Special Mathematics Lecture Differential geometry

Table of content

Ι	Differentiable manifolds	1
I.1	Topological manifolds	1
I.2	Smooth manifolds	5
I.3	Tangent space	7
I.4	Vector fields	10
II	Tensors, tensor fields and differential forms	13
II.1	Tensors	13
II.2	Tensor fields	16
II.3	Differential forms and exterior derivative	18
II.4	Orientation on a manifold	20
III	Integration on manifolds	23
III.1	Integration of n-forms	23
III.2	Line integrals	24
IV	Riemannian manifolds	26
IV.1	Definition and basic properties	26
IV.2	Differentiation	28
IV.3	Geodesics	33
V	Curvature	35
V.1	Several curvatures	35
V.2	Equation of structure	37
V.3	Holonomy for a connected Riemannian manifold	38
VI	General relativity	41

Handwritten notes taken by L. Zhang

Differential Geometry Extrinsic / Intrinsic ways to study DG (they're not so different) from outside of on the manifold the manifold Extrinsic to look at curves or surfaces from outside in a bigger space (in Calculus II) simple for visualization Intrinsic: no more any ambiant space, like a 2D animal in a flatland with without a 3rd dimension, useful in general relativity & universe (mostly used in this course) (not always one more) However, a manifold can always embedded in a higher dimensional space (Nash embedding thm) I) Differentiable manifolds I.1 Topological manifolds (+ topology) Def. a TOPOLOGICAL MANIFOLD of dimension n is a topological space M s.t. 1) M is Hausdorff 2) Any $p \in M$ has a neighborhood V homeorphic to an lopen set $U \subset \mathbb{R}^n$. 3) M is second countable. curly T Def. a TOPOLOGICAL SPACE $\mathcal{M} = (\mathcal{M}, \mathcal{J})$ is a set M together with a collection J of subsets satisfying: 1) $\phi, M \in \mathcal{J}$ 1) φ , $f \in J$ 2) If $V_a \in J$, then $\bigcup V_a \in J$ (J is STABLE FOR ARBITRARY UNION) \square printersection $x \notin I$ 3) If $V_1, \dots, V_n \in \mathcal{I}$, then $\bigcap_{i=1}^{n} V_i \in \mathcal{I}$ UNDER FINITE INTERSECTION) The elements of J are called the OPEN SETS. Their complement $(M \setminus V, V \in J)$ is called a CLOSED SET. Def. Let (M, T) be a topological space (t.s.), and let $p \in M$. eJ. a NEIBORHOOD of p is any open set containing p. Po neiborhoods of D We write Vp for the set of all neighborhoods of p. M Def (M, J) is HAUSDORFF if V2 $\forall p_1, p_2 \in \mathcal{M}, p_1 \neq p_2 : \exists V_1 \in \mathcal{V}_{P_1}, V_2 \in \mathcal{V}_{P_2} : V_1 \cap V_2 = \phi$ P. Po Hausdorff It is often difficult to describe all open sets in (M, J) ⇒ Introduce the notion of a basis. (related to second Countable) 1

Def. A subset
$$B:=\{V_a\}\in J$$
 is a BASIS of (M, J) if
 $V_p \in M \vee V \in V_p$ $\exists U \in B$, $p \in U \in V$
Example $M = \mathbb{R}^n$ with $J = \{all open sets in $\mathbb{R}^n\}$ is a topological manifold.
An OPEN SET in \mathbb{R}^n is a set V st. $\forall p \in V$:
there is a small ball centered at p and contained in V .
We set $B(p, r) = a$ ball centered at p and of radius r .
 $B(p, r) = \{z \in \mathbb{R}^n | | | z - p | | < r\}$
Then (all balls centered at any point)
 $B:=\{B(z, r)| x \in \mathbb{R}^n, r > 0\}$ is a basis for \mathbb{R}^n . if in a to 1 (objective) relation
 $\mathbb{P}[(M, J) \text{ is SECOND CONNTABLE if it has a countable basis for \mathbb{R}^n .
 $\Rightarrow \mathbb{R}^n$ is second countable.
 $B:=\{B(z, \frac{1}{2})| x \in \mathbb{Q}^n, n \in \mathbb{N}\}$ and it is a countable basis for \mathbb{R}^n .
 $\Rightarrow \mathbb{R}^n$ is second countable.
 $\mathbb{P}[Let((M, J), (M, S)]$ be 2 t.s., and let $f: M \mapsto M$.
 f is continuous if $f^{-1}(U) = f \neq M = f$
with the PRE-made $f^{-1}(U) = E[p \in M]f(p) \in U]$.
Exersise: When $M = N = \mathbb{R}$ and $J = S = \{\text{open sets in } \mathbb{R}\}$, check if
this def corresponds to the $z - S$ def of continuous;
we say that f is HOMEOMORPHIC.
Summary
 M is CONNECTED if it is not the disjoint union of 2 non-empty open sets.
 $M = f(M, is CONNECTED if it is not the disjoint union of 2 non-empty open sets.$$$

Def. Let A be a subset of M. 1) An OPEN COVER for A is a subfamily $\{V_d\} \subset J$ s.t. $A \in \bigcup V_d$ infinite 2) a SUBCOVER of an open cover for A (in which the green subsets are unnecessary) is a subfamily $\{V_{\beta}\} \subset \{V_{\alpha}\}$ which still covers A. 3) A is COMPACT (small in this setting) if any open cover of A admits a finite subcover $(If A = \mathbb{R}^n, A \text{ is compact iff } A \text{ is closed and bounded})$ (N, J) topo. space J:= {[a,b] AN | a is not odd and b is not even i a < b i a, b ∈ NU{eo}} $\mathcal{T} := \{ \mathbf{I} \mid \mathbf{I} = \bigcup \mathbf{I}_a, \forall a : \mathbf{I}_a \in \mathcal{T}_o \} \cup \{ \phi \}$ J == {(U[Aa, Ba]) ∩ N) Va: Aa is not odd and Ba is not even; Aa < Ba; Aa. Ba ∈ NU{00}} $\cup \{\phi\}$ 3

Date 2018 10 10	
<u> </u>	· · · · · · · · · · · · · · ·
In the example on P_2 , $B = \{B(x)\}$	$(x, \frac{1}{m}) x \in Q^n, m \in \mathbb{N} \}$
Let us define a half-space	A A A A A A A A A A A A A A A A A A A
$H^{n} := \left\{ (x_{1}, \cdots, x_{n}) \in \mathbb{R}^{n} \middle x_{n} \right\}$	≥0}
$\partial H^n := \{(x_1, \cdots, x_n) \in \mathbb{R}^n \mid x_n\}$	= 0} for the boundary.
Def. a TOPOLOGICAL MANIFOLD of	dimension n with a boundary
is a Hausdoff second-countable	topological space M
with each point $p \in M$ havi	ing a neighborhood V
eighter homomorphic to an ope	in subset of H"\dHn
	en subset of H" with the image of p inside JH".
Remark: If (M,J) is a topo.	CITIC
Then the topology on A is given	ven by $J_A := \{ V \cap A V \in J \}$
(called RELATIVE or SUBSF	
\triangle An open set for $A(in J_A)$ is	not always an open set for M (in T).
C-A M	H ⁿ / /
78	SS Vopen
TAP ETA	open $\partial H^n \times_n$
· · · · · · · · · · · · · · · · · · ·	

	1 ML /.
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	

1.2 Smooth manifolds & Smooth maps
Def. a SMOOTH (or C⁰⁰) MNNIFOLD M is a tope monifold
tagether with a family of homeomorphisms

$$\varphi_{a}: \mathbb{R}^{*} \supseteq U_{a} \rightarrow M$$
 s.t.
1) $y_{a}(U_{a}) = M$
a) If $\varphi_{a}(U_{a}) = M$
($\varphi_{a}^{*} \circ \varphi_{a}^{*} \circ \varphi_{a}^{*} (V_{a}) \rightarrow \varphi_{a}^{*} (V_{a})$
(TRANSITION FUNCTIONS)
 $(\varphi_{a}^{*} \circ \varphi_{a}^{*} \varphi_{a}^{*} (V_{a}) \rightarrow \varphi_{a}^{*} (V_{a})$
area of C⁰⁰ (from a subset of \mathbb{R}^{*} to a subset of \mathbb{R}^{*}).
3) The family $\mathcal{A} = \{(U_{a}, \varphi_{a})\}_{a}$ is maximal.
A is called a C⁰⁰ (MAXIMAL ATLAS.
3) (D_{a})
MAXIMAL: If $\varphi : U \rightarrow M$ satisfies $\varphi^{*} \circ \varphi_{a}$ and $(\varphi_{a}^{*} \circ \varphi$ (whenever defined) is smooth
then $(U, Q) \in \mathcal{A}$.
Remork is to fore easy to describe on atlas, but not the maximal ore.
 $\circ A$ topological manifold can be endowed with different insolvabet maximal atlases.
(see the P, on today's handowt) (very dep)
INEQUIVALENT: take 2 max atlases, if the union is not an atlas (some transision
functions are not C⁰⁰) then the 2 axlases are not equivalent.
Exercises
1) Provide an example of smooth manifolds with an atlas.
 $Grasphere, group of matrices, Lie groups, real projective space P(\mathbb{R}^{*}), etc)$
2) Show the uniqueness of the maximal atlas.
 $g^{*}(P) = (\chi'(p), \chi'(p), \dots, \chi^{*}(p)) =$
and call it a LOCAL COORDINATE of p. It means
 $\varphi^{*}(P) = (\chi'(p), \chi'(p), \dots, \chi^{*}(p)) =$
and homeomorphism from an open subset of M to an open subset of \mathbb{R}^{*} .

Def: Let
$$\mathcal{M}$$
. \mathcal{M} be smooth manifolds of dim m and n respectively.
A map $f: \mathcal{M} \to \mathcal{N}$ is a SMOOTH MAP if
 \forall charts (U, Q) of \mathcal{M} and (V, Ψ) of \mathcal{N} .
 $\psi \circ f \circ q^{-1}$ is smooth wherever defined.
The function $\psi \circ f \circ q^{-1}$ is called a LOCAL REPRESENTATION
 $\forall e$ set $C^{\infty}(\mathcal{M}, \mathcal{N}) = the set of such smooth functions.
of f .
 $d \subset C^{\infty}(\mathcal{M}, \mathcal{N}) = C^{\infty}(\mathcal{M}, \mathbb{R}).$
Def. If $f \in C^{\infty}(\mathcal{M}, \mathcal{N})$ is bijective and if $f^{-1} \in C^{\infty}(\mathcal{M}, \mathcal{M})$, we call f a DIFFEOMORPHISM.
Remore $k :: a$ diffeomorphism is also a homeomorphism.
 $\cdot A$ map $f: \mathcal{M} \to \mathcal{N}$ is a LOCAL DIFFEOMORPHISM at $p \in \mathcal{M}$ if
 $\exists V \in \mathcal{V}_p$ and $W \in \mathcal{V}_{f(p)} : f|_V : V \to W$ is a diffeomorphism.
Def. Let $f: \mathcal{M} \to \mathcal{N}$ is a smooth function and let $(U, Q) (V, \Psi)$ be charts of \mathcal{M} & \mathcal{N} respectively.
For $p \in \mathcal{M}$, the RANK of f at $p (=: rank(f)_p)$ corresponds to
the rank of the Jacobian matrix
 $\begin{pmatrix} \partial \mathcal{F}_{1} & \cdots & \partial \mathcal{F}_{1} \\ \partial \mathcal{F}_{2} & \cdots & \partial \mathcal{F}_{1} \\ \partial \mathcal{F}_{2} & \cdots & \partial \mathcal{F}_{2} \\ \partial \mathcal{F}_{2} & \cdots & \partial \mathcal{F$$

