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Chapter 1

Basics of Optimal Design

The main topic of this book is optimal design. In order to understand the
mathematical structures involved in our study, we will begin by examining
two simple problems. Upon finishing this book, the reader should be able
to understand that even shape optimization problems of continuum structures
possess the same formulation as the problems dealt with in this chapter.
Moreover, even if the target continuum is changed from linear elastic body or
flow field dealt in this book, the reader will recognize that their corresponding
shape optimization problems maintain the fundamental structures introduced
in this book.

Linear elastic solids and the Stokes flow field constitute the continuum
used in our applications. We will construct optimal design problems related
to one-dimensional linear elastic bodies and the one-dimensional Stokes flow
field. We also show how to obtain optimality conditions for these problems.
The conditions that we obtain will again be encountered in Chap. 9, where
we will treat shape optimization problems of domain variation type for linear
elastic bodies and the Stokes flow field, in two and three dimensions.

1.1 Optimal Design Problem for a Stepped
One-Dimensional Linear Elastic Body

In order to understand the structure of optimal design problems, let us
consider a mechanical system consisting of a one-dimensional linear elastic

Fig. 1.1: 1D linear elastic body with two cross-sectional areas.
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2 Chapter 1 Basics of Optimal Design

body with two cross-sectional areas, such as is shown in Fig. 1.1. The reason
we refer to this system as one-dimensional is because, although in reality
it is a three-dimensional body having a cross-sectional area and length, the
x coordinate is taken in the length direction and, as is shown later, the
displacement of the elastic body can be described as a function of x. In
other words, it is assumed that the displacement is given as a function on a
one-dimensional vector space.1 Furthermore, as will also be shown later, the
linearity of the elastic body arises from the fact that, under the assumptions
that the constitutive law is given by Hooke’s law and that the deformation is
infinitesimal, the outer force is a linear function of displacement.

Let us now define several constants and variables in detail. In particular, l
is a constant representing length, a1 and a2 are cross-sectional areas, and a =
(a1, a2)

⊤ ∈ R2 is a vector with two components. In this book, R denotes the set

of all real numbers and ( · )⊤ represents the transpose. Moreover, bold lower-case
Latin and Greek letters will be used in mathematical equations to represent
finite-dimensional vectors. We remark that there exist positive constants a01
and a02 satisfying ai ≥ a0i for i ∈ {1, 2}. This can be expressed as a ≥ a0, where

a0 = (a01, a02)
⊤ ∈ R2. Similarly, letting p1 and p2 denote external forces acting

on cross-sections Γ1 and Γ2, and u1 and u2 be the corresponding displacements,
we write p = (p1, p2)

⊤ ∈ R2 and u = (u1, u2)
⊤ ∈ R2.

Now let us consider an optimal design problem, where l and p are assumed
to be given. We treat a as the design variable, due to the fact that once the
cross-section a is determined, the system we are attempting to design is uniquely
determined. When a system is specified by determining a, the variable u which
satisfies the system’s state equation is called a state variable. In this book, the
problem of finding the state variable is referred to as the state determination
problem. The state determination problem that we are currently considering
will be examined in detail in Sect. 1.1.1.

When the design variable a and the state variable u are given, we define
real-valued functions of a and u representing the performance of the system.
Such functions are called cost functions. In Sect. 1.1.2, considering that
our current system is a structure supporting an external force, a function for
measuring deformation and a function for imparting a volume constraint are
chosen as the cost functions. The cost functions are then used to formulate the
optimal design problem through defining objective and constraint functions.

The condition which holds when an optimal solution is used in an optimal
design problem constructed in this manner is called an optimality condition.
An optimality condition for the current one-dimensional elastic body problem
is presented in Sect. 1.1.7. For this reason, the derivative of the cost function
with respect to the variation of a design variable is defined in Sect. 1.1.3, and
ways to obtain them are considered from Sect. 1.1.4 to 1.1.6. These results
should perhaps be presented after an explanation has been given regarding a
main theorem of optimization theory, which is given in Chap. 2. Nevertheless,

1The finite-dimensional vector space considered here can also be called a Euclid space.
Moreover, vector space is synonymous with linear space (see Definition 4.2.1).
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Fig. 1.2: A spring system with a single degree of freedom. The top figure
represents the system’s initial state, and the bottom figure illustrates the
balanced state of forces.

this book sets a priority on obtaining a practical understanding of how to make
use of this theorem in optimization theory.

1.1.1 State Determination Problem

Let us go through the process involved in constructing an optimal design
problem. We will begin by defining a mechanical system which is the target
of the design. When the design variables are specified, this system reverts to a
mechanical problem constructed by standard equations of motion and boundary
conditions. We refer to this problem as a state determination problem, and
we examine its construction based on mechanical principles. Readers who are
knowledgeable in the field of mechanics are invited to skip this section.

Before analyzing our one-dimensional elastic body, we review the fact that
the equilibrium equation of forces can be obtained from minimality conditions
of a potential energy [7]. The next exercise concerns the definition of potential
energy.

Exercise 1.1.1 (Potential energy of a simple spring system)
Consider a spring system with a single degree of freedom, such as is
shown in Fig. 1.2. Let k and p denote positive numbers representing the spring
constant and an external force, respectively. Moreover, let the external force
be conservative, that is a constant force generated anywhere on R and u ∈ R
be the displacement when the spring and the external force are in balance.
Assume that

ku− p = 0

holds. Find the potential energy of the spring system when u = 0 is set as the
point of reference. □

Answer In mechanics, potential energy is defined as an amount of energy which
expresses the capacity to do work. When u = 0 is the point of reference, the potential
energy is obtained by integrating the unbalanced force kv−p (v denotes an intermediate
displacement) over a displacement from 0 to u:

π (u) =

∫ u

0

(kv − p) dv =
1

2
ku2 − pu. (1.1.1)
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Fig. 1.3: A two-degree-of-freedom spring system.

□

The first and the second terms on the right-hand side of Eq. (1.1.1) are called
the internal potential energy and the external potential energy, respectively.
Notice that the internal potential energy is the part which acquires the ability
to do work (potential) and is therefore positive. On the other hand, the external
potential energy is the part which has already done work (the directions of the
force and the displacement are the same), and so it is negative. Here we remark
that, although potential energy is related to the stored energy (Hamiltonian)
which appears in the law of conservation of energy (see Practice 4.3), the two
are in fact different entities.

If a potential energy of π is obtained, the force equilibrium equation is given
by the stationary condition of the potential energy:

dπ

du
= ku− p = 0.

The fact that the potential energy is minimized at this point is a consequence
of the following:

d2π

du2
= k > 0.

Once the notion of potential energy is understood, one can also assess the
potential energy of spring systems with two degrees of freedom. As in the
following exercise, the same idea can be applied to a force equilibrium equation
of a two-degree-of-freedom spring system.

Exercise 1.1.2 (Potential energy in a 2DOF spring system)
Consider a spring system consisting of two degrees of freedom, such as is
shown in Fig. 1.3. Here, k1 and k2 are positive constants representing the
spring constants, p = (p1, p2)

⊤ ∈ R2 is a constant vector representing external

forces, and u = (u1, u2)
⊤ ∈ R2 denotes the displacement when in a balanced

state with p. In this case, obtain the potential energy when u = 0R2 (0R2

denotes (0, 0)
⊤

in this book) is the point of reference. Also, find the force
equilibrium equation using the stationary condition of the potential energy. □

Answer The potential energy of the system can be obtained by adding together the
internal and external potential energies:

π (u) =
1

2
k1u

2
1 +

1

2
k2 (u2 − u1)

2 − (p1u1 + p2u2) .
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One has the stationarity condition of potential energy:

∂π

∂u1
= k1u1 − k2 (u2 − u1)− p1 = 0,

∂π

∂u2
= k2 (u2 − u1)− p2 = 0,

which can be used to obtain the force equilibrium equation. These equations can be
written as(

k1 + k2 −k2
−k2 k2

)(
u1

u2

)
=

(
p1
p2

)
. (1.1.2)

□

The fact that a vector u satisfying the stationary condition Eq. (1.1.2)
minimizes the potential energy π can be shown using the approach of Exercise
2.5.8. This fact will be omitted for now.

We have confirmed that the force equilibrium equation can be obtained
via minimality conditions of the potential energy, so now let us apply these
conditions to the one-dimensional linear elastic body shown in Fig. 1.1. First,
similar to Exercise 1.1.2, the external potential energy can be given as

πE (u) = −p · u. (1.1.3)

In this book, p · u = p⊤u represents the inner product of a finite dimensional
vector space.

Next, let us find the internal potential energy. Let x ∈ R be the coordinate
in the length direction, where the cross-section Γ0 in Fig. 1.1 is taken as the
origin. In this case, the displacement at x ∈ [0, 2l] is assumed to be given by

u (x) =

u1
x

l
x ∈ [0, l)

(u2 − u1)
x

l
+ 2u1 − u2 x ∈ [l, 2l]

(1.1.4)

from the linearized elasticity assumption explained in the beginning of Sect.
1.1. In other words, it is assumed that three-dimensional deformations are not
considered. Here, [0, 2l] represents the interval {x ∈ R | 0 ≤ x ≤ 2l}.

We would now like to interrupt our discussion in order to explain principles

regarding the representation of sets and functions used in this book. Sets are defined

in the format {x ∈ R | 0 ≤ x ≤ 2l}, where the linear space (defined in Chap. 4) or

an underlying set is written in the position of R. Conditions satisfied by elements

of the set are written after the | symbol. In particular, [0, l) represents the interval

{x ∈ R | 0 ≤ x < l} and (0, l) represents {x ∈ R | 0 < x < l}. In Eq. (1.1.4), u(x) is

continuous at x = l and therefore [0, l) of Eq. (1.1.4) can be written as [0, l] or as (0, l).

Hence, in this book, the domain of definition of a function is defined to be an open

set (see Appendix Sect. A.1.1), and the function’s boundary values are defined using

properties of continuity (called the trace of the function (Theorem 4.4.2)). On the

other hand, taking Eq. (1.1.4) as an example, the domain and range of the function
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u(x) are expressed using the notation u : (0, 2l) → R, where → designates that the

mapping is from the domain (0, 2l) into the range of real numbers R. When specifying

elements, we will sometimes write u (x) : (0, 2l) 3 x 7→ u ∈ R. Becoming too caught

up with the wording of functions or variables in this book may lead to confusion,

because functions themselves become variables from Chap. 4 onwards. Therefore, let

us remember that the mapping notation is important in such cases.

