier method yields the same results as the adjoint
variable method.

To see this, let v ∈ Rn be a Lagrange multiplier with respect to an equality
constraint (state equation) and define the Lagrange function as

L (ξ,u,v) = f (ξ,u) + v · (b (ξ)−K (ξ)u) .

Stationary conditions of L (ξ,u,v) with respect to u and v are

∂L

∂u
(ξ,u,v) =

∂f

∂u
−K⊤v = 0Rn ,
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∂L

∂v
(ξ,u,v) = b−Ku = 0Rn .

These agree with Eq. (2.6.23) and Eq. (2.6.19). Moreover, the partial derivative
of L with respect to ξ is consistent with Eq. (2.6.25):

∂L

∂ξ
(ξ,u,v) =

∂f

∂ξ
+

(
∂b

∂ξ⊤
− ∂K

∂ξ⊤
u

)⊤

v = g̃.

From this we see that the Lagrange multiplier method and the adjoint variable
method are equivalent. Moreover, the adjoint variable is the same as the
Lagrange multiplier.

Moreover, writing the Hessian ∂Ξ∂
⊤
Ξ f̃ of f̃ (ξ) as H̃, let us use the Lagrange

multiplier method to obtain the H̃. We define the Lagrange function with
respect to f̃ ′ (ξ) [η1] = g̃ · η1 based on the definition of a Fréchet derivative
(Definition 4.5.4) by

LI (ξ,u,v,w, z)

= g̃ (ξ,u,v) · η1 +w · (b (ξ)−K (ξ)u) + z ·
(
∂f

∂u
−K⊤v

)
, (2.6.26)

where w ∈ U and z ∈ U are the adjoint variables provided for u and v
in g̃ (ξ,u,v). η1 ∈ Ξ is assumed to be a constant vector in LI. The LI

in Eq. (2.6.26) corresponds to LI0 in Eq. (1.1.43) with respect to the mean
compliance in Chap. 1. When we generalize the argument in Chap. 1, it
becomes as follows.

With respect to arbitrary variations (η2, û, v̂, ŵ, ẑ) ∈ Ξ × U4 of
(ξ,u,v,w, z), the derivative of LI is written as

L ′
I (ξ,u,v,w, z) [η2, û, v̂, ŵ, ẑ]

= LIξ (ξ,u,v,w, z) [η2] + LIu (ξ,u,v,w, z) [û]

+ LIv (ξ,u,v,w, z) [v̂] + LIw (ξ,u,v,w, z) [ŵ]

+ LIz (ξ,u,v,w, z) [ẑ] . (2.6.27)

The fourth term on the right-hand side of Eq. (2.6.27) vanishes if u is the
solution of the state determination problem. If v can be determined as the
solution of the adjoint problem, the fifth term of Eq. (2.6.27) also vanishes.
Moreover, the second term on the right-hand side of Eq. (2.6.27) is

LIu (ξ,u,v,w, z) [û]

= g̃u⊤ (ξ,u,v) [û] · η1 −w · (K (ξ) û)

= û ·
(
g̃⊤
u (ξ,u,v) [η1]−K⊤ (ξ)w

)
. (2.6.28)

Here, the condition that Eq. (2.6.28) is zero for arbitrary û ∈ U becomes an
adjoint problem to determine w. The third term on the right-hand side of
Eq. (2.6.27) is

LIv (ξ,u,v,w, z) [v̂]
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= g̃v⊤ (ξ,u,v) [v̂] · η1 − z ·
(
K⊤ (ξ) v̂

)
= v̂ ·

(
g̃⊤
v (ξ,u,v) [η1]−K (ξ) z

)
. (2.6.29)

Here, the condition that Eq. (2.6.29) is zero for arbitrary v̂ ∈ U corresponds to
the adjoint problem for z.

Finally, the first term on the right-hand side of Eq. (2.6.27) becomes

LIξ (ξ,u,v,w, z) [η2]

= −
{
w⊤

(
∂K (ξ)

∂ξ1
u . . .

∂K (ξ)

∂ξd−n
u

)
+ z⊤

(
∂K⊤ (ξ)

∂ξ1
v . . .

∂K⊤ (ξ)

∂ξd−n
v

)}
η2.

Here, u, v,w (η1) and z (η1) are assumed to be determined by the conditions
above, respectively. If we denote f (ξ,u) here by f̃ (ξ), we have the relation:

LIξ (ξ,u,v,w, z) [η2] = f̃ ′′ (ξ) [η1,η2] = g̃H (ξ,η1) · η2, (2.6.30)

where the Hesse gradient g̃H of f̃ is given by

g̃H (ξ,η1) = −
{
w⊤ (η1)

(
∂K (ξ)

∂ξ1
u . . .

∂K (ξ)

∂ξd−n
u

)
+ z⊤ (η1)

(
∂K⊤ (ξ)

∂ξ1
v . . .

∂K⊤ (ξ)

∂ξd−n
v

)}⊤

. (2.6.31)

2.6.6 Considerations Relating to the Solution of
Optimization Problems with Equality Constraints

Combining the results obtained in this section with a few shown later on allows
us to conclude the following about the solution of optimization problems under
equality constraints (Problem 2.6.1):

(1) By Theorem 2.6.4, the solution of the Lagrange multiplier method (x,λ)
(Problem 2.6.5) satisfies the necessary conditions for a local minimizer.
Such x’s are candidates for local minimizers.

(2) When (x,λ) is a solution of the Lagrange multiplier method (Problem
2.6.5) whose Hesse matrix ∂X∂⊤

XL (x,λ) = HL (x,λ) (with respect to
variation of x of the Lagrange function) satisfies y · (HL (x,λ)y) > 0 for
arbitrary variations y ∈ TV (x) satisfying the equality constraints, then x
yields a local minimum by Theorem 2.6.7.

(3) Based on Corollary 2.7.10 of Theorem 2.7.9 shown later, when a convex
optimization problem is subject to an equality constraint (Problem 2.6.1),
the solution x of the Lagrange multiplier method is the minimizer.
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Fig. 2.18: A local minimizer of an optimization problem under an inequality
constraint when X = R2 and m = 1.

Fig. 2.19: A local minimizer of an optimization problem under an inequality
constraint when X = R2 and m = 2.

(4) Based on Corollary 2.7.3 of Theorem 2.7.2 (shown later), even when
non-convex optimization problems include equality constraints (Problem
2.6.1), if f̃ is convex then the stationary point of f̃ (that is, the x for
which g̃ = 0Rd−n) can be shown to yield the minimum.