I.3 Tangent Space

Recall that a PARAMETRIC SURFACE in \mathbb{R}^3 is a map $\mathfrak{m}: \mathbb{R}^2 \supset \Omega \mapsto \mathbb{R}^3$ Set $M = m(\Omega)$. For $p \in M$ and $c: (-\varepsilon, \varepsilon) \mapsto M \subset \mathbb{R}^3$ with c(0) = p and if c is smooth, V=C'(O) is TANGENT to M at p. The set of all such vectors generate the TANGENT PLANE. Intrinsively, if M is a smooth manifold and if (U, φ) a chart at $p \in M$, then we could set $v = \frac{d}{dt} ((p \circ c)) (0) \in \mathbb{R}^n$ and call it a tangent vector. (well-defined) R" HMH (-E,E) But it depends too much on the choice of a chart. Def. For $p \in M$ (a s.m.) we denote by $C^{\infty}(p)$ the EQUIVALENCE CLASS of smooth functions defined on a neighborhood of p. rare identically same Two functions are identified if they coincide on a neighborhood of p. The elements of $C^{\infty}(p)$ are called GERMS of C^{∞} -function at p. Observations: $C^{\infty}(p)$ is a vector space with the multiplication of functions ⇔ C[∞](p) is an algebra. Def. The TANGENT SPACE Tp(M) of M at p is the set of all maps $X_{\nu}: C^{\infty}(p) \mapsto \mathbb{R}$ satisfying 1) $X_p(\alpha f+g) = \alpha X_p(f) + X_p(g) \quad \forall f,g \in C^{\infty}(p), \forall \alpha \in \mathbb{R}$ 2) $X_p(fg) = X_p(f) \cdot q(p) + f(p) \cdot X_p(g) \quad \forall f, g \in C^{\infty}(p) \text{ (Leibnitz's rule)}$ Tp (M) is endowed with F*(Xp)ETF(p)(N) 1) $(X_{p}+Y_{p})(f) := X_{p}(f) + Y_{p}(f)$ · P F(p) 2) $(\alpha X_{p})(f) = \alpha X_{p}(f)$ which makes Tp(M) a real vector space. \triangle A tangent vector at p is any $X_p : C^{\infty}(p) \mapsto \mathbb{R}$. Observe that this def is indep of any chart, and is intrusic. Thm. PF (FG) (proof as exercise) (simple) Let $F: M \mapsto N$ be a smooth map between smooth manifolds. For any $p \in M$: $F^* : C^{\infty}(F(p)) \mapsto C^{\infty}(p), F^*(f) := f \circ F$ $F * : T_{P}(\mathcal{M}) \mapsto T_{F(\mathcal{V})}(\mathcal{N}), [F_{*}(X_{P})](f) := X_{P}(F^{*}(f)) = X_{P}(f \circ F) \quad \forall f \in C^{\infty}(F(P))$ Then F^* is a homomorphism of algebra $(F^*(f+\alpha g) = F^*(f) + \alpha F^*(g), F^*(fg) = F^*(f) F^*(g))$ and F_* is a homomorphism of svector space. $(F_*(X_p + \alpha Y_p) = F_*(X_p) + \alpha F_*(Y_p))$ If $H = G \circ F$, $H^* = F^* \circ G^*$ and $H_* = G_* \circ F_*$ 7

F* is called the DIFFRENTIAL of F and also denoted by dF=DF=F' Now consider a local version of this result, with $N = |\mathbb{R}^n$. Let $p \in M$ and (U, q) a coordinate system (= a chart) at p Then $\varphi_* : T_p(M) \mapsto T_{\varphi(p)}(\mathbb{R}^n)$ is a homomorphism $\forall p \in U$ If $a := \varphi(p) \in \varphi(U)$, then $\varphi^{-i} * : T_a(\mathbb{R}^n) \mapsto T_p(M)$ is a homomorphism It implies that c_{p*} and $c_{p}^{-1}*$ are isomorphisms. We can borrow information from $T_{\alpha}(\mathbb{R}^{n})$ $p:C^{\infty}(\alpha) \mapsto \mathbb{R}$ p There exists one unique Lemma: $\forall X_{\alpha} \in T_{\alpha}(\mathbb{R}^{n}) \exists ! v \in \mathbb{R}^{n} s.t.$ $X_{\alpha}(f) = \sum_{j=1}^{n} v_{j} \left(\frac{\partial F}{\partial X_{j}} \right)(\alpha) = v \cdot \left[\nabla f \right](\alpha) = \left[D_{v} f \right](\alpha) \text{ (directional derivative)}$ and any $v \in \mathbb{R}^n$ defines an element of Ta (\mathbb{R}^n) by Xa = Dv. In other words $T_{\alpha}(\mathbb{R}^{n}) \ni X_{\alpha} \xleftarrow{\text{bijective}}_{\text{less simple}} v \in \mathbb{R}^{n}$ $\xleftarrow{\text{less simple}}_{\text{simple}}$ (to prove) We conclude that Ta (IR") is of dim n. A basis of Ta (R") is given by $\{\frac{\partial}{\partial x_1}|_a, \frac{\partial}{\partial x_2}|_a, \cdots, \frac{\partial}{\partial x_n}|_a\}$ which can be written by $E_{i,a} = \frac{\partial}{\partial x_i} |_a$ with $\{E_{i,a}\}_{i=1}^n$ a basis of $T_a(\mathbb{R}^n)$ \Rightarrow For any coordinate system (U, φ) on M, the image $\{\varphi_*^{-1}(\frac{\partial}{\partial x_i}|_n)\}$ is a basis of $T_{\varphi_*^{-1}(\alpha)}(M)$. We also write $E_{i,p} = \varphi_*^{-1}(\frac{\partial}{\partial x_i}|_{a})$ and call these bases the COORDINATE FRAMES. In summary: The tangent space is indep of any coordinate systems, but once one is given it provides a natural choice of a basis, namely if $f \in C^{\infty}(p)$, then $E_{i,p}(f) = \left[\varphi_{*}^{-1}\left(\frac{\partial}{\partial x_{i}}\right)\right](f) = \left[\frac{\partial}{\partial x_{i}}\left(f \circ \varphi^{-1}\right)\right](\varphi(p))$ Exercise: if (V, 1/) is another coor. system, what are the relations between these bases? Corollory: If F: MHN is smooth and if DEM, the rank of F at p is equal to the dim of $F_*(T_P(M))$ in $T_{F(P)}(N)$ (another def of rank indep of the coor. systems) 8

Back to curves: pare smooth manifolds Consider $c: (-e, e) \mapsto M$ a smooth map. Junit vector On $(-\varepsilon,\varepsilon)$ all tangent vector at $t_0 \in (-\varepsilon,\varepsilon)$ are given by $v \frac{d}{d\varepsilon}|_{t_0}$ for $v \in \mathbb{R}$ Then $C_*\left(\frac{d}{dt}\Big|_{t_0}\right)f = \frac{d}{dt}(f \circ c)$ $(t_o) = : \bigoplus (f \in C^{\infty}(c(t_o)))$ If (U, φ) is a coor. system at $c(t_0)$ and if we set $c^{i} := (\varphi \circ c)^{i} \quad \forall i = 1, \dots, n$ $= \sum_{j=1}^{n} \frac{\partial f \circ \varphi^{-1}}{\partial X_{j}} (\varphi \circ c(t_{0})) C^{j'}(t_{0}) = \sum_{j=1}^{n} C^{j'}(t_{0}) E_{j,c(t_{0})}(f) \in T_{c(t_{0})}(M)$ $\Rightarrow A \text{ curve defines an element of } T_{c(t_{0})}(M)$ IR The converse . c(to) Lemma For any pEM and any XpETp(M). u $\exists c: (-\varepsilon, \varepsilon) \mapsto \mathcal{M}$, smooth and with $c(0) \models = p$, s.t. Q.OC $C_* \left(\frac{d}{dt} \Big|_{t=0} \right) = X_P$ 9

ato 18 10 24	
4 Vector fields	
Ve consider a map $X: \mathcal{M} \mapsto \bigcup_{p \in \mathcal{M}} T_p$	(M),
$p \mapsto \chi_p \in $	Γ _P (M)
low can one impose some smoothnes	s on X?
1 st solution: (best) (too abstract)	
consider T(M) = U Tp(M) with	ch a certain topology making a smooth manifold.
T(M) is called TANGENT BUNI	$DLE \rightarrow$ describe this: exercise for mathematiciens.
Then consider X as a smooth	map between smooth manifolds.
2 nd solution:	
for a coordinate system (U, φ) or	
we consider the basis $\{E_{j,p}\}_{j=1}^n$	
Then $X_p \in T_p(M)$ and $X_p = \sum_{j=1}^{m}$	of (p) E; p (a decomposition of Xp on this basis)
By moving p in U, the coefficie	nts a; (p) is also varying.
So we can impose that	NACAS AND BREAK AND AND MENDAL
$\mathbb{R}^n \supset \varphi(U) \ni x \xrightarrow{\mu} (\alpha \circ \varphi^{-1})(x)$	
This requirement \Leftrightarrow first solution	
Def. a C [∞] -VECTOR FIELD on M	(4(U) (P)
is a map $X: \mathcal{M} \mapsto \mathcal{T}(\mathcal{M})$	\mathbb{R}^n \mathbb{U} \mathbb{M}
whose components a; in the	
coordinate frame {Ei,p} of any c	oordinate system satisfy
$\mathbb{R}^n \supset \varphi(U) \ni x \longmapsto (d \circ \varphi^{-1})($	
The set of all Coo-vector field	is is denoted by $\underline{\mathscr{K}}(\mathcal{M})$.
Lemma: $X: M \mapsto T(M)$ is a C^{∞} -	
	$R, [Xf](p) = [Xf]_p := X_p f \text{ is smooth}.$
(another equivalent def) (could b	e an exercise)
Observe that in this lemma, X can	
$C^{\infty}(M) \ni f \xrightarrow{X} X f \in C^{\circ}$	
Remark: X(M) is a vector space	and has an additional structures:

1) × (M) is a C[∞](M)-MODULE
:
$$\Rightarrow \forall f \in C^{∞}(M) \forall X \in X(M) : if X \in X(M) defined by [fX]_p = f(p) X p$$