Let us now return to our original discussion. In mechanics, equations
relating variables representing phenomena such as force and displacement, or
temperature and heat are called constitutive equations or constitutive laws.
Hooke’s law is used in the case of linear elastic bodies. Hooke’s law relates the
strain of a material (its rate of deformation)

ε (u) =
du

dx
(1.1.5)

with its stress σ(u) (force acting per unit area) via

σ (u) = eYε (u) . (1.1.6)

Here, eY is assumed to be given by a material-specific positive constant called the
modulus of longitudinal elasticity, or Young’s modulus. In the one-dimensional
linear elastic body of Fig. 1.1, it may be assumed that eY is given by a
discontinuous function such as eY : (0, 2l) → R, but for the sake of simplicity
we shall assume that it is given by a positive real constant. Furthermore, the
mechanical quantity defined using the stress and the strain:

w (u) =
1

2
σ (u) ε (u) (1.1.7)

is called the strain energy density (internal potential energy density or elastic
potential energy density). The fact that w is an energy per unit volume can
also be confirmed from the fact that its units are [Nm/m3] in the international
system of units (SI). Using these definitions, the internal potential energy of the
one-dimensional linear elastic body in Fig. 1.1 is given by

πI (u) =

∫ l

0

w (u) a1 dx+

∫ 2l

l

w (u) a2 dx. (1.1.8)

Since the internal and external potential energies of the one-dimensional
elastic body in Fig. 1.1 were obtained using Eq. (1.1.8) and Eq. (1.1.3), the
total potential energy with u = 0R2 as a reference point is given by

π (u) = πI (u) + πE (u)

=
1

2

eY
l
a1u

2
1 +

1

2

eY
l
a2 (u2 − u1)

2 − p1u1 − p2u2. (1.1.9)

Therefore, the stationary condition of π is expressed as

∂π

∂u1
=

eY
l
a1u1 −

eY
l
a2 (u2 − u1)− p1 = 0,
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∂π

∂u2
=

eY
l
a2 (u2 − u1)− p2 = 0,

which can also be written as

eY
l

(
a1 + a2 −a2
−a2 a2

)(
u1

u2

)
=

(
p1
p2

)
. (1.1.10)

This leads us to the problem of determining the displacement when external
forces act on the one-dimensional linear elastic body in Fig. 1.1.

Problem 1.1.3 (Stepped 1D linear elastic body) Let l ∈ R, eY ∈ R, p ∈
R2 and a ∈ R2 be given with respect to the one-dimensional linear elastic body
of Fig. 1.1. Find the displacement u ∈ R2 that satisfies

K (a)u = p, (1.1.11)

where Eq. (1.1.11) of course represents Eq. (1.1.10). □

In this book, matrices are expressed using bold capital Latin and Greek
letters, such as K.

Anticipating future developments, let us take a look at an alternative way
of expressing Problem 1.1.3. With respect to Problem 1.1.3,

LS (a,u,v) = v · (−K (a)u+ p) (1.1.12)

will be called a Lagrange function for a state determination problem (defined
in Chap. 2). Here, u ∈ R2 is not necessarily the solution of Problem 1.1.3 and
v ∈ R2 has been introduced as a Lagrange multiplier with respect to Eq. (1.1.11).
The Lagrange multiplier with respect to a state equation is also referred to as
an adjoint variable. Here, u ∈ R2, which satisfies

LS (a,u,v) = 0 (1.1.13)

for all v ∈ R2, has the same value as the solution of Problem 1.1.3. This is
because if Eq. (1.1.11) is to be satisfied, then Eq. (1.1.13) holds for all v ∈ R2.
The converse also holds.

The condition under which Eq. (1.1.13) is satisfied for all v ∈ R2 is called
the principle of virtual work. The reason for this is that the potential energy

π (u) =
1

2
u · (K (a)u)− p · u

has a stationary condition with respect to an arbitrary variation du ∈ R2 of u
(the virtual displacement), given by

dπ (u) = LS (a,u,du) = 0.
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1.1.2 An Optimal Design Problem

Having defined the state determination problem, let us now use it to construct
an optimal design problem. Let us first define the cost function. With respect to
the solution u of the state determination problem (Problem 1.1.3), the following
quantity will be referred to as the mean compliance:

f0 (u) =
(
p1 p2

)(u1

u2

)
= p · u. (1.1.14)

Here, f0 is equivalent to the mechanical quantity known as external work.
Nevertheless, in Chaps. 8 and 9, a cost function measuring the ease of
deformation (compliance) of linear elastic bodies will be given and used to define
an extended notion of mean compliance. The naming in those cases is chosen in
order to not imply work done by external forces. The fact that f0 of Eq. (1.1.14)
is a real-valued function representing an ease of deformation can be explained
as follows. Since u is a vector representing the ease of deformation, it is not
simply a real number. Here, if f0 is thought of as a function weighted by p in
order to convert u into a real number, then it can be understood that f0 is a
real-valued function expressing the ease of deformation. Relatedly,

f1 (a) = l (a1 + a2)− c1 =
(
l l

)(a1
a2

)
− c1 (1.1.15)

will be referred to as a constraint function with respect to volume. Here, c1 is a
positive constant representing an upper bound on the volume. In this section, f0
and f1 are defined as cost functions for an optimal design problem. Throughout
this book, cost functions will be denoted by f0, f1, . . . , fm, where f0 will denote
the objective function, and f1, . . . , fm will denote constraint functions.

Let us define an optimal design problem with respect to the one-dimensional
linear elastic body in Fig. 1.1 using the previous cost functions as in Problem
1.1.4. Hereinafter, linear spaces of the design variable a and the state variable
u will be denoted as X = R2 and U = R2, respectively, and are called the linear
space of design variables and the linear space of state variables. Moreover, with
respect to a constant vector a0 = (a01, a02)

⊤
> 0R2 , we have the admissible set

of design variables:

D = {a ∈ X | a ≥ a0} . (1.1.16)

In this book, capital Latin and Greek letters (including decorative scripts) are
used for sets. Symbols relating to the sets X, U and D will be used with a
unified meaning, even in the setting of optimal design problems in function
space (beginning in Chap. 7).

Problem 1.1.4 (Mean compliance minimization) Let X = R2, U = R2,
and D be given by Eq. (1.1.16). If f0 (u) and f1 (a) are given by Eq. (1.1.14)
and Eq. (1.1.15), respectively, find a satisfying

min
(a,u)∈D×U

{f0 (u) | f1 (a) ≤ 0, Problem 1.1.3} .
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□

We remark that problem 1.1.4 should probably be written as follows: find

a∗ = arg min
a∈D

{f0 (u) | f1 (a) ≤ 0, u ∈ U, Problem 1.1.3} .

Here, arg minx∈X f (x) denotes a point x in the domain X where f attains
its minimum value. However, to simplify the expression, it will be written as
shown in Problem 1.1.4. Moreover, simple constraints such as a ≥ a0 given
in Eq. (1.1.16) will sometimes be referred to as side constraints. Later on,
solutions satisfying optimality conditions will be sought while disregarding side
constraints. A solution is then chosen from those candidates that satisfy the
side constraints. Therefore, we assume that a is an interior point of D (a ∈ D◦)
and when some of the side constraints are activated, we include them in the
inequality constraints (Practice 1.4).

Problem 1.1.4 is an optimization problem with an equality and inequality
constraint. Optimality conditions satisfied by solutions of this type of problem
will be discussed in detail in Chap. 2 and methods for their numerical solutions
will be considered in Chap. 3. An explanation regarding the details of these
will be omitted at present, and we will look at how the optimality conditions
are obtained by following a set of formal procedures. In the next section, a
method for obtaining the derivatives of f0 and f1 with respect to variations of
the design variable a is considered. These results are used at once with the
optimality conditions in Sect. 1.1.7.

Moreover, in the numerical solutions of optimum design problems, the
calculation of derivatives of cost functions with respect to an arbitrary variation
of design variable becomes the pivotal ingredient. In this case, the state
determination problem, which will be a boundary value problem of partial
differential equations in Chaps. 8 and 9, becomes an equality constraint. Then,
an understanding of how to calculate the derivatives of cost functions f0 in the
next subsection will help the reader to understand the method used to obtain
the derivatives of cost functions in Chaps. 8 and 9. In order to help the reader’s
understanding, we use the same notation as in Chaps. 8 and 9 as much as
possible.

In the next subsection, we will obtain the derivative of cost function f0 using
three methods and confirm that those results accord. However, in Chaps. 8 and
9, we will use only one of them for convenience.

1.1.3 Cross-Sectional Derivatives

We call derivatives of f0 and f1 with respect to the variation of the
cross-sectional area a cross-sectional derivatives.

Let us start by considering the cross-sectional derivative of f1 to which the
usual definition of differentiation can be applied. Since f1 is defined as a function
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of a in Eq. (1.1.15), its partial derivative with respect to a can be obtained as

f1a =
∂f1
∂a

=

(
∂f1/∂a1
∂f1/∂a2

)
=

(
l
l

)
= g1. (1.1.17)

In this book, the partial derivative ∂f1/∂a will be written as f1a. Here, note
that f1a is a column vector because, although f1 is a real number, a is a column
vector. On the other hand, the Taylor expansion (Theorem 2.4.2) of f1 at a
with respect to an arbitrary b ∈ X is

f1 (a+ b) = f1 (a) + f ′
1 (a) [b] + o (∥b∥R2)

= f1 (a) + g1 · b+ o (∥b∥R2) . (1.1.18)

Here f ′
1 (a) [b] represents the first-order variation of f1 at a with respect to

the variation b. Moreover, o ( · ) denotes the Bachmann–Landau little-o symbol

defined by limϵ→0 o (ϵ) /ϵ = 0, where ∥b∥R2 =

√
|b1|2 + |b2|2. We also remark

that o (∥b∥R2) = 0 with respect to f1. In view of Eq. (1.1.18), since f ′
1 (a) [b] =

f1a · b = g1 · b, we note that f ′
1 (a) [b] is a linear function with respect to b. In

other words, the corresponding vector g1 of the inner product with respect to b
has been found. When the equation can be written as f ′

1 (a) [b] = g1 · b we say
that it is differentiable and that f ′

1 (a) [b] is the cross-sectional derivative of f1
at a. We refer to g1 ∈ R2 as the cross-sectional-area gradient of f1.