2.7 Optimization Problems Under Inequality
Constraints

Let us now change the constraint condition from an equality to an inequality.
We will only consider the case when the inequalities are assumed to be such as
those presented in Problem 2.1.2 and Problem 2.1.3. Figure 2.18 shows a local
minimizer in the case X = R2 and m = 1. When X = R2 and m = 2, the
situation is as shown in Fig. 2.19. Using these diagrams, let us first take a look
at conditions established at local minimizers and then treat the general case.
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(a) m = 1 (b) m = 2

Fig. 2.20: A local minimizer in an optimization problem with an inequality
constraint (X = R3 and X ′ = R3 are shown superimposed.)

2.7.1 Necessary Conditions at Local Minimizers

We will begin with the case illustrated in Fig. 2.18, where one of the inequality
constraints is active at the local minimizer x. In this case, the following can be
said:

(1) The directions y in which variations of x are permitted satisfy g1 · y ≤ 0.
These directions are shown in the semicircle region of the figure, where
they are denoted by TS (x).

(2) If x is a local minimizer, then f0 cannot fluctuate and should increase
with respect to variations in all directions y ∈ TS (x). This relationship
indicates that g0 · y ≥ 0 for all y ∈ TS (x). Such directions z satisfying
z · y ≤ 0 for all y ∈ TS (x) are shown in the region T ′

S (x) of the digram.

(3) If x is a local minimizer, the fact that g0 · y ≥ 0 holds for all y ∈ TS (x)
is equivalent to −g0 being included in T ′

S (x).

When two inequality constraints are active, the situation becomes as is
shown in Fig. 2.19. The set of directions TS (x) in which variations from x
are permissible is wedge-shaped because there are two inequality constraints
which must be satisfied simultaneously. In response to this, T ′

S (x) is broader
than when there is just one inequality constraint and its region becomes
wedge-shaped. When x is a local minimizer, then g0 · y ≥ 0 holds for all
y ∈ TS (x), as does the fact that −g0 is included in T ′

S (x). Figure 2.20 shows
the state of a local minimizer when X = R3.

We now turn to generalizing the above observations. In Figs. 2.18–2.20,
TS (x) and T ′

S (x) were defined using g1 and g2. Here we define CS (x) to be the
set of admissible directions including TS (x), and conduct a similar discussion
centering on CS (x) and C ′

S (x). Moreover, the relationships between TS (x)
and CS (x) can be viewed equivalently when the conditions of Proposition 2.7.4
(presented later) are satisfied.
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The set S of admissible design variables satisfying the inequality constraints
are defined as in Eq. (2.1.1). Given x ∈ S, the active constraints are indicated
by the following set:

IA (x) = { i ∈ {1, . . . ,m} | fi (x) = 0} =
{
i1, . . . , i|IA(x)|

}
. (2.7.1)

Considering the set of sequences {yk}k∈N ∈ S converging to x ∈ S and having
a direction y, the set

CS (x) =

{
y ∈ X

∣∣∣∣ y

‖y‖
= lim

k→∞

yk − x

‖yk − x‖
for y 6= 0X

}
is called the feasible direction set or the tangential cone of S. The dual cone of
CS (x) is the set:

C ′
S (x) = {z ∈ X ′ | z · y ≤ 0 for all y ∈ CS (x)} .

Our next result follows easily from the above considerations when C ′
S can

be evaluated and f0 is first-order differentiable.

Theorem 2.7.1 (1st-order necessary condition for local minimizers)
Let f0 ∈ C1 (X;R) in Problem 2.1.2. If x is a local minimizer, then for
arbitrary y ∈ CS (x),

g0 (x) · y ≥ 0. (2.7.2)

Moreover,

− g0 (x) ∈ C ′
S (x) . (2.7.3)

□

Proof If we suppose g0 (x) · y ̸= 0 for all y ∈ CS (x), then there exists y such that
g0 (x) · y < 0. The same contradiction as was obtained in the proof of Theorem 2.5.2
can then be obtained. Moreover, Eq. (2.7.3) is equivalent to Eq. (2.7.2). □

2.7.2 Necessary and Sufficient Conditions for Global
Minimizers

If Problem 2.1.2 is a convex optimization problem and C ′
S can be evaluated, then

the following necessary and sufficient condition satisfied by global minimizers
can be obtained.

Theorem 2.7.2 (1st-order necessary and sufficient condition)
In Problem 2.1.2, let f0 be an element of C1 (X;R), f1, . . . , fm be elements
of C0 (X;R), and f0, . . . , fm be convex functions. Also let S be given by
Eq. (2.1.1). Then the following condition is both necessary and sufficient for
x ∈ S to be a global minimizer:

− g0 (x) ∈ C ′
S (x) .

□
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Proof Necessity follows directly from Theorem 2.7.1 and so we only show the
sufficient condition. Let each member of the sequence {βk}k∈N satisfy βk ∈ (0, 1) and
βk → 0. Given y ∈ S, construct {yk}k∈N such that yk = (1− βk)x + βky. Since S
is convex, {yk}k∈N ⊆ S. By the definition of CS (x), it follows that y − x ∈ CS (x).
Therefore, by the definition of C′

S (x), and since −g0 (x) ∈ C′
S (x),

− g0 (x) · (y − x) ≤ 0.

Since f0 is a convex function, Theorem 2.4.4 implies that

g0 (x) · (y − x) ≤ f0 (y)− f0 (x) .

Hence, f0 (x) ≤ f0 (y). □

If the global minimizer occurs at an interior point of S, Theorem 2.7.2 is as
follows (this result is equivalent to Theorem 2.5.6).

Corollary 2.7.3 (1st-order necessary and sufficient condition)
In Problem 2.1.2, let f0 be C1 (X;R) and f1, . . . , fm be convex functions
belonging to C0 (X;R). Let S be given by Eq. (2.1.1). Then the following is
both necessary and sufficient for an internal point x of S to yield the global
minimum in Problem 2.1.3:

g0 (x) = 0Rd .

□

Proof If x is an internal point of S, CS (x) = X. Hence, we obtain C′
S (x) = {0Rd}.

Theorem 2.7.2 then implies g0 (x) = 0Rd . □

2.7.3 KKT Conditions

Conditions governing all y in CS (x) or C ′
S were included in the necessary and

sufficient conditions for the existence of local and global minimizers of Problem
2.1.2. However, checking such conditions is not necessarily easy. Therefore, as
we did in the case of optimization problems with equality constraints, we will
consider expressions using Lagrange functions here as well.