2) × (M) is a Lie-algebra (very important)
: $\Rightarrow We can endow × (M) with a Lie bracket:
: $x(M) \times X(M) \to X(M)$ given by
(X , Y) $\rightarrow (X,M)$ given by
(X , Y) $\rightarrow (X,M)$ given by
(X , Y) $\rightarrow (X,M)$ is $XY - YX$ satisfying
i) linearity in each element
ii) antisymmetry: $[X,Y] = [Y, X]$
iii) Jacobi identity $[X, (Y,Z]] = [Y, LZ, X]] = [Z, [X, Y]]$
Exercise: show that 1) and 2) hold
In particular check that $[X,Y]_p$ satisfies Leibniz's rule.
Recall that for any $X p \in Tp(M) \exists c: (-\varepsilon, \varepsilon) \rightarrow M$ with $c(0) = p$ and
 $\dot{c}(0) := C_x (\frac{d}{dt}|_{t=0}) = X_p$
Thm. Let M be a smooth manifold and $X \in X(M)$.
 $\forall p \in M \exists c_p: (-\varepsilon, \varepsilon) \rightarrow M$ with $c_t(0) = p$ and $\dot{c}_t(t) = X_{c_t(t)}$.
Remarks: The curve c_t is called the INTEGRAL CURVE of X at p.
and we call $c_t((-\varepsilon, \varepsilon))$ the ORBITAL of p.
Menever it is well-defined, the following relation holds:
 $C_p(s+t) = C_{c_t(t)}(s)$
Thm. The orbit of p is either the single point p or an immersion of $(-\varepsilon, \varepsilon)$ in M.
 $f(X_p = 0)$ $f(X_p + 0)$
Thm. For any $x \in X(M)$ and any $p \in M \exists V \in V_{c_t}, \varepsilon > 0$ and a smooth map
 $F: (-\varepsilon, \varepsilon) \times V \rightarrow M$ satisfying
 $F(0, 0, 0) = q \in V$ and $F(t, 0) = X_{F(u,q)}$ $\forall \frac{t \in (-\varepsilon, \varepsilon)}{t_{c_t}}$
The map F is called the LOCAL FLOW of X at p. Note that $F(t,p) = c_p(t)$
Def. Let $X \in X(\Lambda)$ and $p \in M$. If $X_p = 0$ then p is called a SINGULAR POINT of the
vector field. Since $c_p(t) = p$ the p is scalled a SINGULAR POINT of the
vector field. Since $c_p(t) = p$ the topology. Nice subject but we can't go further.
The possible behaviors depend on the topology. Nice subject but we can't go further.$

Def. A C[∞]-vector field is COMPLETE if at any pEM, cp is defined on all R. A complete vector field can contain some singular points. Thm. Any C[∞]-vector field on a compact manifold is complete. Remark: Let $X \in X(M)$, $p \in M$ and C_p the corresponding integral curve. Then for any f∈ C∞(p): $X_{p}f = \frac{d}{dt} f(c_{p}(t))|_{t=0} = \lim_{t \to 0} \frac{f(c_{p}(t)) - f(p)}{t}$ If $f \in C^{\infty}(M, \mathbb{R})$ recall that $Xf \equiv L_X f$ is defined by $[Xf]_p = Xpf$ L called the LIE DERIVATIVE of f interpreted as the derivative of f in the direction given by X. If $Y \in X(M)$, the Lie derivative $L_X Y \in X(M)$ of Y is defined by $[L_{X}Y]_{p} := \lim_{t \to 0} \frac{1}{t} \left(\begin{array}{c} F(-t, \cdot) : F \lor V_{p} \\ F(-t, \lor V_{c_{p}}(t))_{*} \lor C_{p}(t) - \Upsilon_{p} \right) \\ \in V_{c_{p}}(t) \quad \downarrow \in T_{c_{p}}(t) (M) \end{array}$ TP(M) + Tcp(t) (M) Lemma: $L_X Y = [X, Y]$ 12

-	13
-	Same def for $\phi \in \mathcal{T}_{s}(V)$.
	(for example if $\phi(v_1, v_2) = -\phi(v_2, v_1)$)
1	and ALTERNATING if it changes the sign under the permutation of 2 arguments.
-	(for example if $\phi(v_1, v_2) = \phi(v_2, v_1)$)
	Def. A tensor $\phi \in J^{r}(V)$ is SYMMETRIC if invariant under the permutation of 2 argum
	⚠ This product is not commutative!
	$\phi_1 \otimes \phi_2(v_1, \cdots, v_r, \omega_1, \cdots, \omega_5) := \phi_1(v_0, \cdots, v_2) \phi_2(\omega_1, \cdots, \omega_2)$
-	$\phi_1 \otimes \phi_2 \in \mathcal{J}_{\mathfrak{s}}^{\varsigma}(V)$ with
-	If $\phi_1 \in \mathcal{J}_{\circ}^{r}(V) =: \mathcal{J}_{\circ}^{r}(V), \phi_2 \in \mathcal{J}_{\circ}^{\circ}(V) =: \mathcal{J}_{\circ}(V)$, then
	Similar def for $\phi_j \in \mathcal{T}_{s_j}^{\circ}(V), j = 1, 2$ Ser Ser
ľ	$\phi_1 \otimes \phi_2 (v_1,, v_r, v_{r_1+r_2}) = \phi_1 (v_1,, v_{r_1}) \phi_2 (v_{r_1+1},, v_{r_1+r_2})$
	$\phi_1 \otimes \phi_2 \in \mathcal{T}_0^{r_1 + r_2}(V)$ with
	Remark: If $\phi_j \in \mathcal{J}_{j}^{r_j}(V), j = 1, 2$, we set
1	emma: J; (V) is a vector space of dim n ^{r+s} . (exercise)
	2) $\gamma = 1$, $s = 1$: $\phi(v, \omega) \equiv \omega(v) \equiv \langle \omega, v \rangle$ scalar product
	1) $r = 1, s = 0$: $\phi : V \mapsto \mathbb{R}$ is an element of $V^* = \mathcal{T}_{\delta}^{\prime}(V)$
	Examples
	We write $\phi \in \mathcal{T}_{s}^{r}(V) = \mathcal{T}^{r,s}(V, V^{*})$
	We say that ϕ is r-times COVARIANT and s-times CONTRAVARIANT.
	$\phi(v_1, \alpha v_2 + \beta v_2, \omega_1) = \alpha \phi(v_1, v_2, \omega_1) + \beta \phi(v_1, v_2, \omega_1)$
	e.g. rterms sterms EVXV PEV*
	$\phi: \underline{\vee} \times \underline{\vee}$
	Def. a TENSOR ϕ on V is a multilinear map
	Prop. If dim V=n, then dim V* = n
	a LINEAR FUNCTIONAL on V)
	$(= \text{ the set of all linear maps } V \mapsto \mathbb{R}$, such a map is called
	: Let V be a finite dimensional and real vector space (\mathbb{R}^n) and let V* be its DLIAL
	I.1 Tensors [Bo 199-214] [GN 62-69]

We write
$$\Sigma^{r}(v)$$
 for the set of symmetric tensors in $\mathcal{T}^{r}(v)$
and $\Lambda^{r}(v)$ for " alternating " $\mathcal{T}^{r}(v)$.
Note that $\Sigma^{r}(v)$ and $\Lambda^{r}(v)$ are vector spaces.
Let S_{k} denote the group of all permutation of $\{1, \cdots, k\}$
 $\sigma \in S_{k}$ if σ is a bijective map from $\{1, \cdots, k\}$ to itself
with $(1, \cdots, k) \mapsto (\sigma(v), \cdots, \sigma(k))$
We set $sgn(\sigma) = 1$ if σ corresponds to an even number of transposition,
and $sgn(\sigma) = -1$ if σ defined $T^{n}(v) \mapsto \mathcal{T}^{n}(v)$ by
 $[S\varphi](v_{1}, \cdots, v_{n}) := \frac{1}{n!} \sum_{\substack{i=0 \\ i=0 \\ i$

What about $\Lambda(V)$? The product \otimes class not generate alterating tensor Def. For $\phi \in \mathcal{J}^{r}(V)$ and $\psi \in \mathcal{J}^{s}(V)$ we set Onve Jr+s (V) with $\phi \wedge \psi := \frac{(r+s)!}{r! s!} A(\phi \otimes \psi)$ called EXTERIOR PRODUCT or WEDGE PRODUCT Lemma, the Wedge product is bilinear and associative. Corollory: $\Lambda(V)$ with the wedge product is an associative algebra L called EXTERIOR or GRASSMAN ALGEBRA over V its Lemma. If $\phi \in \Lambda^r(V)$ and $\psi \in \Lambda^s(V)$ then $\phi \land \psi = \epsilon_1)^{rs} \psi \land \phi$ Thm. If dim V=n 1) If r > n, then $\Lambda^r(V) = 0$ 2) If $0 \le r \le n$, then dim $\Lambda^r(V) = \binom{n}{n} := \frac{n!}{r!(n-r)!}$ In particular if r=n, dim $\wedge^{n}(v) = 1 \Rightarrow$ unicity of det 3) dim $\Lambda(v) = 2^n$ (Next time : $\mathcal{M} \mapsto \bigcup_{p \in \mathcal{M}} \mathcal{N}(T_p : \mathcal{M})$) I.2 About bases Recall that if {E1,..., En} is a basis of V, then J! basis {q1,..., qn} of V* s.t. $\varphi_j(E_k) = S_{jk} := \{0, otherwise\}$ $\Rightarrow \forall v \in V : v = \sum_{j=1}^{n} \varphi_j(v) E_j$ We call { $\varphi_1, \dots, \varphi_n$ } the DUAL BASIS. Consider M a smooth manifold, and (U, q) a local chart. For any $p \in U$ a basis of $T_P(M)$ is given by the coordinate frame $\{E_{1,P}, \dots, E_{n,P}\}$ with $E_{j,p} \coloneqq \varphi_{*}^{-1} \left(\frac{\partial}{\partial x_{j}} | \varphi_{(p)} \right)$ Thus if we consider the dual space $T_p(M)^* \equiv T_p^*(M)$ there exists a dual basis for $\{E_{1,P}, \dots, E_{n,P}\}$, usually denoted by $\{(dx^j)_P\}_{j=1}^n$ Justification for the notation (change of point of view) Let $f \in C^{\infty}(p)$ and $X \in T_p(M)$. We set $(df)_p(X_p) := X_p f \in \mathbb{R}$ and in particular $(df)_{p}(E_{j,p}) = \left[\varphi_{*}^{-1}\left(\frac{\partial}{\partial x_{j}}\right|\varphi_{(p)}\right](f) = \left[\frac{\partial}{\partial x_{j}}\left(f \circ \varphi^{-1}\right)\right](\varphi_{(p)})$ $= \frac{\partial}{\partial x_i} (x^i)(\varphi(p)) = \delta_{ij}$ If we choose $f = \varphi^i : V_p \ni V \mapsto \mathbb{R} \Rightarrow$ Observe that $(df)_p : T_p(M) \mapsto \mathbb{R}$ is linear, and thus an element of $T_p^*(M)$ \Rightarrow (dqⁱ)_p is an element of the dual basis. 15

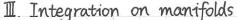
No. <u>6</u>
Dato 18 11 7
If $\mathcal{M} = \mathbb{R}^n$ coef on a basis
then $\varphi = identity$, and if $f \in C^{\infty}(p)$ then $(df)_p = \sum_{j=1}^{n} \lambda_j (dx^j)_p$ with
$\lambda_i = E_{p,i}(f) = \frac{\partial f}{\partial x^i}(p)$
$\Rightarrow (df)_{p} = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} (p) (dx^{i})_{p}$
Corresponds to $df = \frac{\partial f}{\partial x^{1}} dx' + \frac{\partial f}{\partial x^{2}} dx^{2} + \dots + \frac{\partial f}{\partial x^{n}} dx^{n}$, seen in Calculus I.
Corresponds to $a_1 = \frac{1}{2x^1} dx = \frac{1}{2x^2} dx = \frac{1}{2x^2} dx$
I.2 Tensor field
Recall that a vector field is a map
$X: \mathcal{M} \mapsto \bigcup_{P \in \mathcal{M}} T_P(\mathcal{M}) \equiv T(\mathcal{M}).$
Def. a (r,s)-TENSOR FIELD on M is a map
$\phi: M \longrightarrow H_{n-M} T_{n}^{r}(T_{n}(M))$
$p \mapsto \phi(p) \in J_s^r (T_p(M))$ of dimension n if dim $M = n$
Examples
1) A vector field $X: \mathcal{M} \mapsto \mathcal{T}(\mathcal{M})$ is a (0,1)-tensor field. Indeed:
a (0,1)-tensor field & is a map
$\phi: \mathcal{M} \mapsto \bigcup_{p \in \mathcal{M}} \mathcal{I}_{i}^{o}(\mathcal{T}_{p}(\mathcal{M}))$ an exercise
linear map from $T_p^*(M)$ to $\mathbb{R} \Rightarrow \text{element of } T_p^{**}(M) = T_p(M)$
2) Reciprocally, a (1,0)-tensor field ϕ is a map
$\phi: \mathcal{M} \mapsto U_{pen} \mathcal{T}'_{o}(\mathcal{T}_{p}(\mathcal{M})) = U_{pen} \mathcal{T}^{*}_{p}(\mathcal{M})$
linear map from $T_p(\mathcal{M})$ to $\mathbb{R} \Rightarrow$ element of $T_p^*(\mathcal{M})$
Upen Tp (M) is called a COTANGENT BUNDLE. (exercise: it's a smooth manifold)
In this case ϕ is a COVECTOR FIELD.
3) A map \$: M → Upen Jo (Tp (M)) is called FIELD of BILINEAR FORMS.
$\forall p \in M : \phi_p : T_p(M) \times T_p(M) \xrightarrow{bilinear} \mathbb{R}.$
Observation: A bilinear map can be identified with a n×n matrix:
$\alpha_{ij,p} := \phi_p(E_{i,p}, E_{j,p}) (i,j \in \{1, \dots, n\})$
at the provide the providence of the providence
16

