Notation

Use of Letters

The use of variables will adhere to the following basic rules.

- a, α, \cdots Lower-case italic Latin and Greek letters (Table 1) represent scalars, vectors and functions.
- a, α, \cdots Bold lower italic Latin and Greek letters represent finite-dimensional vectors and functions with such ranges.
- $A, \mathcal{A}, \Gamma, \cdots$ Capital italic Latin and Greek characters, as well as their cursive representations, represent sets.
 - A, Γ, \cdots Bold capital italic Latin and Greek letters represent finite dimension matrices and functions with such ranges ranges.
 - \mathscr{L}, \mathscr{H} Represent Lagrange and Hamilton functions, respectively.
 - $a_{\rm A}, a_{\rm div}$ Subscripts on upright Latin letters represent the initial of a terminology or an abbreviation.

Below, m, n and d denote natural numbers.

Sets

$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$	Represent the set of natural numbers (positive in-
	tegers), the integers, the rational numbers, the real
	numbers, and the complex numbers, respectively.

- \mathbb{R}^d Represents the *d*-dimensional real linear space (real vector space).
- $A = \{a_1, \cdots, a_m\}$ Represents a set A consisting of a finite number of elements, a_1, \cdots, a_m .
 - |A| Represents the number of elements in a finite set A.

Cap	oital	Lowe	r-case	Pronunciation	Cap	oital	Lowe	r-case	Pronunciation
\overline{A}	\boldsymbol{A}	α	α	alpha	N	N	ν	ν	nu
B	B	β	$oldsymbol{eta}$	beta	Ξ	Ξ	ξ	ξ	xi
Г	Γ	γ	γ	gamma	0	0	0	0	omicron
Δ	Δ	δ	δ	delta	П	Π	$\pi \ \varpi$	$\pi \ \varpi$	pi
E	${oldsymbol E}$	$\epsilon \ \varepsilon$	$\epsilon \ \varepsilon$	epsilon	P	\boldsymbol{P}	ρϱ	ρϱ	rho
Z	Z	ζ	ζ	zeta	Σ	$\boldsymbol{\Sigma}$	σ s	σς	$_{ m sigma}$
H	H	η	η	eta	T	T	au	au	tau
Θ	Θ	$\theta \ \vartheta$	$\theta \vartheta$	theta	Υ	Υ	v	v	upsilon
Ι	Ι	ι	ι	iota	Φ	Φ	$\phi arphi$	$\phi arphi$	$_{\rm phi}$
K	\boldsymbol{K}	κ	κ	kappa	X	\boldsymbol{X}	χ	χ	$_{\rm chi}$
Λ	Λ	λ	λ	lambda	Ψ	Ψ	ψ	$oldsymbol{\psi}$	$_{\rm psi}$
M	${oldsymbol{M}}$	μ	μ	mu	Ω	Ω	ω	ω	omega

Table 1: Greek letters

 $a \in A$ Indicates that a is an element of the set A.

- $\{0\}$ Represents a set consisting of the single element 0.
- $\{a_k\}_{k\in\mathbb{N}}$ Denotes an infinite sequence, $\{a_1, a_2, \cdots\}$.
- $A \subset B$ Indicates that the set A is a subset of the set B.
- $A\cup B,\ A\cap B,\ A\setminus C\quad \text{Represent the union, intersection and subtraction operations of sets, respectively.}$

Vectors and Matrices

The following notation concerns vectors and matrices of \mathbb{R}^d , \mathbb{R}^m , and \mathbb{R}^n .