Let us first consider the situation shown in Fig. 2.18, where one inequality
constraint is active. Since the inequality constraint condition is active, even if
there is an equality constraint, x will yield a local minimum. Then Eq. (2.6.6)
(which was used with an equality constraint) can be rewritten as

g0 + λ1g1 = 0R2 . (2.7.4)

However, the range of admissible variations is enlarged in the presence of
inequality constraints. Let us consider this in detail. Taking the inner product
of Eq. (2.7.4) with an arbitrary y ∈ R2 yields

g0 · y + λ1g1 · y = 0. (2.7.5)
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If y is a direction in which the inequality constraint is satisfied, then g1 ·y ≤ 0.
Moreover, if x is a local minimizer, then the cost function remains constant or
increases for such a y and we obtain g0 · y ≥ 0. In order to simultaneously
satisfy these two conditions, we require:

λ1 ≥ 0. (2.7.6)

Moreover, the original inequality constraint is satisfied at the local minimizer

f1 ≤ 0. (2.7.7)

Furthermore, when the inequality constraint is inactive (f1 (x) < 0), since this
situation is the same as when there are no inequality constraints, λ1 = 0. On
the other hand, when the inequality constraint is active (f1 (x) = 0), Eq. (2.7.6)
is established. These relationships are satisfied if

λ1f1 = 0. (2.7.8)

Eq. (2.7.4), Eq. (2.7.6), Eq. (2.7.8) and Eq. (2.7.7) are the conditions established
at local minimizers when there is one active inequality constraint. These
conditions correspond to the KKT conditions with m = 1 (described later).

Next we consider the case when two inequality constraints are active at a
local minimizer, such as is shown in Fig. 2.19. In this case as well, imposing
equality constraints is equivalent to the existence of certain λ1, λ2 ∈ R satisfying

g0 + λ1g1 + λ2g2 = 0R2 . (2.7.9)

Let us rewrite Eq. (2.7.9) as

− g0 = λ1g1 + λ2g2. (2.7.10)

If we fix g1 and g2 and take

λ1 ≥ 0, λ2 ≥ 0, (2.7.11)

then the vector on the right-hand side of Eq. (2.7.10) expresses the region drawn
as T ′

S (x) in Fig. 2.19 (the definition of T ′
S (x) is given later as Eq. (2.7.15)).

Eq. (2.7.10) is therefore a condition for which C ′
S (x) of Theorem 2.7.1 is

rewritten as T ′
S (x). Moreover, at local minimizers the original inequality

constraints are satisfied:

f1 ≤ 0, f2 ≤ 0. (2.7.12)

For the reasons explained above, the following equations hold at local
minimizers:

λ1f1 = 0, λ2f2 = 0. (2.7.13)

Therefore, Eq. (2.7.9), Eq. (2.7.11), Eq. (2.7.13) and Eq. (2.7.12) are the
conditions holding at local minimizers when two inequality constraints are
active. These are the KKT conditions with m = 2 (described later).
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In order to generalize the above results we now state a few required
definitions and assumptions. Let a neighborhood of x ∈ S be denoted by
BX ⊂ X. Given i ∈ IA (x) and fi ∈ C1 (BX ;R), let gi (y) be linearly
independent with respect to y ∈ BX . Then the linearized feasible direction
set at x is the set

TS (x) = {y ∈ X | gi (x) · y ≤ 0 for all i ∈ IA (x)} .

Corresponding to the null space in the optimization problem with an equality
constraint, TS (x) will be written as

TS (x) = Kco
(
gi1 (x) , . . . , gik

(x)
)⊤

. (2.7.14)

Moreover,

T ′
S (x) = {z ∈ X ′ | z · y ≤ 0 for all y ∈ TS (x)} (2.7.15)

is called the dual cone of TS (x).
Let us now take a look at the difference between TS (x) and CS (x). We

note that TS (x) is a closed convex polyhedral cone, but that CS (x) need not
share this property [4]. For example, when

S =
{
y ∈ R2

∣∣ f1 = −y21 + y31 + y22 ≤ 0, f2 = −y1 − y2 ≤ 0
}
, (2.7.16)

we obtain

CS (0R2) =
{
y ∈ R2

∣∣ y1 + y2 ≥ 0, y1 − y2 ≥ 0
}

∪
{
y ∈ R2

∣∣ y1 + y2 = 0
}
,

C ′
S (0R2) =

{
α (−1,−1)

⊤ ∈ R2
∣∣∣ α ≥ 0

}
.

Figure 2.21 shows CS (0R2) which is clearly not a closed convex polyhedral cone.
In general, given x ∈ S we have

CS (x) ⊆ TS (x) .

For example, when S is given by Eq. (2.7.16), we obtain

TS (0R2) =
{
y ∈ R2

∣∣ y1 + y2 ≥ 0
}
,

T ′
S (0R2) =

{
α (−1,−1)

⊤ ∈ R2
∣∣∣ α ≥ 0

}
.

Sufficient conditions for establishing the equality TS (x) = CS (x) are called
first-order constraint qualifications. Cottle’s constraint qualification, shown
next, is one such condition [5].

Proposition 2.7.4 (Cottle’s constraint qualification) Let S be given
by Eq. (2.1.1) in Problem 2.1.2. Also, let x ∈ S and IA (x) be given by
Eq. (2.7.1). When gi (x) is linear for all i ∈ IA (x), if there exists y ∈ X such
that gi (x) · y ≤ 0, one has TS (x) = CS (x). In the case that some gi (x) is
nonlinear, if there exists y ∈ X such that gi (x)·y < 0, one has TS (x) = CS (x).
□
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Fig. 2.21: An example when CS is not a closed convex polyhedral cone: CS (0R2).

If linear constraint qualifications such as these are used, the conditions
holding at local minimizers of Problem 2.1.2 can be expressed in the following
way.