About smoothness
There are several equivalent defs for the smoothness for a tensor field.
For example, if
$$X_1, \dots, X_r \in X(\mathcal{M}) = \{\text{smooth vector fields}\}$$

and if $Y_1, \dots, Y_r \in X(\mathcal{M}) = \{\text{smooth vector fields}\}$
then one imposes that, the map
 $\mathcal{M} \Rightarrow p \mapsto \varphi_p(X_{1,p}, \dots, X_{r,p}, r_{1,p}, r_{1,p}, r_{1,p}) \in \mathbb{R}$ is smooth.
Or, if (U, ϕ) is a chart, if $p \in U$ and if we consider $\{E_{j,r}\}_{i=1}^{n}$ and $\{(dx^{j})_{r}\}_{i=1}^{n}$
the coordinate frames and coframes. Then we can write
 $\varphi_p = \prod_{i=1}^{n} \alpha_{i_1}^{(i_1, \dots, i_k)}^{(i_1, i_k)} (p) (dx^{i_1})_{i_1} \otimes \cdots \otimes (dx^{i_k})_{i_k} \otimes E_{d_{i_k, p}} \otimes \cdots \otimes E_{d_{i_k, p}}$
and impose that the coefficient in a local basis?
and impose that the coefficients are \mathbb{C}^{∞} on U .
We call such smooth tensors \mathbb{C}^{∞} -TENSOR FIELDS.
Def. The set of all smooth (r, s) tensor fields on \mathcal{M} is denoted by $\mathcal{T}_s^r(\mathcal{M})$.
Lemmaⁱ $\mathcal{T}_s^r(\mathcal{M})$ is a vector field
a) $\mathcal{T}_s^r(\mathcal{M})$ is a $\mathbb{C}^{\infty}(\mathcal{M})$ - module: $\Leftrightarrow \varphi(x_1, \dots, fx_j, \dots, x_n) = f\varphi(x_1, \dots, x_n, \dots, x_n)$
a) If $\phi \in \mathcal{T}_s^r(\mathcal{M}) = \varphi_p \otimes \psi_p$
Remarks
1) If $f \in \mathbb{C}^{\infty}(\mathcal{M}) \equiv \mathbb{C}^{\infty}(\mathcal{M}, \mathbb{R})$ then we define a covector field by the formula
 $df: \mathcal{M} \mapsto \mathcal{T}_s^r(\mathcal{M}) = U_{pex} \mathcal{T}_p^*(\mathcal{M})$. $(\Leftrightarrow df \in \mathcal{T}_s^r(\mathcal{M}))$
 $(df)_p(X_p) \coloneqq X_p(f)$
 $\overset{(f)}{=} e_{x_1}(f)$
 $\overset{(f)}{=} f(X_{1,p}, \dots, X_{r,p}) \coloneqq f(\mathcal{M})$. $(f \Rightarrow df \in \mathcal{T}_s^r(\mathcal{M}))$
 $(f)_{f} \oplus f(X_{1,p}, \dots, X_{r,p}) \coloneqq f(\mathcal{M})$.
It means
 $\overbrace{(F^*\varphi)_p(X_{1,p}, \dots, X_{r,p})} \coloneqq \varphi_{F(\varphi)}(F_{\pm}(X_{1,p}), \dots, F_{\pm}(X_{r,p}))$
It means
 $\overbrace{(F^*\varphi)_p(X_{1,p}, \dots, X_{r,p})} \coloneqq \varphi_{F(\varphi)}(F_{\pm}(X_{1,p}), \dots, F_{\pm}(X_{r,p}))$

EN!

and the first for


17

> {sym. tensors} Def. A tensor field $\phi \in \mathcal{J}_{\mathcal{F}}^{\mathcal{F}}(\mathcal{M})$ is SYMMETRIC if $\forall p \in \mathcal{M} : \phi_p \in \Sigma^{\mathbb{F}}(\mathcal{T}_{\mathcal{F}}(\mathcal{M}))$ ALTERNATING if Salt. tensors} Remark: (Very important) bilinear forms on M A symmetric tensor field $\phi \in \mathcal{J}^2(\mathcal{M})$ is POSITIVE DEFINITE if $\forall p \in M \forall X_p \in T_p(M) : \phi_p(X_p, X_p) \ge 0; equality \iff X_p = 0$ A manifold with a symmetric positive definite bilinear form is called a RIEMANN MANIFOLD; \$ is called a RIEMANN METRIC. (=> Integration) (Good for geometry) I.3 Differential forms and exterior derivative Def. A tensor field $\phi \in J^{r}(\mathcal{M})$ which is alternating is called an EXTERIOR DIFFERENTIAL FORM of degree r; or a r-FORM. We write $\Lambda^r(M)$ for the set of all r-forms, and Λ $(\mathcal{M}) := \bigoplus_{r=0}^{n} \Lambda^{r}(\mathcal{M}), \text{ with } \Lambda^{\circ}(\mathcal{M}) := C^{\infty}(\mathcal{M}).$ Properties (-1) rs 4 1 0 1) If $\phi \in \Lambda^{r}(M)$ and $\psi \in \Lambda^{s}(M)$ then $\phi \land \psi \in \Lambda^{r+s}(M)$ 2) $\Lambda(M)$ is an algebra with the Wedge product Λ . 3) If (U, φ) is a local chart, and if $p \in U$, then the set $\{(dx^{i_1})_p \land \cdots \land (dx^{i_r})_p\}$ with $1 \le i_1 < \cdots < i_r \le n$ is a basis for N° (Tp(M)), and accordingly $\{(dx^{ir}), \dots, (dx^{ir})\}$ is a basis for $\Lambda^r(U) \subset \Lambda^r(M)$. $\Rightarrow \Lambda(M)$ is the algebra of differential forms or exterior algebra. 18.

Main result of this chapter (for def of grad, div, curl, etc)
Thm, Let M be a smooth manifold, and
$$\Lambda(M)$$
 the exterior algebra,
There is a unique linear map
 $d: \Lambda(M) \mapsto \Lambda(M)$ satisfying $differential of f$
1) If $f \in \Lambda^*(M) = C^{\infty}(M)$, then $df = df \in T_{\bullet}^*(M).(df)_{P}(X_{P}) = X_{P}(f)$
2) If $\phi \in \Lambda^*(M) = C^{\infty}(M)$, then $df = df \in T_{\bullet}^*(M).(df)_{P}(X_{P}) = X_{P}(f)$
2) If $\phi \in \Lambda^*(M) = C^{\infty}(M)$, then $df = df \in T_{\bullet}^*(M).(df)_{P}(X_{P}) = X_{P}(f)$
2) If $\phi \in \Lambda^*(M) = C^{\infty}(M)$, then $df = d^{\circ} d = 0$
In local coordinates, we have an explicit formula for d:
Recall that if (U, ϕ) is a chart, $p \in U$, then
 $\{E_{1,P}\}_{n=1}^{n}$ is a basis for $T_{P}(M)$ and $\{(dx^{1})_{P}\}_{n=1}^{n}$ is a basis for $T_{P}^{*}(M)$.
Then $\phi \in \Lambda^*(M)$ can be represented by
 $\phi_{P} = \frac{1}{2\pi i_{1}, \sum_{i=1}^{n} d_{i_{1}}, \cdots, i_{P}(P)(dx^{i_{1}})_{P} \dots (dx^{i_{r}})_{P}$ (a special case of $T_{P}^{*}(M)$.
Then $(def) = eT_{\bullet}^{*}(M) = e\Lambda^{*}(M)$
 $eT_{\bullet}^{*}(M) = a_{1} (p) \quad (dx^{2})_{P} = with a_{1} : U \mapsto \mathbb{R}$ smooth.
Then $(def) = eT_{\bullet}^{*}(M) = e\Lambda^{*}(M)$
Exercise: check that this def satisfies the 3 conditions [GN p74]
 P Remarks
1) d is a local operator: If $U \subset M$ and $\phi \in \Lambda(U) \in \Lambda(M)$ then $du \phi = d_{M} \phi$
2) d maps $\Lambda^{*}(M)$ to $\Lambda^{*+}(M)$
3) d is called the EXTERIOR DERIVATIVE
Exercise (Thm 3)
If $w \in \Lambda^{*}(M) = R$.
Proof: In a chart (U, ϕ) , $w_{P} \in \frac{T}{M}$ $a_{1} (p) dw(1) = C^{\infty}(M)$
 $(wX)_{P} = w_{P}(X_{P}) \in \mathbb{R}$.
Proof: In a chart $(U, \phi) \gg p \in \frac{T}{M}$ $a_{1} (p)(dx^{2})_{P} = C^{\infty}(M)$
 $(wX)_{P} = (w_{T})(Y) = X(f)(Y_{T}) = X(f)(g)(X, Y) \xrightarrow{b' def} df(X)d_{g}(Y) - df(Y)d_{g}(X)$
 $= (Xf)(Yg) - (Yf)(Xg) \in C^{\infty}(M)$
 $X_{W}(Y) = Y_{W}(X_{T}) = f(X_{T}, Y_{1}) = C^{\infty}(M)$
 $X_{W}(Y) = Y_{W}(X_{T}) = f(X_{T}, Y_{1}) = X(fd_{T})(Y_{T}) - Y(X_{T}) = f(X_{T})(Y_{T}) = X_{T}(Y_{T}) - Y(X_{T}) = f(Y_{T})(Y_{T}) = X_{T}(Y_{T}) - Y(X_{T}) = f(Y_{T})(Y_{T}) = X_{T}(Y_{T}) = Y(Y_{T}) - Y(X_{T}) = f(Y_{T})(Y_{T}) = X_{T}(Y_{T}) = Y(Y_{T}) - Y(X_{T}) = f(Y_{T})(Y_{T}) = X_{T}(Y_{T}) = Y(Y_{$