$\boldsymbol{x} = (x_1, \cdots, x_d)^\top \in \mathbb{R}^d$	Represents a <i>d</i> -dimensional vertical real vector. x_i represents the <i>i</i> -th element of \boldsymbol{x} . \boldsymbol{x}^{\top} represents the transposition of \boldsymbol{x} .
$\boldsymbol{A} = \left(a_{ij}\right)_{ij} \in \mathbb{R}^{m \times n}$	Represents the real matrix with m rows and n columns. Can also be written as $\mathbf{A} = (a_{ij})_{(i,j) \in \{1, \dots, m\} \times \{1, \dots, n\}}$.
$0_{\mathbb{R}^d},0_{\mathbb{R}^{m imes n}}$	Represents the zero elements of \mathbb{R}^d and $\mathbb{R}^{m \times n}$.
$oldsymbol{x} \geq oldsymbol{0}_{\mathbb{R}^d}$	Represents $x_i \ge 0$ for $i \in \{1, \cdots, d\}$.
$\ oldsymbol{x}\ _{\mathbb{R}^{d},p}$	When $p \in [1, \infty)$, represents the <i>p</i> -powered norm $\sqrt[p]{ x_1 ^p + \cdots + x_d ^p}$ of $\boldsymbol{x} \in \mathbb{R}^d$. When $p = \infty$, represents the maximum norm max $\{ x_1 ^p, \cdots, x_d ^p\}$. If there is no confusion, it is written as $\ \boldsymbol{x}\ _p$.

Notation

- $\begin{array}{ll} \boldsymbol{a} \cdot \boldsymbol{b}, \, \boldsymbol{A} \cdot \boldsymbol{B} & \text{Represents the inner product (scalar product)} \\ & \sum_{i \in \{1, \cdots, m\}} a_i b_i, \, \sum_{(i,j) \in \{1, \cdots, m\}^2} a_{ij} b_{ij} \, \text{ with respect} \\ & \text{ to } \boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^m \text{ and } \boldsymbol{A} = (a_{ij})_{ij}, \, \boldsymbol{B} = (b_{ij})_{ij} \in \mathbb{R}^{m \times m}. \end{array}$
 - $\|\boldsymbol{x}\|_{\mathbb{R}^d}$ Represents the Euclidean norm $\sqrt{\boldsymbol{x} \cdot \boldsymbol{x}}$ of $\boldsymbol{x} \in \mathbb{R}^d$. If there is no confusion, it is written as $\|\boldsymbol{x}\|$.
 - δ_{ij} Represents the Kronecker delta $\delta_{ij} = 1$ $(i = j), \delta_{ij} = 0$ $(i \neq j).$
 - $I_{\mathbb{R}^{m \times m}}$ Represents the unit matrix $(\delta_{ij})_{ij} \in \mathbb{R}^{m \times m}$. If there is no confusion, it is written as I.
 - $(\cdot)^{\mathrm{s}}$ Represents $\left((\cdot)^{\top} + (\cdot)\right)/2.$

Domains and Functions

Here below, functions on domains in \mathbb{R}^d are considered.

- $\Omega \subset \mathbb{R}^d$ Represents a domain (simply-connected open set) of \mathbb{R}^d .
 - $\overline{\Omega}$ Represents the closure of Ω .
 - $\partial \Omega$ Represents the boundary of Ω , i.e. $\overline{\Omega} \setminus \Omega$.

$$|\Omega|$$
 Represents $\int_{\Omega} \mathrm{d}x.$

- S° Represents the interior of a closed set S.
- ν Represents an outward unit normal defined at the boundary $\partial \Omega$.
- $\boldsymbol{\tau}_1, \cdots, \boldsymbol{\tau}_{d-1}$ Represents the tangent defined at the boundary $\partial \Omega$.
 - κ Represents $\nabla \cdot \boldsymbol{\nu} (d-1 \text{ times the mean curvature})$ defined at the boundary $\partial \Omega$.
 - ∇u Represents the gradient $\partial u / \partial x \in \mathbb{R}^d$ of a function $u : \mathbb{R}^d \to \mathbb{R}$.
 - Δu Represents the Laplace operator $\Delta = \boldsymbol{\nabla} \cdot \boldsymbol{\nabla}$ of a function $u : \mathbb{R}^d \to \mathbb{R}$.
 - $\partial_{\nu} u$ Represents $(\boldsymbol{\nu} \cdot \boldsymbol{\nabla}) u$ defined for a function $u : \Omega \to \mathbb{R}$ at the boundary $\partial \Omega$.
 - $\begin{array}{ll} \partial_{\nu}\boldsymbol{u} & \text{Represents } \left(\boldsymbol{\nu}\cdot\boldsymbol{\nabla}\right)\boldsymbol{u} = \left(\boldsymbol{\nabla}\boldsymbol{u}^{\top}\right)^{\top}\boldsymbol{\nu} \text{ for function } \boldsymbol{u} :\\ \Omega \to \mathbb{R}^{d} \text{ defined at the boundary } \partial\Omega. \end{array}$