Theorem 2.7.5 (KKT conditions) In Problem 2.1.2, let f0, . . . , fm be
elements of C1 (X;R). Given x ∈ S, let the linear constraint qualification

be satisfied. If x is a local minimizer, then there exists (λ1, . . . , λm)
⊤ ∈ Rm

satisfying

g0 (x) +
∑

i∈{1,...,m}

λigi (x) = 0Rd , (2.7.17)

fi (x) ≤ 0 for i ∈ {1, . . . ,m} , (2.7.18)

λifi (x) = 0 for i ∈ {1, . . . ,m} , (2.7.19)

λi ≥ 0 for i ∈ {1, . . . ,m} . (2.7.20)

□

Proof Given arbitrary t = (t1, . . . , tm)⊤ ∈ Rm, the inequality constraint of Problem
2.1.2 can be written as

hi (x, ti) = fi (x) + t2i = 0 for i ∈ {1, . . . ,m} . (2.7.21)

Include t in the design variables and let the Lagrange function for Problem 2.1.2 be
given by

L (x, t,λ) = f0 (x) +
∑

i∈{1,...,m}

λihi (x, ti) . (2.7.22)

When (x, t) is a local minimizer of f0 which satisfies the equality constraint
Eq. (2.7.21), then by Theorem 2.6.4 the following hold:

Lx (x, t,λ) = g0 (x) +
∑

i∈{1,...,m}

λigi (x) = 0Rd , (2.7.23)

Lti (x, t,λ) = 2λiti = 0 for i ∈ {1, . . . ,m} , (2.7.24)

Lλi (x, t,λ) = fi (x) + t2i = 0 for i ∈ {1, . . . ,m} . (2.7.25)
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Equations Eq. (2.7.23) and Eq. (2.7.25) are equivalent to Eq. (2.7.17) and Eq. (2.7.18),
respectively. Moreover, Eq. (2.7.19) can be obtained by multiplying both sides of
Eq. (2.7.24) by ti and using Eq. (2.7.21).

The fact that Eq. (2.7.20) holds can be confirmed as follows. If x is a local
minimizer of Problem 2.1.2 and the linear constraint qualification is satisfied, then by
Theorem 2.7.1, Eq. (2.7.14) and Farkas’s lemma (Lemma A.3.2)

−g0 (x) ∈ C′
S (x) = T ′

S (x) = (TS (x))′ =
(
Kco

(
gi1

(x) , . . . , gik
(x)

)⊤)′

= Ico
(
gi1

, . . . , gik

)
,

where ii, . . . , ik ∈ IA (x). Here we have written

Ico
(
gi1

, . . . , gik

)
=

{(
gi1

, . . . , gik

)
λ ∈ X ′ ∣∣ λ ≥ 0Rk

}
,

where λ = (λi1 , . . . , λik )
⊤. Also λi = 0 when i /∈ IA (x). This relationship shows that

Eq. (2.7.20) holds. □

Equations (2.7.17) to (2.7.20) are called the Karush–Kuhn–Tucker
conditions. Equation (2.7.18) states that x satisfies the inequality constraints.
Equation (2.7.19) is called a complementarity condition and has the effect of
removing gi from Eq. (2.7.17) by setting λi = 0 with respect to an inactive
constraint fi (x) < 0. Finally, as described in the considerations used in
Fig. 2.19, the conditions which combine Eq. (2.7.17) and Eq. (2.7.20) are those
establishing when −g0 is contained in T ′

S (x), and are the conditions that allow
one to rewrite C ′

S (x) (Theorem 2.7.1) as T ′
S (x). The variable t is called a slack

variable.
Let us also define the Lagrange function approach for optimization problems

under inequality constraints. Its relationship with the duality theorem (shown
later) will be considered, and we set

L (x,λ) =

{
f0 (x) +

∑
i∈{1,...,m} λifi (x) (λ ≥ 0Rm),

−∞ (λ 6≥ 0Rm).
(2.7.26)

Here, λ = (λ1, . . . , λm)
⊤ ∈ Rm is a Lagrange multiplier and we remark that

Eq. (2.7.17) and Eq. (2.7.18) can be rewritten in terms of L (x,λ). The method
of using solutions of the next problem as candidates for solutions to Problem
2.1.2 is called the Lagrange multiplier method for an optimization problem with
an inequality constraint.

Problem 2.7.6 (Lagrange multiplier method for inequality constraints)
Let L (x,λ) be given by Eq. (2.7.26) in Problem 2.1.2. Find (x,λ) which
satisfies the KKT conditions

Lx (x,λ) = g0 (x) +
∑

i∈{1,...,m}

λigi (x) = 0Rd , (2.7.27)

Lλi
(x,λ) = fi (x) ≤ 0 for i ∈ {1, . . . ,m} , (2.7.28)

λifi (x) = 0 for i ∈ {1, . . . ,m} , (2.7.29)
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λi ≥ 0 for i ∈ {1, . . . ,m} . (2.7.30)

□

We can obtain the following necessary condition holding at local minimizers
of Problem 2.1.2. With respect to (x,λ) ∈ X × Rm satisfying the KKT
conditions, in addition to IA (x) and S of Eq. (2.7.1) and Eq. (2.1.1) respectively,
we define

ĪA (λ) = { i ∈ {1, . . . ,m} | λi > 0} , (2.7.31)

S̄ = S ∩
{
x ∈ X | fi (x) = 0, i ∈ ĪA (x)

}
(2.7.32)

and TS̄ (x) as the feasible direction set of S̄ at x. Moreover, we write the Hesse
matrix with respect to x of the Lagrange function L (x,λ) by HL (x,λ) =
∂X∂⊤

XL (x,λ).

Theorem 2.7.7 (2nd-order necessary condition for local minimizers)
Let f0, . . . , fm be elements of C2 (X;R) in Problem 2.1.2. Given x ∈ X,
assume that gi is linearly independent with respect to i ∈ IA (x) and satisfies
the linear constraint qualification. In this case, if x is a local minimizer of
Problem 2.1.2, then the following holds for an arbitrary tangential vector
y ∈ TS̄ (x):

y · (HL (x,λ)y) ≥ 0.

□

Proof Let {yk}k∈N ∈ S̄ satisfy λifi (yk) = 0 for each i ∈ {1, . . . ,m} and t/ ∥t∥Rd =
limk→∞ (yk − x) / ∥yk − x∥Rd . From the fact that x is a local minimizer, there exists
a neighborhood B of x and θ ∈ (0, 1) such that

f0 (yk)− f0 (x) = L (yk,λ)− L (x,λ)

=
1

2
(yk − x) · {HL (x+ θ (yk − x) ,λ) (yk − x)} ≥ 0

(2.7.33)

for arbitrary yk ∈ B. Multiplying both sides by 2t/ ∥yk − x∥2Rd and taking k → ∞
yields the result. □

2.7.4 Sufficient Conditions for Local Minimizers

The following sufficient conditions for yielding local minimizers Problem 2.1.2
can be obtained. TS̄ (x) denotes the linearized admissible direction set of S̄
defined in Eq. (2.7.32) at x.

Theorem 2.7.8 (2nd-order sufficient conditions for local minimizers)
Let f0, . . . , fm be elements of C2 (X;R) in Problem 2.1.2. Given x ∈ X, let
gi be linearly independent with respect to i ∈ IA (x) and satisfy the first-order
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constraint qualification. If there exists (x,λ) satisfying the KKT conditions
and if

y · (HL (x,λ)y) > 0

for arbitrary y ∈ TS̄ (x), then x is a local minimizer. □

Proof Eq. (2.7.33) is obtained when (x,λ) satisfies the KKT conditions. Since
HL (x,λ) is positive definite, x is a local minimizer. □

2.7.5 Sufficient Conditions for Global Minimizers Using
the KKT Conditions

Sufficient conditions for global minimizers can be obtained when Problem 2.1.2
is a convex optimization problem.