Def. Let M be a smooth manifold of clim $n \ge 1$, \triangle Convention changed M is ORIENTABLE if there exists a covering (= atlas) {(Uj, φj)}; s.t. all transition maps φ; •φi : φ; (U; ΛU;) → φ; (U; ΛU;) is ORIENTATION PRESERVING $\Rightarrow \Rightarrow \text{ if det Jac } (\varphi_1 \circ \varphi_1^{-1}) > 0$ Lemma: A connected orientable manifold of dim≥1 has only 2 possible orientations. Remark: If M = {p} (of dim 0) an orientation is a map from p to ±1. We need this because $\int_{a}^{b} f'(x) dx = f(b) - f(a).$ M of dim 0, $b \mapsto +1$, $a \mapsto -1$ are what we need from orientations. Thm. [Bo. p.218] (very deep but intruisive) \$\overline{p}\$ is called a VOLUME FORM A manifold is orientable iff $\exists \phi \in \Lambda^n(M) \forall p \in M: \phi_p \neq 0$ $(\phi_p \in \Lambda^n(T_p(M)))$ Recall that $H^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n | x_n \ge 0\}$ and M is a smooth manifold with boundary if every chart (Ula, cpa) with cpa: Ua → H" is a homeomorphism. (+ atlas conditions) The BOUNDARY of M is denoted by 2M and is given by $\partial M := \bigcup \varphi_{\alpha}^{-1} (\partial H_n \cap \varphi_{\alpha} (U_{\alpha}))$ which is a smooth manifold with dim (n-1) Next time: If M is oriented then it induces also an orientation on 2M (needed in Stroke's Thm) 21

8 Date 18 · 11 · 21 Propositions 1) The boundary of a smooth manifold M of dim n is a smooth manifold ∂M of dim (n-1). 2) If M is orientable then DM is also orientable. More precisely, if an orientation is chosen on M, then there exists an INDUCED ORIENTATION on ZM. A xⁿ (U) IRⁿ (p) $\rightarrow x', \dots, x^{n-1}$ {The outward } 3 - { pointing vector } (4)4) "x6 We set $\varphi_{*}^{-1}\left(-\frac{\partial}{\partial x^{n}}\right|_{\varphi(p)}) =: n_{p}$ For a basis on aM, we choose a basis {e1, ..., en-1} of Tp(aM) such that {np, e,,..., en-1} generates a basis of Tp(M) of the same orientation as on M. An (M) R" (U;) φ_{j} 22

I.1 Integration of n-forms preserving Let M be an oriented $\Lambda^n(M)$ manifold and let {(Uj, φ_j)}; be an oriented atlas. Let $w \in \Lambda^n(\mathcal{M})$ with $supp(w) \subset U_j$ and with supp(w) compact. $\Rightarrow w(p) = a(p) (dx')_p \wedge \cdots \wedge (dx^n)_p \text{ with } a \in C^{\infty}(\mathcal{M})$ Recall that φ_{j}^{-1*} maps $\Lambda^{n}(\mathcal{M})$ to $\Lambda^{n}(\mathbb{R}^{n})$ $\Rightarrow \varphi_{j}^{-1*}(\omega) = \alpha \circ \varphi_{j}^{-1} dx' \wedge \cdots \wedge dx^{n}.$ Then we set function on q; (U;) < R" , usual Riemann integral in R" $\int_{\mathcal{M}} \omega = \int_{\mathcal{U}_{i}} \omega \coloneqq \int_{\varphi_{i}(\mathcal{U}_{i})} \alpha \circ \varphi_{i}^{-1} dx_{i} \cdots dx_{n} \equiv \int_{\varphi_{i}(\mathcal{U}_{i})} \alpha(x) dV$ (*) Lemma: If $supp(w) \subset U_k$ for an other localization map (U_k, φ_k) , then $\int_{\varphi_{\mathbf{k}}(\mathbf{U}_{\mathbf{k}})} \mathbf{a} \circ \varphi_{\mathbf{k}}^{-1} d\mathbf{x}_{1} \cdots d\mathbf{x}_{n} = \int_{\varphi_{\mathbf{j}}(\mathbf{U}_{\mathbf{j}})} \mathbf{a} \circ \varphi_{\mathbf{j}}^{-1} d\mathbf{x}_{1} \cdots d\mathbf{x}_{n}$ (independence of the coordinate system) (proof as Exercise) Def. Let M be an oriented smooth manifold, {(U;, 4;)}; a covering preserving the orientation, and $w \in \Lambda^n(\mathcal{M})$ with compact support. $\Rightarrow \Rightarrow \forall j: supp(f_j) = U_j$ Let {f;} be a partition of unity of M subordinated to U;. Then $\int_{\mathcal{M}} \omega = \int_{\mathcal{M}} \sum_{j=1}^{\infty} f_{j} \omega = \sum_{j=1}^{\infty} \int_{\mathcal{M}} \int_{j} \omega = \sum_{j=1}^{\infty} \int_{\mathcal{M}} \int_{j} \psi = \sum_{j=1}^{\infty} \int$ Remarks · Ju w is independent of the choice of a partition of unity. (Exercise) • The map $\Lambda^{n}(\mathcal{M}) \ni \omega \mapsto \int_{\mathcal{M}} \omega \in \mathbb{R}$ is a linear map. • We can avoid the "comapactedly supported" but be careful about the convergence. • If $F: M \mapsto N$ is a diffeomorphism and if $w \in \Lambda^{\infty}(N)$, compactedly supported, $\int_{\mathcal{M}} F^* \omega = \pm \int_{\mathcal{N}} \omega$ $\in \Lambda^{n}(\mathcal{M}) \xrightarrow{\sim} (\pm \text{ depends on if } F \text{ preserves the orientation or not})$ $\Lambda^{n}(\mathcal{M})$ Rn supp(u Q;(U 23

Thm. (Stokes' Theorem) (The main thm of this chapter)
Let M be an oriented smooth marifold of dim n.
with boundary
$$\partial M$$
. (with induced orientation).
Let $i: \partial M \mapsto M$ be the inclusion map. (identity) $\Rightarrow i^{\pm}: \Lambda^{m^{-1}}(M) \mapsto \Lambda^{m^{-1}}(\partial M)$
Let $\omega \in \Lambda^{m^{-1}}(M)$ with compact support. Then
 $\int_{\partial M} \frac{i^{\pm}}{\in M} w = \int_{A} dw$
 $\in \Lambda^{m^{-1}}(M)$ with compact support. Then
 $\int_{\partial M} \frac{i^{\pm}}{\in M} w = \int_{A} dw$
 $\in \Lambda^{m^{-1}}(M)$ $\cong f^{m^{-1}}(M)$
Reference for the proof: [GN p. 82-84] [Bo p. 260-261]
Remark¹³ If $\partial M = \emptyset$ then $\int_{A} dw = 0$
a) The proof is similar to the one of Calculus II on \mathbb{R}^{2} or \mathbb{R}^{2} .
and the main ingredient is $\int_{a}^{b} f'(x) dx = f(b) - f(a)$.
Exercise: Show that the Green Thm, Stokes Thm in \mathbb{R}^{4} or Divergence Thm
are special cases of this theorem. See Bo p. 262-263.
Recall that M is orientable iff $\exists \phi \in \Lambda^{m}(M) \forall p \in M: \phi \neq 0$.
Def. Let us fix one of them, and for any $f \in \mathbb{C}^{\infty}(M)$ with compact support we set
 $\int_{M} f:= \int_{M} f \phi$ Δ This def depends on the choice of ϕ .
In particular if M is compact we set the volume of M as
 $Vol(M):= \int_{A} 1 \phi = \int_{A} \phi$
II.2 Line integrals
 $f_{C} w = \int_{Ca,b,l} C^{*}_{w} w = \int_{a}^{b} f(t) dt$
 $f_{C} w = \int_{Ca,b,l} C^{*}_{w} w = \int_{a}^{b} f(t) dt$
 $e \wedge f(t) = f(t) dt$
Let $c(Ca,b) \to M$ be a diffeomorphism and set $C = c(Ca,b)$
If $w \in \Lambda^{4}(M)$ we set
 $\int_{C} w = \int_{Ca,b,l} C^{*}_{w} w = \int_{a}^{b} f(t) dt$
 $e \wedge f(t) = C^{\infty}(M) = C^{\infty}(M)$ then
 $\int_{C} w = \phi(c(b)) - \phi(c(w))$
(Proof as exercise)

No class next week but study sessions OK

No. 9 .

Consider a smooth map $H: [0,1] \times [a,b] \mapsto \mathcal{M}$ with $H(s,a) = p \in M$ and $H(s,b) = q \in M$ $\forall s \in [0,1]$ We set $C_0 : [a, b] \mapsto M$, $C_0(t) = H(0, t)$ We say that C_0 and C_1 are $C_1 : [a, b] \mapsto M, C_1 (t) = H(1, t)$ HOMOTOPIC paths between p and q. Thm. Let $w \in \Lambda'(M)$ s.t. dw = 0 everywhere. Then $\int_{C} \omega = \int_{C} \omega$ Remark: if $w = d\phi$ with $\phi \in C^{\infty}(M) = \Lambda^{\circ}(M)$, then $dw = d^{2}\phi = 0$ and the statement follows from the previous lemma. . If M is of dim 2, the statement is "almost" a consequence of Stoke's Thm, but we don't have the smoothness of the boundary at p and q. · More generously, see [Bo p. 271] Remark: Smoothness can be relaxed in most of the statements. 25

IV Riemannian Manifolds

IV. 1 Definition and basic properties

Recall that if V is a real vector space of dimension n,

a POSITIVE DEFINATE BILINEAR FORM is a map $\phi: V \times V \mapsto \mathbb{R}$

which is linear in each argument.

and s.t. $\phi(v,v) \ge 0 \forall v \in V \text{ and } \phi(v,v) = 0 \iff v = 0.$

 ϕ is SYMMETRIC if $\phi(v_1, v_2) = \phi(v_2, v_1)$.

Def. A smooth manifold with a positive definite symmetric bilinear tensor field is called a RIEMANNIAN MANIFOLD.

 $(A) \exists \phi \in \mathcal{J}^2(\mathcal{M}):$

 $\phi_{p} \in \Sigma^{2}(T_{p}(M)) \land \left[\forall X_{p} \in T_{p}(M) : \phi_{p}(X_{p}, X_{p}) \ge 0 \text{ with } = 0 \iff X_{p} = 0 \right]$ We call & a RIEMANNIAN METRIC.

Lemma: If $F: \mathcal{M} \mapsto \mathcal{N}$ is an IMMERTION (: $\Leftrightarrow \dim F(\mathcal{M}) = \dim \mathcal{M}$; see App. 2) and if ϕ is an Riemannian metric on N,

Then $F^*(\phi) \in J^2(\mathcal{M})$ is a Riemannian metric on \mathcal{M} .

Proof as exercise; recall that $A \in T_P(N) = 0$ iff $Y_P = 0$ $(F^*\phi)(X_{\mathfrak{P}},Y_{\mathfrak{P}}) \coloneqq \phi(F_*(X_{\mathfrak{P}}),F_*(Y_{\mathfrak{P}}))$

Thm. Any smooth manifold can be endowed with a Riemannian metric.

"2 proofs": O Use a covering + local coordinate system + Lemma above @Use Whitney Imbedding Thm + Lemma above

Remark: For a Riemannian manifold, Tp(M) has an inner product provided by o ⇒ We can now define orthonormal bases on Tp(M) at every p ∈ M.

Thm. Let (\mathcal{M}, ϕ) be a Riemannian manifold which is oriented. Then $\exists !$ volume form Ω s.t. $\forall p \in \mathcal{M} : \Omega_p(F_{1,p}, ..., F_{n,p}) = 1$

whenever {F., p. ..., Fn. p} is an oriented orthonormal basis of Tp(M).

(*)

Proof: Since dim $(\Lambda^n(T_p(M))) = 1$, then Ω is uniquely defined by (*).

We have to show that it does not vanish.