Next, let us consider the cross-sectional derivative of f0 in a similar way.
Although f0 is a function of u as in Eq. (1.1.14), it is not explicitly a function
of a. However, u is assumed to satisfy the state equation (Problem 1.1.3) for a
given a, so that u varies with any variation of a. In other words, u is a function
of a. Let us now write

f̃0 (a) = {f0 (u) | (a,u) ∈ D × U, Problem 1.1.3} , (1.1.19)

and suppose that we have found a linear function f̃ ′
0 (a) [b] with respect to b

satisfying

f̃0 (a+ b) = f̃0 (a) + f̃ ′
0 (a) [b] + o (∥b∥R2) ,

where we write f̃ ′
0 (a) [b] = g0 · b for a certain g0 ∈ R2. Then f0 is said to be

differentiable with respect to a, f̃ ′
0 (a) [b] is called the cross-sectional derivative

of f0 at a, and g0 is called the cross-sectional-area gradient.
Furthermore, with respect to a function g0 : X → R2, whenever there exists

g′
0 (a) [b2] which is linear in b2 satisfying

g0 (a+ b2) · b1 = g0 (a) · b1 + g′
0 (a) [b2] · b1 + o (∥b2∥R2)

= g0 (a) · b1 + f̃ ′′
0 (a) [b1, b2] + o (∥b2∥R2) ,

which is expressible as g′
0 (a) [b2] = H0b2 for a certain H0 ∈ R2×2, then f0 is

second-order differentiable and H0 ∈ R2×2 is referred to as the Hesse matrix or
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the Hessian (Definition 2.4.1) of f0 at a. This is equivalent to the condition that
f̃ ′′
0 (a) [b1, b2] is a bilinear function of b1 and b2, and f̃ ′′

0 (a) [b1, b2] is referred
to as the second-order cross-sectional derivative. In this book, Rm×n represents
the set of all real matrices consisting of m rows and n columns.

Using these definitions, if f̃0 (a) is second-order differentiable with respect
to a, the Taylor expansion (Theorem 2.4.2) of f̃0 (a) at a can be written

f̃0 (a+ b) = f̃0 (a) + g0 · b+
1

2
f̃ ′′
0 (a) [b, b] + o

(
∥b∥2R2

)
.

Later on, g0 is used under the condition that f0 takes an extreme value.
Moreover, f̃ ′′

0 (a) [b, b] (equivalently, H0) will be used in conditions to guarantee
that minimum values are obtained. In the next section we will consider how to
obtain g0 and H0.

1.1.4 The Substitution Method

Let us now obtain g0 and H0 directly from f̃0 (a) by direct substitution of
the state equation into the cost function. We remark that this method cannot
be used in more complicated problems. However, we shall use it here in order
to verify results obtained from the direct differentiation and adjoint variable
methods (shown later).

The solution of the state equation (Eq. (1.1.11)) is obtained as

u = K−1 (a)p =
l

eY

 1

a1

1

a1
1

a1

1

a1
+

1

a2

(p1p2
)

=
l

eY

 p1 + p2
a1

p1 + p2
a1

+
p2
a2

 .

(1.1.20)

Since f̃0 (a) is defined by Eq. (1.1.19), the following equation can be obtained:

f̃0 (a) = p ·
(
K−1 (a)p

)
=

l

eY

(
(p1 + p2)

2

a1
+

p22
a2

)
, (1.1.21)

from which we get

g0 =


∂f̃0
∂a1
∂f̃0
∂a2

 =

p ·
(
∂K−1

∂a1
p

)
p ·
(
∂K−1

∂a2
p

)
 =

l

eY

− (p1 + p2)
2

a21

−p22
a22

 . (1.1.22)

Similarly, the Hesse matrix is expressed as

H0 =


∂2f̃0

∂a1∂a1

∂2f̃0
∂a1∂a2

∂2f̃0
∂a2∂a1

∂2f̃0
∂a2∂a2

 =

(
∂g0

∂a1

∂g0

∂a2

)
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=

p ·
(
∂2K−1

∂a1∂a1
p

)
p ·
(
∂2K−1

∂a1∂a2
p

)
p ·
(
∂2K−1

∂a1∂a2
p

)
p ·
(
∂2K−1

∂a2∂a2
p

)


=
l

eY


2 (p1 + p2)

2

a31
0

0
2p22
a32

 . (1.1.23)

Whenever a1, a2 > 0, the eigenvalues of H0 are positive and so H0 is positive
definite (Definition 2.4.5). From this property, based on Theorem 2.4.6 (shown
later), f̃0 (a) can be shown to be a convex function (Definition 2.4.3). The
convexity of f̃0 (a) is used as a sufficient condition for showing minimality in
Sect. 1.1.7.

1.1.5 The Direct Differentiation Method

Next, let us also obtain g0 and H0 via the direct differentiation method, which
utilizes the chain rule of differentiation for composite functions. The details of
the direct differentiation method are presented in Sect. 2.6.5.

Note that u is determined with respect to a such that Eq. (1.1.11) is satisfied.
Thus, if f̃0 of Eq. (1.1.19) is Taylor expanded around a we have

f̃0 (a+ b) = f0 (u (a+ b))

= f0 (u (a)) +
∂f0
∂u1

(
∂u1

∂a1
b1 +

∂u1

∂a2
b2

)
+

∂f0
∂u2

(
∂u2

∂a1
b1 +

∂u2

∂a2
b2

)
+ o (∥b∥R2)

= f0 (u (a)) +
(
p1 p2

)∂u1

∂a1

∂u1

∂a2
∂u2

∂a1

∂u2

∂a2

(b1
b2

)
+ o (∥b∥R2) .

(1.1.24)

On the other hand, if Eq. (1.1.11) is partially differentiated with respect to a1,
then we have

∂K

∂a1
u+K

∂u

∂a1
= 0R2 ,

which can be written as

eY
l

(
1 0
0 0

)(
u1

u2

)
+

eY
l

(
a1 + a2 −a2
−a2 a2

)∂u1

∂a1
∂u2

∂a1

 =

(
0
0

)
.
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Hence, it follows that

∂u

∂a1
= −K−1 ∂K

∂a1
u

= −

 1

a1

1

a1
1

a1

1

a1
+

1

a2

(1 0
0 0

)(
u1

u2

)
=

−u1

a1
−u1

a1

 . (1.1.25)

Similarly, partially differentiating Eq. (1.1.11) with respect to a2 yields

∂u

∂a2
= −K−1 ∂K

∂a2
u

= −

 1

a1

1

a1
1

a1

1

a1
+

1

a2

( 1 −1
−1 1

)(
u1

u2

)
=

(
0

−u2 − u1

a2

)
. (1.1.26)

Therefore, upon substituting Eq. (1.1.25) and Eq. (1.1.26) into Eq. (1.1.24), we
obtain

f̃0 (a+ b)

= f0 (u (a)) +
(
p1 p2

)−u1

a1
0

−u1

a1
−u2 − u1

a2

(b1b2
)
+ o (∥b∥R2)

= f0 (u (a)) +

(
−u1

a1
(p1 + p2) −u2 − u1

a2
p2

)(
b1
b2

)
+ o (∥b∥R2)

= f0 (u (a)) + g0 · b+ o (∥b∥R2) . (1.1.27)

If the solution of the state equation (Eq. (1.1.20)) is used in the previous
equation, it becomes apparent that g0 of Eq. (1.1.27) agrees with Eq. (1.1.22).
Moreover, if we use the notation ε (u1) = u1/l and σ (u1) = eYε (u1) for the
strain and stress, then we obtain

g0 = −eY
l

(
u2
1

(u2 − u1)
2

)
= l

(
−σ (u1) ε (u1)

−σ (u2 − u1) ε (u2 − u1)

)
. (1.1.28)

Equation (1.1.28) is an equation in which g0 is expressed as a function of the
state variable u.

Let us also find the second-order derivative of f̃0 (the Hesse matrix of f̃0)
with respect to the variation of a. If the chain rule of differentiation is used on
g0 of Eq. (1.1.28), then we have

g0 (a+ b) = g0 (a) +
∂g0

∂u⊤
∂u

∂a⊤ b+ o (∥b∥R2)

= g0 (a) +

∂g01
∂u1

∂g01
∂u2

∂g02
∂u1

∂g02
∂u2


∂u1

∂a1

∂u1

∂a2
∂u2

∂a1

∂u2

∂a2

(b1b2
)
+ o (∥b∥R2) .
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From this, the Hesse matrix of f0 can be computed:

H0 =
∂g0

∂u⊤
∂u

∂a⊤

= −eY
l

(
2u1 0

−2 (u2 − u1) 2 (u2 − u1)

)−u1

a1
0

−u1

a1
−u2 − u1

a2



=
eY
l


2u2

1

a1
0

0
2 (u2 − u1)

2

a2



= l

2σ (u1) ε (u1)

a1
0

0
2σ (u2 − u1) ε (u2 − u1)

a2

 . (1.1.29)

Using the solution of the state equation (Eq. (1.1.20)), it can easily be seen
that the H0 of Eq. (1.1.29) agrees with that of Eq. (1.1.23). Here, although
the H0 in Eq. (1.1.23) agrees with the partial derivative of g0 in Eq. (1.1.22)
with respect to a⊤, the H0 in Eq. (1.1.29) cannot be obtained from such a
relationship. The reason for this is that the state variable is used in obtaining
the H0 of Eq. (1.1.29).

1.1.6 The Adjoint Variable Method

Finally, let us find g0 through the adjoint variable method, which utilizes the
Lagrange multiplier method. The details of the adjoint variable method are
presented later on in Sect. 2.6.5 and so, for the moment, we shall limit ourselves
to its formal application.

Let the Lagrange function for the cost function f0 be

L0 (a,u,v0) = f0 (u) + LS (a,u,v0)

= p · u− v0 · (K (a)u− p) , (1.1.30)

where LS denotes a Lagrange function with respect to the state determination
problem (Problem 1.1.3) defined by Eq. (1.1.12). Here, v0 = (v01, v02)

⊤ ∈ U =
R2 includes the subscript 0 in order to indicate that it is an adjoint variable
(Lagrange multiplier) prepared for f0. Going forward, whenever fi is a function
of the state variable u, the adjoint variable will be written as vi.

The adjoint variable method is a technique for finding g0 using the stationary
conditions of L0 (a,u,v0) with respect to arbitrary variations of u and v0.
The (total) derivative of L0 with respect to an arbitrary variation (b, û, v̂0) ∈
X × U × U of (a,u,v0) is

L ′
0 (a,u,v0) [b, û, v̂0]

= L0a (a,u,v0) [b] + L0u (a,u,v0) [û] + L0v0
(a,u,v0) [v̂0] . (1.1.31)
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In this book, we use the notation ( · )a for ∂ ( · ) /∂a. The third term on the
right-hand side of Eq. (1.1.31) is

L0v0
(a,u,v0) [v̂0] = LS (a,u, v̂0) . (1.1.32)

Equation (1.1.32) is the Lagrange function with respect to the state
determination problem (Problem 1.1.3) defined in Eq. (1.1.12) and, if u is a
solution of the state determination problem, the third term on the right-hand
side of Eq. (1.1.31) is zero.