Theorem 2.7.9 (1st-order sufficient conditions for global minimizers)
In Problem 2.1.2, let f0, . . . , fm be convex functions from C1 (X;R). Given
x ∈ X, assume that gi is linearly independent with respect to i ∈ IA (x), that
the linear constraint qualification is satisfied, and that (x,λ) satisfies the KKT
conditions. If x satisfies these conditions, then it is a global minimizer. □

Proof Fix λ1, . . . , λm satisfying the KKT conditions and let

L (y) = f0 (y) +
∑

i∈{1,...,m}

λifi (y) .

By the KKT conditions, it follows that ∂XL (x) = 0Rd . Since L is convex, Corollary
2.7.3 ensures that x minimizes L . In other words, the following inequality holds for
arbitrary y ∈ S:

f0 (x) +
∑

i∈{1,...,m}

λifi (x) ≤ f0 (y) +
∑

i∈{1,...,m}

λifi (y) .

The KKT conditions also imply that λifi (x) = 0 and λi ≥ 0 for each i ∈ {1, . . . ,m}.
Therefore

f0 (x) ≤ f0 (y)

holds for arbitrary y ∈ S. □

Theorem 2.7.9 can be used to obtain the following sufficient conditions
for showing the existence of global minimizers of optimization problems under
equality constraints (Problem 2.6.1).

Corollary 2.7.10 (1st-order sufficient conditions for global minimizers)
Assume that f0 is a convex function from C1 (X;R), that h ∈ C1 (X;Rn) is a
linear function, and that ∂Xh1 (x), . . . , ∂Xhn (x) are linearly independent at
x ∈ X and satisfy the linear constraint qualifications. If (x,λ) is a solution of
Problem 2.6.5, then it yields the minimum in Problem 2.6.1. □
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Proof The equality constraint is equivalent to the following two inequalities:

h (x) ≤ 0Rn , −h (x) ≤ 0Rn .

Let the Lagrange multipliers with respect to these be λ+ = (λ+1, . . . , λ+n)
⊤ ∈ Rn,

and λ− = (λ−1, . . . , λ−n)
⊤ ∈ Rn. Since h1, . . . , hn are linear functions, they are also

convex. This follows from the fact that

∂Xhi (x) · (y − x) = hi (y)− hi (x)

for arbitrary x ∈ X and y ∈ X (Theorem 2.4.4). Hence, the optimization is convex
optimization, including an inequality constraint. The KKT conditions can then be
written as

Lx (x,λ+,λ−) = g0 (x) + ∂Xh⊤ (x) (λ+ − λ−) = 0Rd ,

Lλ+i (x,λ+,λ−) = hi (x) ≤ 0 for i ∈ {1, . . . , n} ,
Lλ−i (x,λ+,λ−) = −hi (x) ≤ 0 for i ∈ {1, . . . , n} ,

λ+ihi (x) = 0 for i ∈ {1, . . . , n} , λ−ihi (x) = 0 for i ∈ {1, . . . , n} ,
λ+i ≥ 0 for i ∈ {1, . . . , n} , λ−i ≥ 0 for i ∈ {1, . . . , n} .

Writing λ+−λ− = λ, we see that (x,λ) is equivalent to the solution of Problem 2.6.5.
□

2.7.6 Example of an Optimization Problem Under an
Inequality Constraint

Let us now consider the KKT conditions in relation to the spring combination
problem.

Exercise 2.7.11 (Spring combination problem) Consider Exercise 2.6.8
and find the global minimizer when the spring combination conditions are
changed to inequalities. In other words, find u satisfying the following
minimization problem:

min
u∈R2

{
f0 (u) =

1

2
k1u

2
1 +

1

2
k2u

2
2

∣∣∣∣ f1 (u) = a− (u1 + u2) ≤ 0

}
.

Also find u satisfying

min
u∈R2

{
f0 (u) =

1

2
k1u

2
1 +

1

2
k2u

2
2

∣∣∣∣ f1 (u) = (u1 + u2)− a ≤ 0

}
.

□

Answer When f1 = a − (u1 + u2) ≤ 0, if we let λ ∈ R be the Lagrange multiplier,
then the Lagrange function becomes

L (u, λ) =
1

2
k1u

2
1 +

1

2
k2u

2
2 + λ (a− u1 − u2) .
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The stationary conditions of L (u, λ) are the same as the results from Exercise 2.6.8,
and when k1 > 0, k2 > 0 and a > 0 we obtain

u1 =
k2

k1 + k2
a > 0, u2 =

k1
k1 + k2

a > 0, λ =
k1k2

k1 + k2
a > 0.

This result satisfies the KKT conditions. As investigated in Exercise 2.6.8, this
problem is also a convex optimization problem and therefore, by Theorem 2.7.9, u
yields the minimum.

On the other hand, when f1 = (u1 + u2)− a ≤ 0, the Lagrange function becomes

L (u, λ) =
1

2
k1u

2
1 +

1

2
k2u

2
2 + λ (u1 + u2 − a) .

When k1 > 0, k2 > 0 and a > 0, the stationary conditions for L (u, λ) are

u1 =
k2

k1 + k2
a > 0, u2 =

k1
k1 + k2

a > 0, λ = − k1k2
k1 + k2

a < 0.

Since λ < 0, this result does not satisfy the KKT conditions. Therefore, the coupled
constraints can be viewed as inactive and we can set λ = 0. The problem can then be
rewritten as

min
u∈R2

{
f0 (u) =

1

2
k1u

2
1 +

1

2
k2u

2
2

}
.

Here, since

g0 (u) =

(
k1 0
0 k2

)(
u1

u2

)
=

(
0
0

)
,

we obtain u = 0R2 . □

2.7.7 Considerations Relating to the Solutions
of Optimization Problems Under Inequality
Constraints

The results of this section lead to the following observations regarding the
solution of optimization problems under inequality constraints (Problem 2.1.2):

(1) By Theorem 2.7.5, the solution (x,λ) of the Lagrange multiplier method
(Problem 2.7.6) satisfies a necessary condition for attaining a local
minimum. Such x are candidates for local minimizers.