- dx, d γ , d ς Represents the measures used in the integration in the domain $\Omega \subset \mathbb{R}^d$, integration in the boundary $\Gamma \subset \partial \Omega$ and integration in the boundary of boundary $\partial \Gamma$.
- ess $\sup_{\mathbf{a}.\mathbf{e}. \mathbf{x} \in \Omega} |u(\mathbf{x})|$ Represents the essential bound of $u : \Omega \to \mathbb{R}$. The letters a.e. mean that it is almost everywhere on the measurable sets.
 - $\begin{array}{ll} \chi_{\Omega} & \text{Represents the characteristic function } \chi_{\Omega} : \mathbb{R}^{d} \to \mathbb{R} \\ & (\chi_{\Omega}\left(\Omega\right) = 1, \, \chi_{\Omega}\left(\mathbb{R}^{d} \setminus \bar{\Omega}\right) = 0) \text{ with respect to a domain } \Omega \subset \mathbb{R}^{d}. \end{array}$

Banach Spaces

Here below, V will be a normed space and X and Y are Banach spaces.

- $\|m{x}\|_V$ Represents the norm of $x \in V$. If there is no confusion, it is written as $||\boldsymbol{x}||$. $f: X \to Y$ Represents a mapping (operator) from X to Y. $f(\boldsymbol{x}): X \ni \boldsymbol{x} \mapsto f \in Y$ Represents a mapping expressing elements. $f \circ g$ Represents the composite mapping f(g). $\mathcal{L}(X;Y)$ Represents the universal set of bounded linear operators from X to Y. $\mathcal{L}^{2}(X \times X; Y)$ Represents $\mathcal{L}(X; \mathcal{L}(X; Y)).$ X'Represents the dual space of X, in other words the universal set $\mathcal{L}(X;\mathbb{R})$ of bounded linear functions on X $\langle \boldsymbol{y}, \boldsymbol{x} \rangle_{X' \times X}$ Represents the dual product of $\boldsymbol{x} \in X$ and $\boldsymbol{y} \in X'$. If there is no confusion, it is written as $\langle y, x \rangle$. $f'(\boldsymbol{x})[\boldsymbol{y}]$ Represents the Fréchet derivative $\langle f'(\boldsymbol{x}), \boldsymbol{y} \rangle_{X' \times X}$ of $f: X \to \mathbb{R}$ at $x \in X$ with respect to an arbitrary variation $\boldsymbol{y} \in X$. $f_{\boldsymbol{x}}(\boldsymbol{x}, \boldsymbol{y})[\boldsymbol{z}], \partial_X f(\boldsymbol{x}, \boldsymbol{y})[\boldsymbol{z}]$ Represents the Fréchet partial derivative $\langle \partial f(\boldsymbol{x}, \boldsymbol{y}) / \partial \boldsymbol{x}, \boldsymbol{z} \rangle_{X' \times X}$ of $f: X \times Y \to \mathbb{R}$ at $(\boldsymbol{x}, \boldsymbol{y}) \in$ $X \times Y$ with respect to an arbitrary variation $z \in X$. $f(\boldsymbol{x}, \boldsymbol{y}) / \partial \boldsymbol{x} \in X'$ is written as $f_{\boldsymbol{x}}(\boldsymbol{x}, \boldsymbol{y})$. $C^k(X;Y)$ Represents the universal set of the $k \in \{0, 1, \dots\}$ -th Fréchet differentiable mappings.
 - $C_{\mathrm{S}'}^k(X;Y)$ Represents the universal set of the $k \in \{0, 1, \cdots\}$ -th shape differentiable mappings.