Moreover, the second term on the right-hand side of Eq. (1.1.31) is

L0u (a,u,v0) [û] = f0u (u) [û] + LSu (a,u,v0) [û]

= p · û− v0 · (K (a) û)

= û ·
(
p−K⊤ (a)v0

)
. (1.1.33)

Here, if v0 can be determined so that Eq. (1.1.33) is zero for arbitrary û ∈ U ,
then the second term on the right-hand side of Eq. (1.1.31) also vanishes. The
condition here is equivalent to setting v0 to be the solution of the following
adjoint problem.

Problem 1.1.5 (Adjoint problem with respect to f0) Let K (a) and p
be as in Problem 1.1.3 and find v0 ∈ U satisfying

K⊤ (a)v0 = p. (1.1.34)

□

Upon comparison of Problem 1.1.3 and Problem 1.1.5, using the fact that
K⊤ = K, we obtain

v0 = u. (1.1.35)

As in the above equation, the relationship where the state variable is equal to
the adjoint variable is called a self-adjoint relationship. In fact, the right-hand
side of Eq. (1.1.34) is ∂f0 (u) /∂u. In Problem 1.1.4, f0 (u) = p · u, and the
self-adjoint relationship holds. That is, the self-adjoint property holds when
f0 is selected so that ∂f0 (u) /∂u is equal to the right-hand side of the state
equation (Eq. (1.1.11)). In generality, state and adjoint equations are different
and, in such a case, their relationship is said to be non-self adjoint. An example
of this is presented in Practice 1.1. We would now like to consider the meaning
of the adjoint equation, and we remark that the following arguments apply to
other adjoint equations.

The first term on the right-hand side of Eq. (1.1.31) can be obtained:

L0a (a,u,v0) [b]

= −
{
v0 ·

(
∂K (a)

∂a1
u

∂K (a)

∂a2
u

)}
b
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= −eY
l

{(
v01 v02

)((1 0
0 0

)(
u1

u2

) (
1 −1
−1 1

)(
u1

u2

))}(
b1
b2

)
= −eY

l

(
v01 v02

)(u1 u1 − u2

0 u2 − u1

)(
b1
b2

)
= −eY

l

(
u1v01 (u2 − u1) (v02 − v01)

)(b1
b2

)
= l
(
−σ (u1) ε (v01) −σ (u2 − u1) ε (v02 − v01)

)(b1
b2

)
= g0 · b. (1.1.36)

Here we remark that g0 matches the results from the direct differentiation
method (Eq. (1.1.28)).

Based on the above results, if u and v0 are solutions of Problem 1.1.3 and
Problem 1.1.5, respectively, the second and third terms on the right-hand side
of Eq. (1.1.31) are zero, and the following equation holds:

L ′
0 (a,u,v0) [b, û, v̂0] = L0a (a,u,v0) [b] = f̃ ′

0 (a) [b] = g0 · b. (1.1.37)

The method of obtaining the derivative of the cost function when equality
constraints (state equations) are satisfied in this way is shown in Sect. 2.6,
where Eq. (1.1.36) corresponds to Eq. (2.6.25). It should, however, be noted
that in Sect. 2.6, the gradient of f̃ is written as g̃.

Let us also examine the relationship between the Lagrange function L0 and
the Hesse matrix H0.

As explained in Sect. 2.1, if an optimal design problem is to be replaced by
an optimization problem in which design variables and state variables are not
distinguished, and are treated as variables, then the variable of the optimization
problem becomes a combination of the state and design variables of the optimal
design problem. Following this approach here, the design variable of the

optimization problem is set to be x =
(
a⊤,u⊤)⊤ ∈ R4. In order to simplify the

notation,
(
a⊤,u⊤)⊤ will be written as (a,u). The Lagrange multiplier with

respect to the equality constraint will be written as v0, and the second-order
derivative of the Lagrange function L0 with respect to arbitrary variations
(b2, û2) ∈ X × U and (b1, û1) ∈ X × U of the design variables (a,u) will
be written L0(a,u),(a,u) (a,u,v0) [(b1, û1) , (b2, û2)]. In this case, we have

L0(a,u),(a,u) (a,u,v0) [(b1, û1) , (b2, û2)]

= (L0a (a,u,v0) [b1] + L0u (a,u,v0) [û1])a [b2]

+ (L0a (a,u,v0) [b1] + L0u (a,u,v0) [û1])u [û2]

= (f0u · û1 + LSa (a,u,v0) [b1] + LSu (a,u,v0) [û1])a [b2]

+ (f0u · û1 + LSa (a,u,v0) [b1] + LSu (a,u,v0) [û1])u [û2]

=

(
b2
û2

)
·
(
HLS

(
b1
û1

))
, (1.1.38)
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where

HLS
=

(
LSaa LSau

LSua LSuu

)
= −

 0R2×2

(
v⊤
0 Ka1

v⊤
0 Ka2

)
(
K⊤

a1
v0 K⊤

a2
v0

)
0R2×2

 .

(1.1.39)

From Eq. (1.1.39), it is apparent that the matrix HLS
need not be positive

definite.
Here u and v0 denote, respectively, the solutions to the state determination

problem (Problem 1.1.3) and the adjoint problem (Problem 1.1.5), subject to a
design variable a. Furthermore, we assume that υ̂ (the letter υ is a bold Greek
upsilon) denotes a variation of u under the equality constraint of the state
determination problem corresponding to an arbitrary variation b ∈ X of a. In
Chap. 2, we call the set of (b, υ̂) the feasible direction set or the tangent plane
on X ×U satisfying the equality constraint of the state determination problem
(see TV (x) in Eq. (2.6.2), Theorems 2.6.6 and 2.6.7). Here, the cross-sectional
derivative of the Lagrange function with respect to the state determination
problem is

LS(a,u) (a,u,v) [b, υ̂] = v ·
{
−
(
K ′ (a) [b]

)
u−K (a) υ̂

}
= 0. (1.1.40)

This yields the identity

υ̂ = −K−1 (a)
(
K ′ (a) [b]

)
=

−u1

a1
0

−u1

a1
−u2 − u1

a2

(b1b2
)
. (1.1.41)

Equation (1.1.41) is equivalent to the conditions expressed by Eq. (1.1.25) and
Eq. (1.1.26). Moreover, using the self-adjoint relationship, Eq. (1.1.38) becomes

L0(a,u),(a,u) (a,u,v0) [(b1, υ̂1) , (b2, υ̂2)]

= LSau (a,u,v0) [b1, υ̂2] + LSua (a,u,v0) [b2, υ̂1]

= −
(
b11
b12

)
·

{(
v⊤
0 Ka1

v⊤
0 Ka2

)(
−u1/a1 0
−u1/a1 − (u2 − u1) /a2

)

+

((
v⊤
0 Ka1

v⊤
0 Ka2

)(
−u1/a1 0
−u1/a1 − (u2 − u1) /a2

))⊤
}(

b21
b22

)
= b1 · (H0b2) .

This shows that the second-order cross-sectional derivative of f̃0 agrees with
Eq. (1.1.29) and is expressed as

h0 (a) [b1, b2] = b1 · (H0b2) . (1.1.42)

The above results clarify that the Hesse matrix of the Lagrange function L0

with respect to an arbitrary variation of (a,u) agrees with the Hesse matrix
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HLS of LS, and that it is not necessarily positive definite. However, when we
assume that u denotes the solution of the state determination problem as the
design variable is varied and that û1 and û2 denote variations of u, we showed
that the Hesse matrix with respect to arbitrary variations b1, b2 ∈ X of a from
L0 is the same as the Hesse matrix H0 obtained via the other methods.

In the optimal design problem (Problem 1.1.4) considered in this section,
we have assumed that the design variable a ∈ R2 is a cross-sectional area.
Therefore, K (a) was a linear form of a in Eq. (1.1.11) and hence, LSaa = 0R2×2

in Eq. (1.1.39) and Eq. (1.1.42). However, if the design variable a ∈ R2 is
assumed to be the length of one side of a square cross-section, then K (a)
becomes K

(
a2
)
and LSaa ̸= 0R2×2 (see Practice 1.5). In this way, we see

that L0aa may not be 0R2×2 , depending on the choice of design variables or
cost functions. Nevertheless, when the state determination problem is linear
the condition LSuu = 0R2×2 always holds.

In the method used above, Eq. (1.1.41) was utilized to obtain the second
cross-sectional derivative from the first cross-sectional derivative. Equation
(1.1.41) accords with Eq. (1.1.25) and Eq. (1.1.26) from which we see that the
direct differentiation method was actually applied. These results do not always
hold in general, such as in those problems given in Chaps. 8 and 9. In these
cases, the Lagrange multiplier method can be used to obtain the second-order
derivative of cost functions. Such a method will also be described in the
succeeding discussions. However, in cases where the second-order derivatives
are used in solving the optimization problems, a key idea, whose detail will be
presented in Chap. 3, is required.

In Chap. 4, the Fréchet derivative will be defined as a generalized derivative
(Definition 4.5.4). Following the definition of the second-order derivative,
here, we fix b1 and consider differentiating the first cross-sectional derivative
f̃ ′
0 (a) [b1] = g0 · b1. To do this, we define the Lagrange function for g0 · b1 by

LI0 (a,u,w0) = g0 (u) · b1 + LS (a,u,w0) , (1.1.43)

where g0 (u) and LS are given by Eq. (1.1.12) and Eq. (1.1.36), respectively.

w0 = (w01, w02)
⊤

is the adjoint variable provided for u in g0 (u) satisfying the
state determination problem.

With respect to arbitrary variations (b2, û, ŵ0) ∈ X × U2 of (a,u,w0), the
derivative of LI0 is written as

L ′
I0 (a,u,w0) [b2, û, ŵ0]

= LI0a (a,u,w0) [b2] + LI0u (a,u,w0) [û]

+ LI0w0
(a,u,w0) [ŵ0] . (1.1.44)

The third term on the right-hand side of Eq. (1.1.44) vanishes if u is the
solution of the state determination problem. Moreover, the second term on
the right-hand side of Eq. (1.1.44) is

LI0u (a,u,w0) [û] = g0u⊤ (u) [û] · b1 + LSu (a,u,w0) [û]
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= û · q −w0 · (K (a) û)

= û ·
(
q −K⊤ (a)w0

)
, (1.1.45)

where

q = g⊤
0u (u) b1 = −2eY

l

(
u1 u1 − u2

0 u2 − u1

)(
b11
b12

)
. (1.1.46)

Here, the condition that Eq. (1.1.45) is zero for arbitrary û ∈ U is equivalent
to setting w0 to be the solution of the following adjoint problem.

Problem 1.1.6 (Adjoint problem with respect to g0 (u) · b1) Let K (a)
be as in Problem 1.1.3, and q be given by Eq. (1.1.46). Find w0 ∈ U satisfying

K⊤ (a)w0 = q.