Let (U,q) be a local chart with p E U;

Let {E1,p,..., En,p} be the corresponding basis for Tp(M). (Coordinate frame at p)

Set
$$g_{ij}(p) := \phi_p(E_{i,p}, E_{j,p})$$
.
Since $E_{i,p} = \int_{-\infty}^{\infty} a_n^{T} F_{i,p}$ and since $\phi_p(F_{i,p}, F_{j,p}) = S_{ij}$
 $\Rightarrow g_{i,j}(p) = \phi_p(E_{i,p}, E_{j,p}) = \phi_p(\int_{-\infty}^{\infty} a_n^{T} F_{i,p}, \sum_{j=1}^{\infty} a_j^{T} F_{i,p}) = f_{i,p}(a_n^{T} a_n^{T} a_{k,p}, \sum_{j=1}^{\infty} a_j^{T} a_{k,p})$
 $= \int_{-\infty}^{\infty} a_n^{T} a_n^{T} = (TAA)_{ij}$ with $A_{ij} = a_j^{T}$
 $\Rightarrow det(g_{ij}(p))_{ij} = det(TAA) = (det(A))^2 > 0$
 $\Rightarrow \int_{-\infty}^{\infty} det(g_{ij}(p))_{ij} > 0$ exercise $= 1$ by def $p^{2} > 0$ by choice of orientation
 $\Rightarrow \Omega_p(E_{1,p}, \dots, E_{n,p}) = det(A) \Omega_p(F_{1,p}, \dots, F_{n,p}) = det(A) = \sqrt{det(g_{ij})} > 0$ of $(F_{i,p}, -F_{n,p})$
 $\Rightarrow Griefer, E_{n,p} = \int_{-\infty}^{\infty} det(A) \Omega_p(F_{1,p}, \dots, F_{n,p}) = det(A) = \sqrt{det(g_{ij})} > 0$
Since p . (U. $\varphi)$ are arbitrary, then Ω is a volume form.
Smoothness is automatic.
 Ω is called the NATURAL VOLUME ELEMENT
on the oriented Riemannian manifold (M, ϕ) .
We often see $Q^* \Omega = \sqrt{g} d_{N_1} \alpha \dots \alpha A_{N_n}$
 $= \sqrt{\alpha'(N')} L_{i} = det(g_{ij} \circ \varphi^{-1})$.
Remark : We can use Ω to define
 $\int_M f_{i} = \int_M f \Omega \quad \forall f \in C^{\infty}(M)$
Let $c: [a,b] \to M$ be a smooth curve on a Riemannian manifold (M, ϕ) .
The tangent vector is
 $C_*(\frac{d}{dt}|_{\pi}) = i \in (c) \in T_{c(0)}(M)$
Def. The LENGTH of the curve is defined by
 $L_{i} = \int_{\alpha}^{b} [\phi_{c(c)}(\hat{c}(t), \hat{c}(t))]^{\frac{1}{2}} dt$
Evercise: This is indep, of the parametrization.
The ARC LENGTH of the curve is $a parametrization$.
The ARC LENGTH of the curve is $a parametrization$.
The ARC LENGTH of the length of all paths $(=curves of C^+ or C^+)$ between p and q .
The often write $[\frac{d}{2}]^* = \phi(\hat{c}, \hat{c})$
Thm, [Bo, $p, 189 - 191$] A connected manifold is a metric space with the metric defined
by $d(p, q) = inf$ on the length of all paths $(=curves of C^+ or C^+)$ between p and q .
The metric topology and the manifold topology coincide.
Reminder: a METRIC SPACE is a pair (A, d) with $A (M \times M \to R_+ s.t.$
 $1) d(x, y) \ge 0$
 $\geq d(x, y) = 0 \Leftrightarrow x = y$
 $= d(A(x, y) = 0 \Leftrightarrow x = y$
 $= d(A(x, y) = 0 \Leftrightarrow x = y$
 $= d(A(x,$

)

)

No. **10**

Data 18 · 12 · 12

Def. Two Romanifolds (M_1, ϕ_1) and (M_2, ϕ_2) are ISOMETRIC if
$\exists F: M_1 \mapsto M_2$ a diffeomorphism such that $F^* \phi_2 = \phi_1$
$\Rightarrow d_1(p,q) = d_2(F(p),F(q))$
Remark: (Nash embedding thm) asserts that
any Ro manifold can be isometrically embedded in \mathbb{R}^d , for $d \ge \frac{n(3n+11)}{2}$.
IV.2 Differentiation
Differentiation is important for the description of an evolution or a transpor
Example: In \mathbb{R}^3 for a fixed relavance system, $\dot{x}(t) = v$
One can also consider a moving reference system. (moving frame)
Example We attach a reference system to a point moving in R ³ .
Let $s \mapsto c(s)$ be a curve in \mathbb{R}^3 , with the arc length parameter.
Set $T(s) := c'(s)$, with the property $ T(s) = 1$.
Then $\dot{T}(s) \equiv T'(s) \perp T(s)$ and set $T(s) = K(s) N(s)$ with $K(s) \ge 0$ and $ N(s) $
Consider {T(s), N(s), B(s)} I the curvature C suppose K(s) = 0
as a basis at c(s) orthonormal
The equation of motion of this frame is given by the Sevret-Frenet formu
There are 2 parameters:
K(s) = the curvature
J(s) = the torsion
Example: Let M be a manifold of dim n in IRd.
Let $Z \in \mathfrak{X}(\mathbb{R}^d)$ and let $p \in \mathcal{M}$. $\Rightarrow Z_p \in T_p(\mathbb{R}^d)$ but not always $Z_p \in T_p(\mathcal{M})$.
If $Z_p \in T_p(M)$ (tangent to M at p) for any $p \in M$,
we say that Z is a tangent vector field.
Since IRd has a scalar product, it endows M with a scalar project
$T_p(\mathbb{R}^d)$ has a scalar product, as well as $T_p(\mathcal{M})$.
$\Rightarrow T_p(\mathbb{R}^d) = T_p(\mathcal{M}) \oplus T_p(\mathcal{M})^{\perp}$
\Rightarrow \exists TTp and TTp ⁺ two orthogonal projections on Tp(M) and Tp(M) ⁺ .
$\frac{(utriansm}{\Delta)(x+)b+(y,x)b} > (x,y)b+(y,y)b}{28}$

.

Def. Let
$$Y \in x(M) \subset x(\mathbb{R}^{d})$$
 and consider $t \mapsto c(t) \in M \subset \mathbb{R}^{d}$ a curve on M .
Set $Y(t) := Y_{acts} \in T_{acts}(M)$ and consider

$$\frac{PT}{Pt}(t) := T_{acts}(\frac{1}{M} Y(t)) \subseteq T_{acts}(M)$$
called the COVARIANT DERIVATIVE of Y along c.
Thus, Y and $\frac{PT}{4t}$ belong to $x(M)$ but the definition of $\frac{PT}{4t}$ uses \mathbb{R}^{d} .
Prop $\frac{P}{2t}(Y_{1}+Y_{3}) = \frac{PT}{4t} + \frac{PT}{4t}$
a) $\frac{1}{4t}(fY) = f'Y + f \frac{PT}{2t}$ with any $f \in C^{\infty}(M)$
 $\frac{1}{4t} = 0 \Rightarrow \frac{PT}{4t} = 0$
Prod of example 3
Remark
If we consider $X_{p} \in T_{p}(M)$ and
if we choose a curve $t \mapsto c(t) \in M$ with $c(t_{s}) = p$ and $\dot{c}(t_{s}) = X_{p}$
then $\frac{PT}{4t}(t_{s})$ degree a map
 $T_{p}(M) \times x(M) \mapsto T_{p}(M)$
 $T_{p}(M) \times x(M) \mapsto T_{p}(M)$
 $\frac{P}{4t}(t_{s}) = V_{X_{p}}Y$
with $(\nabla_{X}Y)_{p} = \nabla_{X_{p}}Y$.

No. 11 Data 18 12 19

Lemma: Let
$$M$$
 be a smooth monifold of dim n (Riemannian not assumed) and
let ∇ be an offine connection on M .
Let (U, φ) be a chart and consider a coordinate frame on the tangent spaces.
Then ∇ is defined by n^3 functions
 $\Gamma_{i,j}^{i,j}: U \rightarrow \mathbb{R}$ for $i,j,k \in \{1, ..., n\}$ called the CHRISTOFFEL SYMBOLS.
Proof: Let $X, Y \in X(M)$, and $\forall p \in U$:
 $X_p = \prod_{i=1}^{n} b^i(p) E_{i,p}$ if $p = \prod_{i=1}^{n} a^i(p) E_{i,p}$.
Set $= \prod_{k=1}^{n} \prod_{i=1}^{k} (p) E_{k,p}$
Then $\lim_{k \neq i=1}^{n} \sum_{k=1}^{n} \sum_{i=1}^{k} (p) E_{k,p}$
Then $\lim_{k \neq i=1}^{n} \sum_{i=1}^{n} a^i E_i = \sum_{i=1}^{n} b^i \nabla_{E_i} (a^i E_i) = \sum_{i=1}^{n} b^i \{(E_i, a^i)E_j + a^i \sum_{k=1}^{n} \Gamma_{i,j}^{k} E_k\}$
 $= \sum_{i=1}^{n} (Xa^k + \sum_{i=1}^{n} a^i b^i \Gamma_{i,j}^{k})E_k$ (4)
 $\Rightarrow \nabla$ can be expressed by $\Gamma_{i,j}^{i,i}$.
Conversely. if we start with \mathfrak{G} , it defines an affine connection. (5-min exercise)D
Remark¹⁹ with these notations?
 $T(X, Y) = \nabla_X Y - \nabla_X X - [X, Y] = \sum_{i=1}^{n} (\Gamma_{i,j}^k - \Gamma_{j,i}^{k})a^i b^i E_k$.
Thus $\forall X, Y \in X(M)$: $T(X, Y) = 0 \Leftrightarrow \forall i, j, k : \Gamma_{i,j}^k = \Gamma_{i,j}^{k}$
 $a)$ If (M, ϕ) is Riemannian, recall that
 $g_{ij}(p) = \phi_p(E_{i,p}, E_{j,p}), \forall i, j \in \{1, ..., n\}$ and then
 $\Gamma_{i,j}^k = \frac{1}{2} \prod_{i=1}^{n} g^{ki}(\frac{\partial g_{ki}}{\partial x^i} + \frac{\partial g_{ki}}{\partial x^i} - \frac{\partial g_{ki}}{\partial x^i})$
(proof as exercise)

A new look at the corvariant derivative:
Let
$$c: I \exists t \mapsto c(t) \equiv M$$
 be a smooth curve on M , and let $Y \equiv X(M)$.
Let (U, q) be a local chart, and for $p \equiv U$
 $Y_p = \sum_{k=1}^{n} b^k(p) E_{k,p}$.
Then we set
 $\frac{\partial Y}{\partial t}(t) := [\nabla_{d(t)} Y]_{d(t)} = \sum_{k=1}^{n} (\dot{c}(t) b^k(c(t)) + \sum_{i} \prod_{j=1}^{k} (c(t)) b^j(c(t)) \dot{c}^j(t)) E_{k,c(t)}$
 $\dot{c}(t) b^k = c_*(\frac{d}{dt}) b^k = \frac{d}{dt} (b^{k} \cdot c) b^k(c(t)) b^i(c(t)) \dot{c}^j(t)) E_{k,c(t)}$
 $c(t) b^k = c_*(\frac{d}{dt}) b^k = \frac{d}{t_i} (b^{k} \cdot c) b^k(c(t)) b^i(c(t)) \dot{c}^j(t)) E_{k,c(t)}$
Remark: only the values of Y on the curve are taken into account.
Def. Let $c: I \mapsto M$ be a curve on M , and ∇ an affine connection on M .
A vector field $Y: I \exists t \mapsto Y(t) \in T_{c(t)}(M)$ is PARALLEL along c if
 $\frac{\partial Y}{\partial t}(t) = 0 \quad \forall t \in I$.
Since Θ is a group of first-order differential equations we have:
Prop. Given a smooth curve $c: (-e, e \exists t \mapsto c(t) \in M$ and
given $Y_{c(0)} \in T_{c(0)}(M)$ then
 $\exists I Y: (-e, e) \exists t \mapsto Y(t) \in T_{c(t)}(M)$ parallel to c .
2) If (M, ϕ) is a Riemannian manifold and
if $f.F_{i}, \dots, F_{n}$ is an orthonormal basis of $T_{c(0)}(M)$
then $\exists !$ orthonormal frame at $c(t)$ which is parallel to c .
More generally on Riemannian manifolds,
parallel transport preserves the length and the inner product.