Notation

- $C^k_{\mathcal{S}'}\left(X;Y\right) \quad \text{Represents the universal set of the } k \in \{0,1,\cdots\}\text{-th shape differentiable mappings.}$
- $C^k_{\mathbf{S}^*}\left(X;Y\right) \quad \text{Represents the universal set of the } k \in \{0,1,\cdots\}\text{-th} \\ \text{partial shape differentiable mappings.}$

Function Spaces

Here below, Ω is a domain in \mathbb{R}^d .

$C\left(\Omega;\mathbb{R}^n\right), C^0\left(\Omega;\mathbb{R}^n\right)$	Represents the universal set of the continuous function $\boldsymbol{f}: \Omega \to \mathbb{R}^n$ defined on Ω .
$C_{\mathrm{B}}(\Omega;\mathbb{R}^{n}), C_{\mathrm{B}}^{0}(\Omega;\mathbb{R}^{n})$	Represents the universal set of bounded functions in $C(\Omega; \mathbb{R}^n)$.
$C_0\left(\Omega;\mathbb{R}^n\right)$	Represents the universal set of $\boldsymbol{f} \in C(\Omega; \mathbb{R}^n)$ such that the support of \boldsymbol{f} becomes a compact set of Ω .
$C^k\left(\Omega;\mathbb{R}^n\right)$	Represents the universal set of $\boldsymbol{f} \in C(\Omega; \mathbb{R}^n)$ for which up to the $k \in \{0, 1, \dots\}$ -th derivative of \boldsymbol{f} belongs to $C(\Omega; \mathbb{R}^n)$.
$C^k_{\mathrm{B}}\left(\Omega;\mathbb{R}^n\right)$	Represents the universal set of $\boldsymbol{f} \in C^k(\Omega; \mathbb{R}^n)$ for which up to the k-th derivative of \boldsymbol{f} belongs to $C_{\mathrm{B}}(\Omega; \mathbb{R}^n)$.
$C_0^k\left(\Omega;\mathbb{R}^n\right)$	Represents $C^{k}(\Omega; \mathbb{R}^{n}) \cap C_{0}(\Omega; \mathbb{R}^{n}).$
$C^{k,\sigma}\left(\Omega;\mathbb{R}^n\right)$	Represents the universal set of $\mathbf{f} \in C^k(\Omega; \mathbb{R}^n)$ for which up to the k-th derivative of \mathbf{f} is a Hölder contin- uous function with the Hölder index $\sigma \in (0, 1]$. When $k = 0$ and $\sigma = 1$, the function is said to be Lipschitz continuous.
$L^p\left(\Omega;\mathbb{R}^n ight)$	Represents the universal set of p -th powered Lebesgue integrable functions $\boldsymbol{f}: \Omega \to \mathbb{R}^n$ for $p \in [1, \infty)$, and the universal set of functions which are essentially bounded for $p = \infty$.
$W^{k,p}\left(\Omega;\mathbb{R}^n\right)$	Represents the universal set of functions for which up to the $k \in \{0, 1, \dots\}$ -th derivative belongs to $L^p(\Omega; \mathbb{R}^n)$.
$W_{0}^{k,p}\left(\Omega;\mathbb{R}^{n} ight)$	Represents the closure of $C_0^{\infty}(\Omega; \mathbb{R})$ in $W^{k,p}(\Omega; \mathbb{R})$.

- $H^k(\Omega; \mathbb{R}^n)$ Represents $W^{k,2}(\Omega; \mathbb{R}^n)$.
- $H_0^k\left(\Omega;\mathbb{R}^n\right) \quad \text{Represents } W_0^{k,2}\left(\Omega;\mathbb{R}^n\right).$