□

The solution of Problem 1.1.6 is

w0 =
(
K⊤ (a)

)−1

g⊤
0u (u) b1 = −2


u1

a1
0

u1

a1

u2 − u1

a2

(b11b12

)
. (1.1.47)

Here, w0 is a function of b1, and so is written as w0 (b1).
Finally, the first term on the right-hand side of Eq. (1.1.44) becomes

LI0a (a,u,w0 (b1)) [b2]

= −
{
w0 (b1) ·

(
∂K (a)

∂a1
u

∂K (a)

∂a2
u

)}
b2. (1.1.48)

Substituting Eq. (1.1.47) into Eq. (1.1.48), we obtain

LI0a (a,u0,w0 (b1)) [b2]

= h0 (a) [b1, b2] = b1 · (H0b2) = gH0 (a, b1) · b2, (1.1.49)

where

gH0 (a, b1) = LI0a (a,u,w0 (b1)) . (1.1.50)

In this book, gH0 is called the Hesse gradient.

1.1.7 Optimality Conditions

The previous section explored methods for calculating g0 (the gradient of f̃0
with respect to the variation of the cross-section a ∈ D◦), the Hesse matrix
H0, and the gradient g1 of f1. We now return to Problem 1.1.4 and consider
optimality conditions that the optimal cross-section satisfies.
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As described in Sect. 1.1.4 the convexity of f̃0 was obtained from the fact
that the Hesse matrix H0 is positive definite on X (Theorem 2.4.6). We also
showed that f1 is a linear function of a and that it is therefore convex on
X (Theorem 2.4.4). Problem 1.1.4 is then a convex optimization problem
and, as will be shown later, a design variable a ∈ D◦ which satisfies the
Karush–Kuhn–Tucker conditions (Theorem 2.7.5) is the minimizer of Problem
1.1.4 (Theorem 2.7.9). Let us now find the KKT conditions for Problem 1.1.4.

Let the Lagrange function for Problem 1.1.4 be

L (a, λ1) = f̃0 (a) + λ1f1 (a) ,

where λ1 ∈ R is a Lagrange multiplier with respect to f1 (a) ≤ 0. Then the
KKT conditions for Problem 1.1.4 are given by

La (a, λ1) = g0 + λ1g1 = 0R2 , (1.1.51)

Lλ1
(a, λ1) = f1 (a) = l (a1 + a2)− c1 ≤ 0, (1.1.52)

λ1f1 (a) = 0, (1.1.53)

λ1 ≥ 0. (1.1.54)

A detailed explanation regarding the meaning of the KKT conditions will be
deferred until Sect. 2.7.3, but let us now take a look into their general meaning.

First of all, when the cross-section is optimal, Eq. (1.1.51) and Eq. (1.1.54)
describe a trade-off relationship between the objective and the constraint
functions. In fact, upon taking the inner product of b with both sides of
Eq. (1.1.51), we can obtain

λ1 = −g0 · b
g1 · b

. (1.1.55)

The numerator and the denominator on the right-hand side of Eq. (1.1.55)
represent the amount of variation in f1 and f0 when the design variable is
varied by b. Here, λ1 > 0 indicates the fact that the signs of the variations
differ. In other words, there is a trade-off relationship between f1 and f0.

Finally, we remark that Eq. (1.1.52) is the original constraint condition.
Also, we say that Eq. (1.1.53) is a complementarity condition. If an inequality
constraint can be satisfied by an equality (referred to as active), then Eq. (1.1.53)
allows λ1 > 0. Similarly, if it can be satisfied as an inequality (referred to as
inactive) then λ1 = 0 and this acts to inactivate the constraint.

Next let us consider the physical interpretation of Eq. (1.1.51). If g0 from
Eq. (1.1.36) and g1 from Eq. (1.1.17) are substituted into Eq. (1.1.51), then we
obtain

l

(
−σ (u1) ε (u1)

−σ (u2 − u1) ε (u2 − u1)

)
+ λ1l

(
1
1

)
=

(
0
0

)
.

This equation implies that

σ (u1) ε (u1) = σ (u2 − u1) ε (u2 − u1) = λ1. (1.1.56)



1.1 Optimal Design Problem for a Stepped 1D Linear Elastic Body 21

Fig. 1.4: Numerical example of the mean compliance minimization problem.

In other words, when Problem 1.1.4 is minimized, the strain energy densities (w
of Eq. (1.1.7)) of the two elastic bodies agree and λ1 is twice the strain energy
density. Therefore, λ1 is greater than zero when p generates a non-zero stress
on the two one-dimensional elastic bodies, and the volume constraint is active
at the minimizer.

1.1.8 Numerical Example

Let us consider a concrete example and try to obtain the minimizer.

Exercise 1.1.7 (Mean compliance minimization) Find the minimizer a

in Problem 1.1.4, subject to l = 1, eY = 1, c1 = 1, p = (1, 1)
⊤

and

a0 = (0.1, 0.1)
⊤
. □

Answer Substituting l = 1, eY = 1 and p = (1, 1)⊤ into Eq. (1.1.21) gives

f̃0 (a) =
4

a1
+

1

a2
. (1.1.57)

Figure 1.4 shows f̃0. From Eq. (1.1.22) and Eq. (1.1.17), the cross-sectional-area
derivative of f̃0 and f1 are given by

g0 = −
(
4/a2

1

1/a2
2

)
, g1 =

(
1
1

)
.

If a is a minimizer, then from Eq. (1.1.56) we have

λ1 =
4

a2
1

=
1

a2
2

.

If a is an element of D◦ (see Eq. (1.1.16)), then λ1 is positive and the complementarity
condition allows for the inequality constraint with respect to f1 to be satisfied with an
equality. Here, if a2 = 1− a1 is substituted into Eq. (1.1.57), then a1 can be obtained
from the stationary condition of f̃0 with respect to an arbitrary variation of a1:

d

da1
f̃0 (a1, 1− a1) =

1

(1− a1)
2 − 4

a2
1

= 0.
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Fig. 1.5: A one-dimensional linear elastic body with n cross-sections.

We then obtain a2 from 1− a1:

a =

(
2/3
1/3

)
,

(
2
−1

)
.

Among these values, a = (2/3, 1/3)⊤ satisfies a ≥ a0. Due to the fact that f̃0 and
f1 are convex functions, Problem 1.1.4 becomes a convex optimization problem, and
from Theorem 2.7.9, the value of a which satisfies the KKT condition is the minimizer
of the problem. □

1.2 Comparison of the Direct Differentiation
Method and the Adjoint Variable Method

In Sect. 1.1, we considered how to find optimality conditions for Problem
1.1.4. The substitution method, the direct differentiation method, and the
adjoint variable method were used to find the cross-sectional derivative of the
cost function. Since we will later deal with optimization problems where the
design variable is a function, and because the substitution method becomes
quite complex in such a setting, we will exclude this method and compare the
characteristics and applicable range of the direct differentiation and adjoint
variable methods.

Let us consider a one-dimensional linear elastic body such as the one shown in
Fig. 1.5. Here, the number of cross-sections in Problem 1.1.4 has been extended
to n ∈ N (the set of all natural numbers). The linear elasticity problem in this
case is as follows.

Problem 1.2.1 (Multi-stepped 1D linear elastic body) When l ∈ R,
eY ∈ R, a ∈ Rn (a ≥ a0 > 0Rn) and p ∈ Rn are given with respect to the
one-dimensional linear elastic body in Fig. 1.5, find u ∈ Rn satisfying

K (a)u = p. (1.2.1)

Here, K (a) is an extension matrix of K (a) from Problem 1.1.3 (see Practice
1.5). □

With respect to u ∈ Rn and the Lagrange multiplier v ∈ Rn, the Lagrange
function with respect to the state determination problem (Problem 1.2.1) is

LS (a,u,v) = v · (−K (a)u+ p) . (1.2.2)
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Here, Problem 1.2.1 is equivalent to finding u ∈ Rn satisfying

LS (a,u,v) = 0,

for all v ∈ Rn.
The number of constraint functions is set to be m ∈ N, and the optimal

design problem is as follows. In the following problem, we let X = Rn, U = Rn,
and for a constant vector a0 > 0Rn we set

D = {a ∈ X | a ≥ a0} . (1.2.3)

Problem 1.2.2 (Multi-design variable multi-constraint) Let X = U =
Rn, and D be given by Eq. (1.2.3). Also assume that a function fi : X×U → R
is given for each i ∈ {0, 1, . . . ,m}. Given these conditions, find a satisfying

min
(a,u)∈D×U

{f0 (a,u) | f1 (a,u) ≤ 0, . . . , fm (a,u) ≤ 0, Problem 1.2.1} .

□

Let us use this problem to compare the method of direct differentiation
to the adjoint variable approach, while formalizing techniques for calculating
the cross-sectional-area gradients g0, . . . , gm of the cost functions f0, . . . , fm.
Hereinafter, i ∈ {0, 1, . . . ,m} is the subscript of the cost function fi, and j ∈
{1, . . . , n} is the subscript of the design variable aj .

1.2.1 The Direct Differentiation Method

Let us first look at the method for calculating gi using the direct differentiation
method. The solution of Problem 1.2.1 corresponding to a+ b with respect to
an arbitrary b ∈ Rn will be written as u (a+ b).

From the Taylor expansion of f̃i (a) about a and the chain rule of
differentiation, one can write

f̃i (a+ b)

= fi (a+ b,u (a+ b))

= fi (a,u (a)) +

(
∂fi
∂a1

∂fi
∂a2

· · · ∂fi
∂an

)
b1
b2
...
bn



+

(
∂fi
∂u1

∂fi
∂u2

· · · ∂fi
∂un

)


∂u1

∂a1

∂u1

∂a2
· · · ∂u1

∂an
∂u2

∂a1

∂u2

∂a2
· · · ∂u2

∂an
...

...
. . .

...
∂un

∂a1

∂un

∂a2
· · · ∂un

∂an




b1
b2
...
bn


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+ o (∥b∥Rn)

= fi (a,u (a)) + fia · b+ fiu · (ua⊤b) + o (∥b∥Rn)

= fi (a,u (a)) +
{
fia + (ua⊤)

⊤
fiu

}
· b+ o (∥b∥Rn)

= fi (a,u (a)) + gi · b+ o (∥b∥Rn) . (1.2.4)

In this book, the matrix (∂ui/∂aj)ij , consisting of the partial derivative of the

column vector u with respect to a row vector a⊤ will be written as ua⊤ . If
fi (a,u) is given in Eq. (1.2.4), then fia and fiu are known, so let us now
consider a method for calculating ua⊤ in order to find gi.