IV.3 Geodesics Let $c: I \mapsto M$ be a curve on M and ∇ be an affine connection. ((a set of Christoffel's symbols) Def. c is GEODESIC (with respect to ∇) if c is parallel along c, which means $\frac{Dc}{dt}(t) = 0 \quad \forall t \in I$ $\Leftrightarrow \ddot{c}^{k} + \sum_{i,j} \Gamma_{i,j}^{k} \dot{c}^{i} \dot{c}^{j} = 0 \quad \forall k = 1, ..., n \text{ (geodesic equation)}$ Remark: since the geodesic equation is a second-order differential equation, given $p \in M$ and $X_p \in T_p(M)$, $\exists ! c : (-e, e) \mapsto \mathcal{M} \text{ geodesic s.t. } c(0) = p \text{ and } \dot{c}(0) = Xp.$ $C \xrightarrow{p} C(t) = c \exp(X_{p})$ Note that $\forall a > 0$, if we set $C_a: \left(-\frac{\varepsilon}{a}, \frac{\varepsilon}{a}\right) \longrightarrow M$ then $c_{\alpha}(0) = p$, $\dot{c}_{\alpha}(0) = \alpha X p$ and c_{α} is again geodesic. Then $\exp(X_p) := c(1)$ whenever defined. $\rightarrow: \Leftrightarrow \forall u \in U \forall a \in [0,1]: au \in U$ Def. Prop. VPEM 3 open set UCTp(M) star-shaped with OEU s.t. exp: U→M is a diffeomorphism onto VCM with pEV. The proof involves some uniformity. Exp(U) is called a NORMAL NEIGHBORHOOD of p on M, and exp is called the EXPONENTIAL MAP. Remark: If (M, ϕ) is a Riemannian manifold, and if $\{F_1, \dots, F_n\}$ is an orthonormal basis of $T_p(M)$, then $X_p = \sum_{j=1}^{m} x^j F_j$ (unique decomposition) Then $\varphi : \exp(\mathsf{U}) \ni \exp(\mathsf{X}_p) = \exp(\sum_{j=1}^n x^j F_j) \longmapsto (x^1, \dots, x^n) \in \mathbb{R}^n$ and (exp(U), (p) is a coordinate system around p, called the NORMAL COORDINATE SYSTEM around p. (with special properties) 33

12

Dato 19 01 09

In summary, for a given $p \in M \exists v \in V_p$ (neighborhood) s.t. any $q \in v$ can be joined to p by a unique geodestic. With more work one gets Thm. If c is a piecewise differential path between p and q with $\underset{of c}{\overset{\text{length}}{\text{of } c}} = d(p,q) \rightarrow \underset{on \text{ the Riemannian manifold } M}{\overset{\text{distance between } p \text{ and } q}} \quad (for defs of L and d, see p.27 in IV.1)$ Then c is a geodesic when parametrized by its arc length. Idea of proof: do it locally. A The distance is not always realized by a path. Example: $\mathbb{R}^2 \setminus \{0\}$, p = (0, 1), q = (0, -1)Thm. (Hopf and Rinow) Let (M, ϕ) with Levi-Civita connection ∇ . Are equivalent: p1) exp is defined every on Tp(M) VpEM; 2) (M, d) is a COMPLETE metric space (:<⇒ with "no holes") 5 every Cauchy sequence ⊂ M has a limit ∈ M 43) Every geodesic c: I→M can be extended on IR. Def. (M, ϕ) is GEODESICALLY COMPLETE if one (=) all) of these conditions is satisfied. Lemma. If (M, ϕ) is COMPACT then it is geodesically complete. Proof: Based on the fact that any compact metric space is complete. 34

•	
V Curvature	
V.1 Several curvatures	
Framework: M a smooth manifold with ∇ a connection	
If (\mathcal{M}, ϕ) is Riemannian, then ∇ is the Levi	
Recall that the curvature R is defined on $X, Y \in \mathfrak{X}(\mathcal{M})$	
$R(X,Y) := \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]} \in End(x(M))$	
$R(X,Y): X(M) \ni Z \mapsto R(X,Y)Z \in X(M)$	
Lemma: If ∇ is torsion free then	
R(x, y) Z + R(y, z) x + R(z, x) Y = 0	
[Bianchi identity; GN p. 125]	
True also for Levi Civita connection.	by the values of all
In local coordinates [= with a chart (U, ϕ) and the coordinates	nate frame {Ej,p}j]
	M.M. M. As Asoto JPTC
with $R_{ijk} = \frac{\partial}{\partial x^i} \Gamma_{jk} - \frac{\partial}{\partial x^j} \Gamma_{ik} + \sum_{m} \Gamma_{jk} \Gamma_{im} - \sum_{m}$	
components of R in a basis	
A It can be slightly different depending on the authors	
	THATZHOD & ARA
$\phi(R(X,Y)Z,W) =: R(X,Y,Z,W) \in C^{\infty}(M)$	port, Bracista Letter,
$(\in \mathbb{X}(M), \mathbb{X}(M))$ $(\in \mathbb{Y}^{4}(M))$ called the	C = (M) i to FL : Sacin
RIEMANNIAN CURVA TURE TEL	
and in local coordinates	
$R_{ijkl} := \phi(R(E_i, E_j) E_k, E_l) = \sum_m R_{ijk}^m g_{ml}$	
	Rite (c) Lati R
1)R(X,Y,Z,W) = -R(Y,X,Z,W)	F. The RICL
	Ric=R=se
3) R(X,Y,Z,W) = R(Z,W,X,Y)	
[Exercise; see Boo p. 383 and GN p. 126]	1
	Locally, Sij = S(E)
is called the fire of the second s	
n curvature	
E[. p) = 5 5:1 9 ¹¹ (p)	

No.	
Dato	
	en de la com
For any $p \in M$, let us denote by T a PLANE SECTION .	in $T_{\mathcal{P}}(\mathcal{M})$,
it means TT is a 2D subspace of $T_p(M)$.	leanne a Al Armana
Let Xp, Yp be 2 elements in Tp(M) generating a bas	is of Ts.t.
(Xp, Yp) is an orthonormal basis of TI.	internet de la
Def. The SECTIONAL CURVATURE K(IT)p of the section T	
$K(TT)_p := -R(X_p, Y_p, X_p, Y_p) = -\phi_p(R(X_p, Y_p)X_p)$, Yp)
Exercise: K(TT), depends only on the plane TT and not o	n the choice of a basis.
Thm. For (\mathcal{M}, ϕ) with dim $(\mathcal{M}) \ge 3$:	<u>13</u>
the Riemannian curvature tensor at p is uniquely	y determined
by the values of all sectional curvatures at p.	There also for Levil (
[Exercise; see Boo p. 385 and GN p. 127]	land coordinates front
Def. (M, \$) is ISOTROPIC at p -if	13(4
$K(\pi)_p = K_p = constant \ \forall \Pi;$	fers 1 1 8
2)(M, ϕ) is ISOTROPIC if it is isotropic at any $p \in$	EM;
3) If K_p is constant on any $p \in M$, we say that	and the second second
M has CONSTANT CURVATURE	The Riemannian curvatur
Report: manifolds with constant curvature are classified	the sectional curvature
Remark: If $\dim(M) = 2$ then M is isotropic, and	the Ricci curvature an
$K_p \equiv K(p)$ is called the GAUSS CURVATURE.	the scalar curvature
Report: on Gauss curvature or on Gauss-Bonnet Thm.	give some information
Lemma: If M is isotropic then locally	on the local structure
$R_{ijkl}(p) = -K_p(g_{ik}g_{jl} - g_{il}g_{jk})(p)$	of the manifold.
Def. The RICCI CURVATURE tensor field	
$Ric \equiv R \equiv S \equiv J^2(M)$ is defined on $X, Y \in X(M)$	by
$S_{p}(X_{p}, Y_{p}) := \sum_{i} R(F_{i,p}, X, Y, F_{i,p}) \text{ with } \{F_{i,p}\};$	an orthonormal basis
Remark?" It is independent of the choice of a basis of Tp	(\mathcal{M}) . of $T_{\mathcal{P}}(\mathcal{M})$
Locally, $S_{ij} = S(E_i, E_j) = \sum_{k} R_{kii}^{k}$	
2) The above operation is called a CONTRACTION of a ten	sor.
If we contract the Ricci curvature we get the SCALAI	
$S(p) = \sum_{j} S(F_{j,p}, F_{j,p}) = \sum_{i,j} S_{i,j} g^{ij}(p)$ 36	3
36	

13 Date 19 01 16 V.2 Equation of structure Recall that a connection ∇ is a map $\nabla : \mathfrak{X}(\mathcal{M}) \times \mathfrak{X}(\mathcal{M}) \longrightarrow \mathfrak{X}(\mathcal{M})$ $X \qquad Y \qquad \mapsto \nabla_X Y$ which is bilinear and satisfies 1) $\nabla_{fx} \Upsilon = f \nabla_{x} \Upsilon$ 2) $\nabla_{x}(fY) = (Xf)Y + f \nabla_{x}Y$ ∇ is torsion free if $\nabla_X Y - \nabla_Y X - [X, Y] (=: T(X, Y)) = 0$ and ∇ is compatible with the metric (\mathcal{M}, ϕ) if $Z(X, Y) = \langle \nabla_Z X, Y \rangle + \langle X, \nabla_Z Y \rangle 2$ orthogonal vectors still orthogonal 8 Let U be an open subset of M and let $\{F_j\}_{j=1}^n$ be a C^∞ -field of frames on $\bigcup \{F_{j,P}\}$ is a basis of $T_P(M) \forall P \in U_j$. let $\{F_j\}_{j=1}^n$ be a C^∞ -field of frames on \bigcup not necessarily orthonormal nor generated by a chart e.g. the coordinate frames given by a chart (U, cp) Let $\{\Theta^{j}\}_{j=1}^{n}$ be a dual coframe, it means $\{\Theta^{j}\}$ is a C^{∞} - field of frames on $T(\mathcal{M})^{n}$ and $\{\Theta_p^j\}$ is a basis of $T_p(M)^*$ with $\Theta_p^j(F_{k,p}) = S_{jk}$ delta Recall that ∇ is uniquely determined by $\{\Gamma_{ij}^k\}$ defined by $\nabla_{F_i} F_j = \sum_k \Gamma_{ij}^k F_k$ $\Theta_{j}^{k} := \sum_{L} \prod_{ij}^{k} \Theta^{L} \in \mathcal{J}'(\mathcal{M})$ one form Def. {0; k} are called CONNECTION FORMS. Clearly $\Rightarrow \theta_i^k(F_i) = \Gamma_{ij}^k$, and $\begin{array}{l} \text{if } T(\mathcal{M}) \ni X = \sum_{i} b^{L} F_{i} \text{ then } \\ \nabla_{x} F_{j} = \nabla_{\Sigma_{i}} b^{L} F_{i} F_{j} \xrightarrow{\text{linear}} \sum_{i} b^{L} \nabla_{F_{i}} F_{j} \xrightarrow{f} \sum_{k} b^{L} \sum_{k} \Gamma_{ij}^{k} F_{k} \\ \hline \frac{\text{Def}}{\text{of } \theta} \sum_{k} \sum_{i} b^{L} \theta_{j}^{k} (F_{i}) F_{k} \xrightarrow{\text{linearity}} \sum_{k} \theta_{j}^{k} (X) F_{k} \end{array}$ Thus, $\theta_j^k(X)$ are the components of $\nabla_X F_j$ with respect to $\{F_k\}$. For a Ro manifold (M, ϕ) and for the Levi Civita connection ∇ , the n^2 connection form are not indep because of the relations \circledast . 37