(2) When (x,λ) is the solution from the Lagrange multiplier method (Problem
2.7.6), if the Hesse matrix ∂X∂⊤

XL (x,λ) = HL (x,λ) of the Lagrange
function with respect to x satisfies y · (HL (x,λ)y) > 0 for arbitrary
y ∈ TS̄ (x), then Theorem 2.7.8 implies that x is a local minimizer.

(3) When an optimization problem under an inequality constraint (Problem
2.1.2) is convex, Theorem 2.7.9 implies that the solution x from the
Lagrange multiplier method yields the global minimum.
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2.8 Optimization Problems Under Equality and
Inequality Constraints

In optimal design problems, state equations are set using equality constraints,
and cost function constraints are set through inequality constraints. The
optimization problem defined at the beginning of Sect. 2.1 (Problem 2.1.1) was
defined with this in mind. Keeping in mind its correspondence with optimal
design problems, we write Problem 2.1.1 in the following way.

Problem 2.8.1 (Optimization under equality and inequality constraints)
Given d > n, let Ξ = Rd−n and U = Rn. When K : Ξ → Rn×n and b : Ξ → Rn

are given together with f0, f1, . . . , fm : Ξ× U → R, find (ξ,u) satisfying

min
(ξ,u)∈Ξ×U

{
f0 (ξ,u) | h (ξ,u) = −K (ξ)u+ b (ξ) = 0Rn ,

f1 (ξ,u) ≤ 0, . . . , fm (ξ,u) ≤ 0
}
.

□

Consider Problem 2.8.1 and let the set of (ξ,u) satisfying the equality
constraints be given by

V = {(ξ,u) ∈ Ξ× U | h (ξ,u) = −K (ξ)u+ b (ξ) = 0Rn} .

For i ∈ {0, 1, . . . ,m} let

f̃i (ξ) = {fi (ξ,u) | (ξ,u) ∈ V } . (2.8.1)

Then the derivative of f̃i (ξ) with respect to ξ can be obtained:

g̃i =
∂fi
∂ξ

+

(
∂b

∂ξ⊤
− ∂K

∂ξ⊤
u

)⊤

vi ∈ Rd−n, (2.8.2)

The above is arrived at in the same manner as Eq. (2.6.25) from Sect. 2.6.5.

Here,
(
∂K/∂ξ⊤

)
u is defined by Eq. (2.6.21) and vi ∈ U is the solution of the

equivalent adjoint problem to Eq. (2.6.23):

K⊤vi =
∂fi
∂u

. (2.8.3)

The functions g̃0, . . . , g̃m obtained in this way are the derivatives with
respect to ξ when the cost functions are taken to be f̃0 (ξ), . . . , f̃m (ξ). These
facts allow one to rewrite Problem 2.8.1 as follows.

Problem 2.8.2 (Optimization under inequality constraints) Let Ξ =
Rd−n and f̃0, f̃1, . . . , f̃m : Ξ → R be given. Find ξ satisfying

min
ξ∈Ξ

{
f̃0 (ξ)

∣∣∣ f̃1 (ξ) ≤ 0, . . . , f̃m (ξ) ≤ 0
}
.

□
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Let the Lagrange function with respect to Problem 2.8.2 be

L̃ (ξ,λ) = f̃0 (ξ) +
∑

i∈{1,...,m}

λif̃i (ξ) . (2.8.4)

Then the KKT conditions with respect to Problem 2.8.2 become

L̃ξ (ξ,λ) = g̃0 +
∑

i∈{1,...,m}

λig̃i = 0Rd−n , (2.8.5)

L̃λi
(ξ,λ) = f̃i (ξ) ≤ 0 for i ∈ {1, . . . ,m} , (2.8.6)

λif̃i (ξ) = 0 for i ∈ {1, . . . ,m} , (2.8.7)

λi ≥ 0 for i ∈ {1, . . . ,m} . (2.8.8)

Therefore, the Lagrange multiplier method for seeking candidates for local
minimizers of Problem 2.8.2 can be expressed as follows.

Problem 2.8.3 (Lagrange multiplier method with inequality constraints)
Let L̃ (ξ,λ) be given by Eq. (2.8.4) with respect to Problem 2.8.2. Find (ξ,λ)
satisfying the KKT conditions (Eqs. (2.8.5)–(2.8.8)). □

Therefore the results of Theorems 2.7.5–2.7.8 can be obtained with respect
to the solution (ξ,λ) of Problem 2.8.3. We will postpone our discussion of what
these results say about the solution of optimization problems under equality
and inequality constraints (Problem 2.8.1) until Sect. 2.8.2.

2.8.1 The Lagrange Multiplier Method for Optimization
Problems Under Equality and Inequality
Constraints

The conditions satisfied by the minimizer of Problem 2.8.1 are as described
above. Let us now define the Lagrange function for Problem 2.8.1 and consider
how it can be related to the Lagrange multiplier method for Problem 2.8.3. We
remark that the content shown here was also shown in Chap. 1. The concepts
are the same as those used in deriving derivatives of cost functionals with respect
to design variables in the optimal design problems of Chap. 7 and beyond. The
purpose of this section is to clarify the relationship of such concepts with the
content of Chap. 2.

Let the Lagrange function with respect to Problem 2.8.1 be given by

L (ξ,u,v0, . . . ,vm,λ) = L0 (ξ,u,v0) +
∑

i∈{1,...,m}

λiLi (ξ,u,vi) , (2.8.9)

where λ = (λ1, . . . , λm)
⊤ ∈ Rm denotes the Lagrange multiplier with respect to

f1 ≤ 0, . . . , fm ≤ 0. Also, let

Li (ξ,u,vi) = fi (ξ,u) + LS (ξ,u,vi) (2.8.10)
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denote the Lagrange function with respect to fi (ξ,u). Moreover, let the
Lagrange function with respect to the equality constraint be given by

LS (ξ,u,vi) = −vi · (K (ξ)u− b (ξ)) , (2.8.11)

and v0, . . . , vm be Lagrange multipliers (adjoint variables) defined for f0, . . . ,
fm, respectively.