Taking the partial derivative of the state equation with respect to aj yields

∂K

∂aj
u+K (a)

∂u

∂aj
= 0Rn ,

where j ∈ {1, . . . , n}, or equivalently
∂u

∂aj
= −K−1 (a)

∂K

∂aj
u. (1.2.5)

Arranging Eq. (1.2.5) in rows with respect to j ∈ {1, . . . , n} establishes ua⊤ .
The following statements can be made from the above observations.

Remark 1.2.3 (Characteristics of the direct differentiation method)
Compared with the adjoint variable method, the direct differentiation method
has the following properties:

(1) The direct differentiation method is effective when the number of cost
functions is large, i.e., m ≫ 1. This is because, once ua⊤ has been
computed from Eq. (1.2.5), ua⊤ can be used for each of the cost functions
f0, . . . , fm.

(2) When the number of design variables is large (n ≫ 1), the direct
differentiation method becomes ineffective. This is because Eq. (1.2.5)
must be solved n times. If the inverse matrix K−1 is not tracked and is
recalculated for each design variable, the amount of calculation required
is similar to that when the finite-difference method is used to compute the
cross-sectional derivative.

□

In Remark 1.2.3 (2), the finite-difference method was used as a comparison.
The method for calculating the cross-sectional derivative by the finite-difference
method is described as follows. Let gi = (gij)j∈{1,...,n}. Using the solutions to

state equations corresponding to a and a+(0, . . . , 0, bj , 0, . . . , 0)
⊤
, we calculate

gij as follows:

gij =
f̃i

(
a+ (0, . . . , 0, bj , 0, . . . , 0)

⊤
)
− f̃i (a)

bj
. (1.2.6)

Thus, finding gi through this method requires solving the state equation n times.
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1.2.2 The Adjoint Variable Method

Next, let us look at the adjoint variable method for calculating gi. Let the
Lagrange function with respect to fi (a,u) be

Li (a,u,vi) = fi (a,u) + LS (a,u,vi)

= fi (a,u)− vi · (K (a)u− p) , (1.2.7)

where we have supposed that LS is defined by Eq. (1.2.2). Here, vi ∈ Rn is the
adjoint variable (Lagrange multiplier) with respect to the state equation. The
derivative of Li with respect to an arbitrary variation (b, û, v̂i) ∈ X × U × U
of (a,u,vi) is expressed as

L ′
i (a,u,vi) [b, û, v̂i]

= Lia (a,u,vi) [b] + Liu (a,u,vi) [û] + Livi (a,u,vi) [v̂i] . (1.2.8)

The third term on the right-hand side of Eq. (1.2.8) satisfies

Livi
(a,u,vi) [v̂i] = LS (a,u, v̂i) . (1.2.9)

Equation (1.2.9) is a Lagrange function with respect to the state determination
problem (Problem 1.2.1). It is zero when u solves the state determination
problem.

Moreover, computing the second term on the right-hand side of Eq. (1.2.8)
yields

Liu (a,u,vi) [û] = fiu (a,u) [û] + LSu (a,u,vi) [û]

= fiu (a,u) · û− vi · (K (a) û)

= −û ·
(
K⊤ (a)vi −

∂fi
∂u

(a,u)

)
. (1.2.10)

Here, if vi can be determined so that Eq. (1.2.10) is zero for arbitrary û ∈
U , then the second term on the right-hand side of Eq. (1.2.8) vanishes. This
condition is equivalent to setting vi to solve the following adjoint problem.

Problem 1.2.4 (The adjoint problem with respect to fi) Let K (a)
and fi be as in Problem 1.2.1. Find vi ∈ U satisfying

K⊤ (a)vi = fiu (a,u) .

□

If u and vi are solutions of Problem 1.2.1 and Problem 1.2.4, respectively,
then we have

Lia (a,u,vi) [b]

= fia (a,u) · b− vi ·
{(

∂K (a)

∂a1
u · · · ∂K (a)

∂an
u

)
b

}
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=

{
fia (a,u)−

(
∂K (a)

∂a1
u · · · ∂K (a)

∂an
u

)⊤

vi

}
· b

= gi · b.

This result agrees with the formula obtained from the direct differentiation
method (see Sect. 2.6.5).

The discussion above leads us to the following observations regarding the
adjoint variable method.

Remark 1.2.5 (Properties of the adjoint variable method)
In comparison with the method of direct differentiation, the adjoint variable
method displays the following characteristics:

(1) When the number of cost functions is large (m ≫ 1), the adjoint variable
method is ineffective because the number of adjoint problems is the same
as the number of cost functions, m+ 1.

(2) When the number of design variables is large (n ≫ 1), the adjoint variable
method is effective because the number of adjoint problems, m + 1, does
not depend on the number of design variables, n.

(3) The number of variables in an adjoint problem is the same as the number
of variables in the state equation, n. This indicates the fact that the
adjoint variable method is applicable even when the state variable is a
function of time or defined over a domain (in such a case, the linear space
for the state variable becomes infinite-dimensional).

(4) If a self-adjoint relationship is satisfied, then there is no need to explicitly
solve the adjoint problem.

□

Beginning in Chap. 5, the state equation will be assumed to be a partial
differential equation given by a boundary value problem. In this case, the state
variable becomes a function defined in a domain of d ∈ {2, 3}-dimensional
space. Remark 1.2.5 (3) above indicates that the adjoint variable method is
indispensable when constructing cost function derivatives with respect to design
variables while satisfying the state equation in shape and topology optimization
problems. However, in cases wherein a relation such as Eq. (1.2.5) could be
obtained by a simple partial differential equation (for example, Eq. (8.5.17) in
Chap. 8) under appropriate assumptions, then the direct differentiation method
is effective in shape and topology optimization problems.

1.3 An Optimal Design Problem of a Branched
One-Dimensional Stokes Flow Field

So far we have looked at what optimal design problems are by considering
one-dimensional linear elastic bodies. Let us now continue our investigation by
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Fig. 1.6: A branched 1D Stokes flow field.

taking a look at how a similar optimal design problem can be constructed when
the design target is changed to a flow field.

Consider a viscous flow field within a circular tube such as that shown in
Fig. 1.6. This problem hints at Murray’s law. By minimizing the sum of a blood
flow transportation cost under a volume constraint, Murray showed that fluid
flow through blood vessel cross-sections is proportional to the cube of the vessel
radius [6]. Murray’s analysis did not include a branched tube, but here we will
take the cross-sectional areas as the design variables to see if the relationship
still holds. Using the same cost function, Murray also derived a branch law for
branch angles. The interested reader is referred to [5].

1.3.1 State Determination Problem

In Fig. 1.6, r0, r1, and r2 denote the radii of their respective circular tubes,
p0, p1, and p2 signify the pressure at the inflow cross-section Γ0 and the
outflow cross-sections Γ1 and Γ2, respectively. The pressure at the branched
cross-section is denoted by p̄, l represents the length, and µ is the viscosity
coefficient. The flow velocity at a radius r within a circular cross-section of
radius ri, i ∈ {0, 1, 2}, is assumed to be given by the Hagen-Poiseuille flow:

uHi (r) = −pi − p̄

4µl

(
r2i − r2

)
, (1.3.1)

which is derived from the solution of a stationary Stokes equation with respect
to a cylindrical boundary. Note that the flow velocities within the three tubes
are taken to be positive in the outward normal directions ν0, ν1 and ν2 of
the cross-sections Γ0, Γ1 and Γ2, respectively. Meanwhile, due to the fact that
uH0 (r) flows inward from Γ0 in the opposite direction of ν0, its flow velocity is
negative. Here, let the volume of fluid flow per unit time through the tube of
radius ri be

ui =

∫ ri

0

uHi (r) 2πr dr =
p̄− pi
8πµl

(
πr2i
)2

= (p̄− pi) a
2
i , (1.3.2)
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where

a =

a0
a1
a2

 =
1√
8πµl

πr20
πr21
πr22

 . (1.3.3)

According to Eq. (1.3.3), the cross-sectional area of Γi is
√
8πµlai. However, for

the sake of simplicity ai will be referred to as the cross-section and a ∈ X ∈ R3

will be used as the design variable. Moreover, the continuity equation states
that

u0 + u1 + u2 = 0. (1.3.4)

Substituting Eq. (1.3.2) into Eq. (1.3.4) yields

p̄ =
p0a

2
0 + p1a

2
1 + p2a

2
2

a20 + a21 + a22
. (1.3.5)

If Eq. (1.3.5) is substituted into Eq. (1.3.2), and p̄ is eliminated, then we obtain

1

a20 + a21 + a22

a20
(
a21 + a22

)
−a20a

2
1 −a20a

2
2

−a20a
2
1 a21

(
a20 + a22

)
−a21a

2
2

−a20a
2
2 −a21a

2
2 a22

(
a20 + a21

)
p0

p1
p2


= −

u0

u1

u2

 . (1.3.6)

In this section, we will assume that the volume of fluid flow per unit time
u = (u1, u2)

⊤ ∈ R2 is known and that u0 is given by Eq. (1.3.4). The values
relating to the flow velocity are assumed to be known because, as will be shown
in Chap. 5, the existence of solutions to the Stokes problem is guaranteed when
the flow velocity is given along the entire boundary (Theorem 5.6.3). However,
the matrix of coefficients in this equation is singular because the equation holds
regardless of the selected values for the average pressure (uncertainty with
respect to the constant term). We therefore set p0 = 0 for convenience. When
the flow volume per unit time u and the design variable a are given, the pressure
p = (p1, p2)

⊤ ∈ P = R2 is then uniquely determined by

1

a20 + a21 + a22

(
a21
(
a20 + a22

)
−a21a

2
2

−a21a
2
2 a22

(
a20 + a21

))(p1
p2

)
= −

(
u1

u2

)
. (1.3.7)

Hence, p = (p1, p2)
⊤ ∈ P = R2 is used as the state variable in this section

and the state determination problem is defined as follows.