The function g̃i from Eq. (2.8.2) is obtained as follows. The derivative (total
differential) of Li with respect to an arbitrary variation (η, û, v̂i) ∈ Ξ×U ×U
of (ξ,u,vi) is given by

L ′
i (ξ,u,vi) [η, û, v̂i] = Liξ (ξ,u,vi) [η] + Liu (ξ,u,vi) [û]

+ Livi
(ξ,u,vi) [v̂i] . (2.8.12)

The third term on the right-hand side of Eq. (2.8.12) becomes

Livi
(ξ,u,vi) [v̂i] = −v̂i · (K (ξ)u− b (ξ)) = LS (ξ,u, v̂i) . (2.8.13)

Equation (2.8.13) takes the value zero when u satisfies the equality constraint.
The second term on the right-hand side of Eq. (2.8.12) is expressed as

Liu (ξ,u,vi) [û] = −û ·
(
K⊤ (ξ)vi −

∂fi
∂u

)
. (2.8.14)

Equation (2.8.14) also takes the value zero when vi satisfies Eq. (2.8.3). The
first term on the right-hand side of Eq. (2.8.12) is given by

Liξ (ξ,u,vi) [η] =

(
∂fi
∂ξ

+

(
∂b

∂ξ⊤
− ∂K

∂ξ⊤
u

)⊤

vi

)
· η. (2.8.15)

The above results show that placing the equality constraint on u is equivalent
to the condition that Livi

(ξ,u,vi) [v̂i] = 0 for all v̂i ∈ U , and that placing an
adjoint equation on vi is equivalent to Liu (ξ,u,vi) [û] = 0 for all û ∈ U . These
results also show that u and vi can be used to obtain f̃ ′

i (ξ) [η] (the derivative
of f̃i) from Liξ (ξ,u,vi) [η] = g̃i · η.

2.8.2 Considerations Regarding Optimization Problems
Under Equality and Inequality Constraints

Based on the results obtained thus far, the following can be said with respect
to the solution of optimization problems (Problem 2.8.1) under equality and
inequality constraints:

(1) Let f̃0, . . . , f̃m be given by Eq. (2.8.1). Then an optimization problem
under equality and inequality constraints (Problem 2.8.1) can be rewritten
as an optimization problem under an inequality constraint (Problem
2.8.2).
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(2) Let i ∈ {0, 1, . . . ,m} and the Lagrange function of Problem 2.8.1 be given
by Li from Eq. (2.8.10). Then f̃ ′

i (ξ) [η] (the derivative of f̃i) can be
obtained from Liξ (ξ,u,vi) [η] = g̃i · η by using u and vi which satisfy
the equality constraint and the adjoint equation, respectively (or, by using
Liu (ξ,u,vi) [û] = 0 with respect arbitrary û ∈ U).

(3) Let (ξ,λ) denote the solution of an optimization problem under an
inequality constraint (Problem 2.8.2) which has been obtained via the
Lagrange multiplier method (Problem 2.8.3) (details of the methodology
are given in Chap. 3). When the Hesse matrix ∂Ξ∂

⊤
Ξ L̃ (ξ,λ) = HL̃ (ξ,λ)

with respect to ξ of the Lagrange function L̃ (ξ,λ) satisfies

η ·
(
HL̃ (ξ,λ)η

)
> 0

for all variations η belonging to

TS̄ (ξ) = {η ∈ Ξ | g̃i (ξ) · η = 0 for all i ∈ IA (ξ)} ,

then Theorem 2.7.8 implies that ξ is a local minimizer.

(4) When optimization problems include an inequality constraint (Problem
2.8.2) and are convex, Theorem 2.7.9 implies that the Lagrange multiplier
method’s solution ξ and the function u satisfying h (ξ,u) = 0Rn are global
minimizers.

A one-dimensional linear elastic body and a one-dimensional steady Stokes
flow field were used as examples of an optimization problem under inequality
constraints in Chap. 1. These problems are convex optimization problems.
Hence, if a satisfying the KKT conditions can be found, then it can be deemed
to minimize the problems.

2.9 Duality Theorem

The KKT conditions used in Sect. 2.7 and Sect. 2.8 required that f0, . . . ,
fm be first-order differentiable. The duality theorem (shown next) allows one
to replace first-order differentiability with convexity. Since this theorem is not
directly used in this book the result will be stated without proof.

Let us define the constraint qualification as follows.

Definition 2.9.1 (Slater constraint qualification) In Problem 2.1.2, if
there exists y ∈ S such that f (y) < 0Rm , then we say that the Slater constraint
qualification is satisfied. □

The duality theorem is expressed as follows [4–6].

Theorem 2.9.2 (Duality theorem) Suppose that Problem 2.1.2 is a convex
optimization problem and the Slater constraint qualification is satisfied. Let
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Fig. 2.22: Saddle point.

L (x,λ) be given by Eq. (2.7.26). Here, the necessary and sufficient condition
for x ∈ X to yield the minimum is for there to exist λ ≥ 0Rm such that the
following holds for arbitrary y ∈ X and µ ≥ 0Rm :

L (x,µ) ≤ L (x,λ) ≤ L (y,λ) . (2.9.1)

□

A pair (x,λ) which satisfies Eq. (2.9.1) describes a saddle point such as the
one shown in Fig. 2.22. For this reason, the duality theorem is also referred to
as the saddle point theorem.

2.9.1 Examples of the Duality Theorem

Let us make use of the duality theorem with respect to the following combined
spring problem.

Exercise 2.9.3 (Spring combination problem) Consider Exercise 2.7.11
and show that the u satisfying

min
u∈R2

{
f0 (u) =

1

2
k1u

2
1 +

1

2
k2u

2
2

∣∣∣∣ f1 (u) = a− (u1 + u2) ≤ 0

}
is a saddle point of the Lagrange function. □

Answer Let u be the minimizer for this problem and v ∈ R2 be arbitrary. Since
f0 (v) and f1 (v) are convex functions, the optimization problem is convex. Moreover,
from the fact that f1 (v) < 0 when (v1, v2) = (a/4, a/4), the Slater constraint
qualification is satisfied. The Lagrange function for this problem is defined by

L (v, µ) = f0 (v) + µf1 (v) =
1

2
k1v

2
1 +

1

2
k2v

2
2 + µ (a− v1 − v2) ,

where µ ∈ R is a Lagrange multiplier with respect to f1 ≤ 0. For µ > 0, we have

L (u, µ) = inf
v∈R2

L (v, µ) = L

(
µ

k1
,
µ

k2
, µ

)
= LS (µ)

=
1

2

µ2

k1
+

1

2

µ2

k2
+ µ

(
a− µ

k1
− µ

k2

)
= −1

2

(
1

k1
+

1

k2

)
µ2 + aµ.
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Fig. 2.23: The saddle point in Exercise 2.9.3.

Fig. 2.24: One-dimensional elastic body with one cross-section.

We let L̃ (µ) = L (u (µ) , µ) and set λ equal to the µ satisfying

dL̃

dµ
= −

(
1

k1
+

1

k2

)
µ+ a = 0.

We also have

d2L̃

dµ2
= −

(
1

k1
+

1

k2

)
< 0.

Hence,

L (u, µ) ≤ L (u, λ) .

On the other hand, it is easy to see that L (u, λ) ≤ L (v, λ). □

Let us now visually confirm that the minimum in Exercise 2.9.3 is a saddle
point of the Lagrange function. The variable in this problem was (u1, u2, λ)

⊤ ∈
X = R3. The current setting is difficult to illustrate. Hence we take u2 = 0 (or,
equivalently, k2 → ∞) and let k1 = 1 and a = 1. Then

L (u1, λ) =
1

2
u2
1 + λ (1− u1)

and the saddle point becomes (u1, λ) = (1, 1). Figure 2.23 shows the situation,
from which we confirm the saddle point.

Here, we remark that λ refers to an internal force and that −L (u,λ) is
a complementary energy. Minimization of complementary energy is used in
engineering when seeking internal forces from a given displacement.

Let us end this chapter with an application of the duality theorem with
respect to an optimal design problems such as was treated in Chap. 1. As our



2.9 Duality Theorem 53

Fig. 2.25: Saddle point of Exercise 2.9.4.

observations in Section 1.1 and Sect. 2.2 showed, the optimal design problems
considered in this book have been convex optimization problems. The duality
theorem is thus applicable and the Lagrange function should form a saddle point
with respect to the design variable and Lagrange multiplier at the minimizer of
the optimal design problem. Let us take a look at this using a diagram.

In order to aid the illustration, we limit the number of variables to two. If one
of the variables is a Lagrange multiplier, the number of design variables must
be limited to one. Therefore, let us consider a one-dimensional linear elastic
body with a single cross-sectional area, such as the one shown in Fig. 2.24.

Exercise 2.9.4 (Mean compliance minimization problem) Suppose
that eY = 1, l = 1, c1 = 1 and p = 1. Find (a, u) satisfying

min
(a,u)∈R2

{
f0 (u) = pu

∣∣∣ f1 (a) = la− c1 ≤ 0,
eY
l
au = p

}
.

Also graph the Lagrange function at this point on a diagram. □

Answer We have f̃0 (a) = f0 (u (a)) = f0 (1/a) = 1/a. The functions f̃0 (a) and
f1 (a) are convex, and therefore

min
a∈R

{
f̃0 (a)

∣∣∣ f1 (a) ≤ 0
}

is a convex optimization problem. The Slater constraint qualification is clearly
satisfied. The Lagrange function for this problem is given by

L (a, λ) = f̃0 (a) + λf1 (a) =
1

a
+ λ (a− 1) ,

where λ ∈ R is a Lagrange multiplier with respect to f1 (a) ≤ 0. We have

La = − 1

a2
+ λ = 0, Lλ = a− 1 = 0,

and it follows that (a, λ) = (1, 1) is a stationary point of L (a, λ). Figure 2.25 shows
L in a neighborhood of this point, from which we can confirm the existence of the
saddle point. □
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2.10 Summary

Chapter 2 examined the theory of optimization problems in finite-dimensional
vector spaces. The key points are as follows.

(1) Optimization problems are generally defined as finding an element at
which a cost function attains its minimum value amongst a set of design
variables. On the other hand, as we saw in Chap. 1, state and design
variables are defined in optimal design problems, and cost functions are
defined as functions of the design and state variables. In this case, state
variables are uniquely determined via state equations. Here, in order to fit
the optimal design problem into the framework of a general optimization
problem, a state variable can be included in the design variable, and state
equations should be viewed as equality constraints (Sect. 2.1).

(2) The gradient of a cost function is 0 at local minimizers of unconstrained
optimization problems (Theorem 2.5.2). Moreover, if the Hesse matrix
is positive definite at the stationary point (gradient 0) of the cost
function, then it is a local minimizer (Theorem 2.5.5). Furthermore, if
the cost function is convex, the local minimizer yields the global minimum
(Theorem 2.5.6 or Corollary 2.7.3).

(3) At a local minimum of an optimization problem under equality constraints,
the Lagrange function is stationary (Theorem 2.6.4). Also, when the
Hesse matrix of the Lagrange function is positive definite with respect
to variation of a variable satisfying an equality constraint at a stationary
point of the Lagrange function, it follows that the stationary point is
a local minimizer (Theorem 2.6.7). Furthermore, if the optimization
problem is convex, the stationary point of the Lagrange function is a
global minimizer (Corollary 2.7.10).

(4) The KKT conditions hold at local minimizers of optimization problems
under inequality constraints (Theorem 2.7.5). If the Hesse matrix of
the Lagrange function with respect to arbitrary variation of a variable
satisfying an inequality constraint is positive definite at the point where
the KKT condition is satisfied, then that point is a local minimizer
(Theorem 2.7.8). Furthermore, if the optimization problem is convex, a
point satisfying the KKT condition yields the global minimum (Theorem
2.7.9).

(5) At local minimizers of optimization problems under equality and
inequality constraints, KKT conditions are established from the derivative
of the cost function with respect to the independent variation of an
unconstrained variable while an equality constraint is satisfied (Eqs.
(2.8.5)–(2.8.8)).

(6) Minimizers of convex optimization problems which include inequality
constraints form saddle points of their Lagrange functions (Theorem
2.9.2).



2.11 Practice Problems 55

The literature of optimization theory is vast. In addition to the references
cited in this chapter we also refer to [2, 3, 7, 8, 11,12].

2.11 Practice Problems

2.1 In Definition 2.4.5, if A is positive definite, show that α equals the
minimum value of the eigenvalues of A. Also show that if A is negative
definite, that−α equals the maximum value of the eigenvalues ofA. (Hint:
Refer to Theorem A.2.1.)

2.2 Let f : R2 7→ R be the function

f (x1, x2) =
1

2

(
ax2

1 + 2bx1x2 + cx2
2

)
+ dx1 + ex2,

where a, b, c, d ∈ R are constants. Derive necessary conditions for f to
attain a minimum value. Also show that a sufficient condition is a > 0
and ac − b2 > 0. The Sylvester criterion (Theorem A.2.2) may of course
be used.

2.3 Amongst the set of rectangles whose perimeter is less than a given value,
show that the one with the largest area is a square.

• Let the length of the sides of the rectangle be expressed by x =
(x1, x2)

⊤ ∈ R2. Construct the problem by defining a positive real
constant constraining the perimeter length to be c1.

• Define the Lagrange function and find the KKT conditions.

• Show that if a solution satisfies the KKT conditions, then it is a
global minimizer. (Hint: Consider whether or not this is a convex
optimization problem. If it is not, show that the problem in which the
cost function is recreated using functions (denoted by f̃0 here) with
respect to the set of constrained variables is a convex optimization
problem.)
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