Problem 1.3.1 (1D branched Stokes flow field) Consider the one-
dimensional Stokes flow field of Fig. 1.6. Let a ∈ R3 and u ∈ R2 be given.
Find p ∈ R2 satisfying

A (a)p = −u. (1.3.8)

Here, Eq. (1.3.8) expresses Eq. (1.3.7) in vector notation. □
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The solution of Eq. (1.3.8) is

p = −A−1 (a)u

= −


1

a20
+

1

a21

1

a20
1

a20

1

a20
+

1

a22

(u1

u2

)

= −


u1

a21
+

u1 + u2

a20
u2

a22
+

u1 + u2

a20

 = −


u1

a21
− u0

a20u2

a22
− u0

a20

 . (1.3.9)

For later use, we define a Lagrange function with respect to Problem 1.3.1:

LS (a,p, q) = q · (A (a)p+ u) , (1.3.10)

where p is not necessarily the solution of Problem 1.3.1 and q = (q1, q2)
⊤ ∈ R2 is

introduced as a Lagrange multiplier. Comparing Eq. (1.3.10) with Eq. (1.1.12),
the sign convention for the Lagrangian looks different. This sign was decided to
obtain the self-adjoint relationship of Eq. (1.3.18) together with the sign of LS in
L0 defined later in Eq. (1.3.14). If the opposite sign was used for the right-hand
side of Eq. (1.3.10), then the self-adjoint relationship of Eq. (1.3.18) holds with
the opposite sign. This difference comes from the difference of the objective
functions. The mean compliance represents the magnitude of displacement,
while the mean flow resistance represents the negative value of the magnitude
of flow velocity. Problem 1.3.1 is equivalent to finding p satisfying

LS (a,p, q) = 0,

for all q ∈ R2.

1.3.2 An Optimal Design Problem

Having defined the state determination problem, we now establish a cost
function using the design variable a and the state variable p.

We want to construct an objective function that measures flow resistance.
According to the law of conservation of energy, the energy lost through viscosity
per unit time inside the viscous flow field is equal to the negative value of the
power (energy per unit time) integrated along the boundary. Now, let the
objective function be

f0 = − (p0u0 + p1u1 + p2u2) = −p · u, (1.3.11)

where we have used the fact that p0 = 0. In Eq. (1.3.11), assuming u is given,
the minimization of f0 means the maximization of p at the out flow boundaries.
It means the minimization of pressure loss. Then, this function corresponds to
values often referred to as dissipation energy or power loss. However, in Chaps.
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8 and 9, an extension of this definition (referred to as the mean flow resistance)
will be used as a cost function to measure flow resistance in a Stokes flow field.
The reason for this terminology is because, in that scenario, the quantity does
not represent dissipation energy. For this reason, f0 of Eq. (1.3.11) will also be
referred to as the mean flow resistance in a one-dimensional branched Stokes
flow field.

The volume constraint function is taken as

f1 (a) = l (a0 + a1 + a2)− c1, (1.3.12)

where c1 is a positive constant.
Having defined these cost functions, the optimization problem for the

one-dimensional branched Stokes flow field is defined as follows. We take
X = R3 as the linear space for the design variable a and, with respect to a
constant vector a0 > 0R3 , we set

D = {a ∈ X | a ≥ a0} . (1.3.13)

Furthermore, P = R2 denotes the linear space for the respective state
variables,p.

Problem 1.3.2 (Mean flow resistance minimization) Let X = R3, P =
R2, and D be given by Eq. (1.3.13). Furthermore, let f0 (p) and f1 (a) be given
by Eq. (1.3.11) and Eq. (1.3.12), respectively. Find a satisfying

min
(a,p)∈D×P

{f0 (p) | f1 (a) ≤ 0, Problem 1.3.1} .

□

1.3.3 Cross-Sectional Derivatives

The derivative f̃ ′
0 (a) [b] = f ′

0 (p (a)) [b] = g0 ·b of f0 with respect to a variation
b of a is called the cross-sectional derivative and g0 is referred to as the
cross-sectional-area gradient. Let us now find g0 and the Hesse matrix H0

of f0 using the adjoint variable method.
The Lagrange function with respect to f0 is taken as

L0 (a,p, q0) = f0 (p)− LS (a,p, q0)

= −p · u− q0 · (A (a)p+ u) , (1.3.14)

where q0 ∈ P is the adjoint variable (Lagrange multiplier) with respect to
the state equation (prepared for f0). The derivative of L0 with respect to an
arbitrary variation (b, p̂, q̂0) ∈ X × P × P of (a,p, q0) is

L ′
0 (a,p, q0) [b, p̂, q̂0]

= L0a (a,p, q0) [b] + L0p (a,p, q0) [p̂] + L0q0
(a,p, q0) [q̂0] . (1.3.15)
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The third term on the right-hand side of Eq. (1.3.15) satisfies

L0q0
(a,p, q0) [q̂0] = −LS (a,p, q̂0) . (1.3.16)

This term is zero if p solves the state determination problem.
The second term on the right-hand side of Eq. (1.3.15) can be calculated:

L0p (a,p, q0) [p̂] = f0p (a,p) [p̂]− LSp (a,p, q0) [p̂]

= −LS (a, q0, p̂) . (1.3.17)

This term can also be made to take the value zero, provided the self-adjoint
relationship holds:

q0 = p. (1.3.18)

Furthermore, direct calculation shows that the first term on the right-hand
side of Eq. (1.3.15) can be expressed as

L0a (a,p, q0) [b]

= − 1

(a20 + a21 + a22)
2

×

 2a0
(
a21p1 + a22p2

) (
a21q01 + a22q02

)
2a1

{
a20p1 + a22 (p1 − p2)

}{
a20q01 + a22 (q01 − q02)

}
2a2

{
a20p2 + a21 (p2 − p1)

}{
a20q02 + a21 (q02 − q01)

}
 ·

b0
b1
b2


= −2

u2
0/a

3
0

u2
1/a

3
1

u2
2/a

3
2

 ·

b0
b1
b2

 = g0 · b. (1.3.19)

Here, the self-adjoint relationship has been used along with the fact that p is a
solution of the state determination problem.

It can also be easily seen that

f ′
1 (a) [b] = l

1
1
1

 ·

b0
b1
b2

 = g1 · b. (1.3.20)

Furthermore, the Hesse matrix H0 of the mean flow resistance f̃0 (a) =
f0 (a,p (a)) can be obtained as follows. As described in Sect. 1.1.6, we use the
adjoint variable method. The second-order derivative of the Lagrange function
L0 with respect to arbitrary variations (b1, p̂1) ∈ X × P and (b2, p̂2) ∈ X × P
of the design and state variables (a,p) is computed as follows:

L0(a,p),(a,p) (a,p, q0) [(b1, p̂1) , (b2, p̂2)]

= (L0a (a,p, q0) [b1] + L0p (a,p, q0) [p̂1])a [b2]

+ (L0a (a,p, q0) [b1] + L0p (a,p, q0) [p̂1])u [p̂2]

=

(
b2
p̂2

)
·
((

L0aa L0ap

L0pa L0pp

)(
b1
p̂1

))
. (1.3.21)
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Here, p̂1 and p̂2 are replaced by variations satisfying the state determination
problem. By taking the partial derivative of Eq. (1.3.8) with respect to ai for
i ∈ {1, 2}, we obtain

∂A

∂ai
p+A

∂p

∂ai
= 0R2 . (1.3.22)

Solving for ∂p/∂ai, we get

∂p

∂ai
= −A−1 ∂A

∂ai
p, (1.3.23)

and set

p̂ (a) [b] =
∂p

∂a⊤ b =

(
∂p1/∂a0 ∂p1/∂a1 ∂p1/∂a2
∂p2/∂a0 ∂p2/∂a1 ∂p2/∂a2

)b0
b1
b2

 . (1.3.24)

Substituting Eq. (1.3.24) into Eq. (1.3.21), we obtain

L0(a,p),(a,p) (a,p, q0) [(b1, p̂ (a) [b1]) , (b2, p̂ (a) [b2])] = b1 · (H0b2) ,
(1.3.25)

and we see that, if the self-adjoint relationship is used along with the fact that
p is a solution of the state determination problem, the Hesse matrix of f̃0 is
expressed as

H0 = L0aa + L0ap
∂p

∂a⊤ +

(
L0ap

∂p

∂a⊤

)⊤

= 6

u2
0/a

4
0 0 0

0 u2
1/a

4
1 0

0 0 u2
2/a

4
2

 . (1.3.26)

This formula matches the result obtained through partial differentiation of g0

in Eq. (1.3.19) with respect to a. This relationship holds true because the state
variable p is not included in g0 of Eq. (1.3.19). In this way, we observe that H0

is positive definite.
Let us, in addition, obtain the Hesse matrix of f̃0 by the Lagrange multiplier

method. The Lagrange function for g0 · b1 can be defined as

LI0 (a,p, r0)

= g0 (p) · b1 − LS (a,p, r0)

= g0 (p) · b1 − r0 · (A (a)p+ u) , (1.3.27)

where g0 (p) is defined in the second equation of Eq. (1.3.19) substituting

Eq. (1.3.18), LS in Eq. (1.3.10). r0 = (r01, r02)
⊤ ∈ P = R2 is the adjoint

variable corresponding to p in g0 (p) satisfying the state determination problem.
b1 was assumed to be a constant vector in LI0.
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With respect to arbitrary variations (b2, p̂, r̂0) ∈ X × P 2 of (a,p, r0), the
derivative of LI0 is written as

L ′
I0 (a,p, r0) [b2, p̂, r̂0]

= LI0a (a,p, r0) [b2] + LI0p (a,p, r0) [p̂] + LI0r0 (a,p, r0) [r̂0] .
(1.3.28)

The third term on the right-hand side of Eq. (1.3.28) vanishes if p is the solution
of the state determination problem.

The second term on the right-hand side of Eq. (1.3.28) can be written as

LI0p (a,p, r0) [p̂] = g0p⊤ (p) [p̂] · b1 − LSp (a,p, r0) [p̂]

= p̂ ·w − r0 · (A (a) p̂)

= p̂ ·
(
w −A⊤ (a) r0

)
, (1.3.29)

where

w = g⊤
0p (p) b1 =


∂g01
∂p1

∂g02
∂p1

∂g03
∂p1

∂g01
∂p2

∂g02
∂p2

∂g03
∂p2


b11
b12
b13

 . (1.3.30)

Here, the condition that Eq. (1.3.29) is zero for arbitrary p̂ ∈ P is equivalent to
setting r0 to be the solution of the following adjoint problem.

Problem 1.3.3 (Adjoint problem of r0 with respect to g0 (p) · b1) Let
A (a) be as in Problem 1.3.1, and w be given by Eq. (1.3.30). Find r0 ∈ P
satisfying

A⊤ (a) r0 = w.

□

The solution of Problem 1.3.3 is

r0 =
(
A⊤ (a)

)−1

g⊤
0p (p) b1. (1.3.31)

Finally, the first term on the right-hand side of Eq. (1.3.28) becomes

LI0a (a,p, r0) [b2]

= −
{
r0 ·

(
∂A (a)

∂a1
p

∂A (a)

∂a2
p

∂A (a)

∂a3
p

)}
b2. (1.3.32)

Here, substituting Eq. (1.3.31) into Eq. (1.3.32), we have the relation

LI0a (a,p, r0 (b1)) [b2] = h0 (a) [b1, b2] = gH0 (a, b1) · b2, (1.3.33)
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where the Hesse gradient of the mean flow resistance gH0 is given by

gH0 (a, b1) = LI0a (a,p, r0 (b1)) . (1.3.34)

The above results show that the function f̃0 (a), which is obtained by
rewriting the mean flow resistance f0 (p) as a function of a only, is convex.
As we will now show, as in the case of the mean compliance problem, a yields
the minimum when it satisfies a set of KKT conditions.

1.3.4 Optimality Conditions

Let us again consider optimality using the KKT conditions. The Lagrange
function with respect to the optimization problem (Problem 1.3.2) is set as

L (a, λ1) = f̃0 (a) + λ1f1 (a) ,

where λ1 ∈ R is a Lagrange multiplier with respect to f1 (a) ≤ 0. In this case,
the KKT conditionsKarush–Kuhn–Tucker conditions of Problem 1.3.2 are given
by

La (a, λ1) = g0 + λ1g1 = 0R2 , (1.3.35)

Lλ1
(a, λ1) = f1 (a) ≤ 0, (1.3.36)

λ1f1 (a) = 0, (1.3.37)

λ1 ≥ 0. (1.3.38)

Equation (1.3.35) then becomes

− 2

u2
0/a

3
0

u2
1/a

3
1

u2
2/2

3
1

+ λ1l

1
1
1

 =

0
0
0

 ,

and the optimality condition with respect to the mean flow resistance
minimization problem (Problem 1.3.2) is given by

2
u2
0

a30l
= 2

u2
1

a31l
= 2

u2
2

a32l
= λ1. (1.3.39)

This optimality condition shows that Murray’s law holds. In fact, using
uHi (r) from Eq. (1.3.1) shows that the shear strain velocity and shear stress on
the walls can be expressed as

γi =
duHi

dr

∣∣∣∣
r=ri

= − p̄− pi
2µl

ri = − ui

2µla2i
ri, (1.3.40)

τi = µγi = − ui

2la2i
ri, (1.3.41)
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Fig. 1.7: Numerical example of mean flow resistance minimization problem.

respectively, for each i ∈ {0, 1, 2}. Using Eq. (1.3.3), we then obtain the
following relation regarding the dissipation energy density:

1

2
τiγi =

1√
8µl

u2
i

a3i l
=

√
8µl

2
λ1. (1.3.42)

When the shear stresses are the same, this condition shows that the flow volume
is proportional to the cube of the blood vessel radius (Murray’s law).

1.3.5 Numerical Example

Let us now consider finding a minimizer through a specific exercise.

Exercise 1.3.4 (Mean flow resistance minimization problem) Let a0 =
1 in Problem 1.3.2 (a0 is not included in the design variables). Also, let l = 1,

c1 = 2, u = (1/3, 2/3)
⊤
, and a0 = (0.1, 0.1, 0.1)

⊤
. Find the minimizer a. □

Answer If p in Eq. (1.3.9) is substituted into f0 (defined by Eq. (1.3.11)), then we
obtain:

f̃0 (a) =
1

9

(
9 +

1

a1
+

4

a2

)
. (1.3.43)

Figure 1.7 shows f̃0. From Eq. (1.3.19) and Eq. (1.3.20), we obtain the
cross-sectional-area derivative of f̃0 and f1:

g0 = −
(
2/9a3

1

8/9a3
2

)
, g1 =

(
1
1

)
.

Here, if a yields the minimum, then from Eq. (1.3.39) we get

λ1 =
2

9a3
1

=
8

9a3
2

.

If a is an element of D◦ (defined by Eq. (1.3.13)), then λ1 is positive and the inequality
constraint with respect to f1 holds as an equality (due to the complementarity
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condition). Upon substituting a2 = 1− a1 into Eq. (1.3.43), and using the stationary
condition with respect to variations in a1:

d

da1
f̃0 (a1, 1− a1) =

1

(1− a1)
2 − 4

a2
1

= 0,

we obtain

a1 =
1

5

(
1 + 24/3 − 22/3

)
,
1

5

{
1− 21/3

(
1− i

√
3
)
+ 2−1/3

(
1 + i

√
3
)}

,

1

5

{
1− 21/3

(
1 + i

√
3
)
+ 2−1/3

(
1− i

√
3
)}

= 0.386488, 0.106756 + 0.711395i, 0.106756− 0.711395i.

Here i denotes the imaginary unit and we remark that a2 can be obtained from 1−a1.
Using these results, a ∈ D◦ is then given by a = (0.386488, 0.613512)⊤. Since f̃0 and
f1 are convex-functions, Problem 1.3.2 is a convex-optimization problem and, from
Theorem 2.7.9, the a which satisfies the KKT condition yields the minimum. □

1.4 Summary

In order to have a conceptional idea about how optimality conditions are sought,
this chapter examined some examples of optimal design problems related to
one-dimensional elastic bodies and the one-dimensional Stokes flow field. The
key points are outlined below:

(1) In addition to design variables that determine the system, optimal design
problems include state variables which describe the system’s desired state.
The state equation which determines the state variables is an equality
constraint. Cost functions can be defined as functions of the design and
state variables (Sect. 1.1.2, Sect. 1.3.2).

(2) When the cost function is given as a function of a state variable, its
derivative with respect to a variation of the design variable needs to
be obtained in a manner that satisfies the equality constraints of the
state determination problem. The direct differentiation method (Sect.
1.1.5, Sect. 1.2.1), which uses the chain rule of differentiation, and the
adjoint variable method (Sect. 1.1.6, Sect. 1.2.2), which is based on the
Lagrange multiplier method, are both conceivable methods for obtaining
the derivative.

• The direct differentiation method is advantageous for problems
involving multiple constraints (Remark 1.2.3).

• The adjoint variable method is advantageous for problems with
multiple design variables (Remark 1.2.5).

Later in this book, partial differential equations (boundary value
problems) are assumed to be the state equation, and the state variable
becomes a function (an element of an infinite-dimensional space) defined
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in a d ∈ {2, 3}-dimensional domain. The adjoint variable approach is
essential in such settings.

(3) In a mean compliance minimization problem (Problem 1.1.4), where the
cross-sectional area of the one-dimensional elastic body was the design
variable, an optimality condition stating that the strain energy density is
uniform was obtained in Eq. (1.1.56) (Sect. 1.1.7).

(4) In a mean flow resistance minimization problem (Problem 1.3.2), where
the cross-sectional area of the branched one-dimensional Stokes flow field
is the design variable, an optimality condition stating that the dissipative
energy density is uniform was derived in Eq. (1.3.42) (Sect. 1.3.4).

There is a vast amount of literature regarding optimal design problems, and
here we only mention a selection [1–4,8].

1.5 Practice Problems

1.1 Consider the problem of finding a satisfying

min
(a,u)∈D×U

{
f0 (u) = u2

2

∣∣ f1 (a) ≤ 0, Problem 1.1.3
}
.

This is Problem 1.1.4 with f0 changed to u2
2. Let the adjoint variable with

respect to f0 be v0 ∈ R2. Derive the adjoint equation. Also, express g0

in terms of u and v0.

1.2 In Sect. 1.1.6, using the stationary conditions with respect to an arbitrary
variation of u and v0 of the Lagrange function in Problem 1.1.4, we derived
the cross-sectional-area gradient g0 of f0. In this case, the self-adjoint
relationship was used. In fact, if the self-adjoint relationship holds,
then the cross-sectional-area gradient g0 can be obtained without using a
Lagrange function. In particular, instead of using the mean compliance
f0, the potential energy

π (a,u) =
1

2
u · (K (a)u)− u · p

can be used to consider the problem of finding (a,u) satisfying

max
a∈D

min
u∈U

π (a,u) .

When u satisfies minu∈R2 π, show that the cross-sectional-area gradient of
−π is equal to 1/2 of the g0 in Eq. (1.1.36). Note that π in this problem
is the potential energy. This problem shows that the minimization of the
mean compliance is equivalent to the maximization of the potential energy.

1.3 Consider Practice 1.1, where l = 1, eY = 1, c1 = 1 and p = (1, 1)⊤. Find
the minimizer a.
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Fig. 1.8: Tetrahedron Ω.

1.4 Consider the state determination problem in Problem 1.1.4. Here, when
p = (1,−1)⊤, the stress of a one-dimensional linear elastic body with
a cross-section of a1 is zero. The side constraint with respect to the
cross-section a1 thus activates at the optimal solution. The optimal
solution in this case is (a1, a2) = (a01, (c1/l)− a01). Derive the KKT
conditions in this situation and find the Lagrange multiplier. Here, assume
that g0 and g1 are given by equations Eq. (1.1.28) and Eq. (1.1.17),
respectively.

1.5 Consider the state determination problem of Problem 1.1.4 and assume
that the design variable a ∈ R2 is the length of one side of a square
cross-section. Find the Hesse matrix H0 and the gradient g0 of f0, with
respect to variation of a.

1.6 Consider the tetrahedron Ω shown in Fig. 1.8. Let the design variable
be the lengths of the sides of the base a = (a1, a2)

⊤ ∈ R2, and the cost
function f be the volume of Ω. Find the Hesse matrix H and the gradient
g of f , with respect to variation of a.

1.7 Give a concrete expression for K (a) in Eq. (1.2.1).

1.8 The self-adjoint relationship was also established with respect to f0
in Problem 1.3.2. Thus, in a manner similar to Practice 1.2, the
cross-sectional-area gradient g0 can be obtained without using a Lagrange
function. Considering f0, let us formally investigate the problem of finding
(a,p) satisfying

min
a∈D

max
p∈P

π (a,p) ,

where the potential energy of the dissipative system is set to be

π (a,p) = −1

2
p · (A (a)p)− u · p.

When p satisfying maxp∈R2 π is used, show that the cross-sectional-area
gradient of π is the same as 1/2 of g0 in Eq. (1.3.19). This problem shows
that minimizing the mean flow resistance is the same as minimizing π
when the potential energy of the dissipative system is formally set to π.
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Fig. 1.9: The branch angle of a branched one-dimensional Stokes flow field.

1.9 Consider a branched one-dimensional Stokes flow field such as the one
shown in Fig. 1.9. The center of the inflow boundary Γ0 is taken to be the
origin, while α = (α1,−α2)

⊤ ∈ R2 and β = (β1, β2)
⊤ ∈ R2 (with respect

to four positive constants α1, α2, β1 and β2) are set as the coordinates
of the central position of the outward flow boundaries, Γ1 and Γ2. The
radius of the tube is r = (r0, r1, r2)

⊤ ∈ R3. Assume that r, α and β are
known and that the sum of the volumes of the three tubes is minimized.
Use the branch angles θ1 and θ2 to show that

r20 = r21 cos θ1 + r22 cos θ2.
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