Then (Structure Thm of Cartan) [GN p. 133]
Let (R,
$$\phi$$
) be a R, manifold, ∇ the Levi Civits connection, U.{E};}{ θ^{i} } above.
Then the connection forms { θ_{i} } are the unique solution of the equations:
 $1 d\theta^{i} = \sum_{j} \theta^{i} \wedge \theta^{i}$ works the second forms
 $2 d\theta^{i}_{ij} = \sum_{j} (g_{ij} \theta^{i}_{i} + g_{ki} \theta^{i}_{j})$ between 1 forms
 $(f_{ij} = \sum_{j} (f_{ij}, \theta^{i}_{i} + g_{ki}, \theta^{i}_{j})$ between 1 forms
 $(f_{ij} = f_{ij}, \theta^{i}_{i}, \theta^{i}_{i}) = g_{ij}$ and 2) becomes
 $2 d\theta^{i}_{ij} = \frac{1}{2} (g_{ki}, \theta^{i}_{k} + g_{ki}, \theta^{i}_{k})$ between 1 forms
 $(f_{ij} = f_{ij}, f_{ij}) = g_{ij}$ and 2) becomes
 $2 d\theta^{i}_{ij} = \frac{1}{2} (g_{ki}, \theta^{i}_{k} + g_{ki}, \theta^{i}_{k})$ between 1 forms
 $(f_{ij} = f_{ij}) = g_{ij}$ and 2) becomes
 $2 d\theta^{i}_{ij} = \frac{1}{2} (g_{ki}, \theta^{i}_{k} + g_{ki}, \theta^{i}_{k})$ between 1 forms
 $g_{ij} = \phi(F_{i}, F_{ij}) = g_{ij}$ and 2) becomes
 $2 d\theta^{i}_{ij} = \frac{1}{2} (g_{ki}, \theta^{i}_{k} + g_{ki}, \theta^{i}_{k})$ between 2 f_{ij} ($f_{ij} = f_{ij}$)
 $f_{ij} (X, \gamma) = \theta^{i}_{i} (R(X, \gamma)F_{k}) = C^{m}(M) \Rightarrow \Omega_{k} \in \mathbb{T}^{*}(U) \subset \mathbb{T}^{*}(M)$
which gives $\frac{1}{2} K(M) \approx 2 G(M) \Rightarrow \Omega_{k} \in \mathbb{T}^{*}(U) \subset \mathbb{T}^{*}(M)$
which gives $\frac{1}{2} K(M)$ and one has
Thm. (Structure Thm of Cartan) [GN p. 135; Bo p. 391]
 $\Omega_{i}^{i} = d\theta_{i}^{i} - \sum_{k} \theta^{i}_{k} \wedge \theta^{i}_{k}$ between 2 forms
 $f_{ij} = d\theta_{i}^{i} - \sum_{k} \theta^{i}_{k} \wedge \theta^{i}_{k}$ between 2 forms
 M A blonomy for a connected
 M A blonomy Riemannian manifold
 M Exists in a more general context of vector bundles or principal bundles.
Let $c: [0.1] \exists t \mapsto c(t) \in M$ a smooth curve on (M, ϕ)
with $\lambda(0) = c(1) = p$.
Let $X_{p} \in T_{p}(M)$ and let $X(t)$ be the parallel transport of X_{p} along c
with $\lambda(0) = X_{p}$. Let
 $P_{c} : T_{p}(M) \exists X_{p} = X_{c} : \to X_{c} \in T_{p}(M)$, and clearly
 $F_{2} : c_{i} \in C_{c} (T_{p}(M))$ because the parallel transport is a solution
of a homogenous equation. \Rightarrow linear in the initial condition

In fact $P_c \in O(T_P(M))$ on $T_P(M)$ because the parallel transport preserves norms and scalar products. Remark: Instead of smooth curve, we can consider C^1 -piecewise curves. We have obtained that ${P_c}_* \subset O(T_p(M))$ is a group zero path called the HOLONOMY GROUP at p and denoted Hol (p). * := " c any C'-piecewise curve starting and ending at p" If p and q are 2 points on M then Hol (p) is isomorphic to Hol (q) since $H_0(p) = P_c^{-1} H_0(q) P_c$ for some fixed path c between q and p. Def. We set $Hol(M) = Hol(p) \subset O()$ for a fixed $p \in M$, and call it the HOLONOMY GROUP of M. We also set Hol° (M) constructed only with C'-piecewise path which can be deformed to the zero path. Remarks : 1) These groups are representations of the group of paths on M. 2) Holo (M) is a normal subgroup of Hol (M). Lemma M is orientable iff Hol(M) \subset SO(M) Thm (deep notation) Hol°(M) is compact (it is a closed set in O(n)) Remark [see App. 12] There is a link between holonomy and the curvature tensor R(X,Y) $\rightarrow R(X,Y)$ 39

14

Date 19 · 01 · 23

They are not so many holonomy groups! Thm. Let (M, ϕ) and suppose that $Ho|^{\circ}(M) \subset O(n)$ is irreducible subspaces of \mathbb{R}^{n} . (For a manifold made by product of two manifolds, this is not satisfied) Suppose that M is not LOCALLY SYMMETRIC. Then Hol? (M) is one of the following groups: 1) SO(n) generic case 5) if n=4m, Hol(M) = Sp(m)11 2) if n=2m, Hol (M) = U(m) 6) n = 16, = Spin (9) 3) if n=2m, Hol (M) = SU(m) 7) n=8, "= Spin(7) 4) n=4m, Hol(M) = Sp(1)Sp(m) 8) n=7, "= G_2 Later it is found that (6) does not actually appear in any manifolds. 4)~8) are in qualernions extension of C Def. M is LOCALLY SYMMETRIC if for any pEM: the geodesic symmetry Sp is an isometry distance namely, we have Sp(c(t)) = c(-t) for any geodesic c with c(0) = pExample: R" is locally symmetric (easy to show). And Hol (IR") = Hol°(IR") = {e} which is not one of the 8 kinds of groups above. 40

VI General relativity

Def. a PSEUDO-RIEMANNIAN MANIFOLD is a pair (M, ϕ) with M a smooth manifold and $\phi \in \mathcal{J}^2(\mathcal{M})$, symmetric and non-degenerate. \triangle No [positive definite] required ! $\phi(X,Y) = \phi(Y,X) \phi(X,Y) = 0 \forall Y \in X(M)$ a LORENTZIAN, MANIFOLD is a pseudo-Riemannian manifold X=0 with $(g_{ij}) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ in suitable coordinates (locally). $0 & 1 \end{pmatrix} \rightarrow \text{signature } (\text{trace}) = n-2$ Facts for pseudo-Riemannian manifolds 1) unicity of Levi Civita connection when the 2 conditions are imposed. 2) Koszul formula still holds. 3) Hopf-Rinow thm + geodesically complete are no more valid. => We don't have a metric space anymore. 4) Cartan structure thm are still valid. Recall that the length of a vector is not changed under parallel transport along e a curve. Geodesics c satisfy that c is parallel transported along c. $\Rightarrow \phi(\dot{c}, \dot{c}) = cst$ Def. A geodesic c on a pseudo-Riemannian manifold (M, ϕ) is TIMELIKE, NULL, or SPACELIKE if $\phi(\dot{c},\dot{c}) < 0$, $\phi(\dot{c},\dot{c}) = 0$ or $\phi(\dot{c},\dot{c}) > 0$ by PSEUDO METRIC ϕ Remark: these expressions come from special relativity with M = 1R⁴ and $(g_{\nu\mu}) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ a special case of $\mu \nu = 0.123 \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ a Lorentzian manifold. For a Lorentzian manifold (M, ϕ) of dim 4. with the Levi Civita connection, the Einstein field equation reads $\begin{array}{l} R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \quad \mbox{for } \mu.\nu = 0.1.2.3 \\ \hline & & & \\ Ricci \quad scalar \quad \mbox{cosmological} \quad stress-energy \\ \hline curvature \quad \mbox{curvature} \quad \mbox{constant} > 0 \quad \mbox{or energy-momentum} \quad \mbox{tensor} \quad \mbox{c = speed of light} \end{array}$ ()(dout) Guy Einstein geometry Guy tensor contains the physics (energy + matter) 1 Not so much freedom for writing a meaningful equations. This is a system of 10 equations because of symmetry between µ and v. In addition the thms of structure reduces the number of indep eq. 41

Remark: These equations define the pseudo metric tensor
$$g_{\mu\nu}$$
.
Indeed, $R_{\mu\nu\nu}$ and $R_{\mu\nu}$ can be expressed in terms of $\Gamma_{\mu\nu}$ and its derivative.
And $\Gamma_{\mu\nu}$ can be expressed in terms of $g_{\mu\nu}$ and its derivatives.
 $\Rightarrow \Theta$ is a system of non linear partial differential equations for $g_{\mu\nu}$.
Schwarzschild solution
Assumptions: ${}^{\circ}T_{\mu\nu} = 0$
 ${}^{\circ}g_{\mu\nu}$ is time independent (static solution)
 ${}^{\circ}spherically$ symmetric in space (\equiv in the indices 1,2,3)
 ${}^{\circ}M = R \times R_{+} \times S^{*} R_{+} \circ T$ and
 ${}^{\circ}g_{\mu\nu}$ is time independent (static solution)
 ${}^{\circ}spherically$ symmetric in space (\equiv in the indices 1,2,3)
 ${}^{\circ}M = R \times R_{+} \times S^{*} R_{+} \circ S^{*}$ is R° in spherical coordinates
Suppose that
 $g = -\Lambda^{*}(r) dt \otimes dt + B^{2}(r) dr \otimes dr + r^{*} d\theta \otimes d\theta + r^{*} \sin^{*}(\theta) dep \otimes d\varphi \in J^{2}(N)$
with $A.B. R_{+} \mapsto R$ unknown,
 $(dt.dr.d\theta.dep) \in J^{*}(M)$ generate a basis of $T^{*}(M)$.
 $\{(\frac{1}{2\pi i})_{p}\}_{i=1}^{n}$ is a basis of $T_{+}(M)$, and $\{dx_{p}^{i}\}_{i=1}^{n}$ is a basis of $T_{p}^{*}(M)$.
 $\{(\frac{1}{2\pi i})_{p}\}_{i=1}^{n}$ is a basis of $T^{*}(M)$.
Question: can we find $A.B$ such that Θ is satisfied (with $T_{\mu\nu} = 0$)?
Two approaches:
1)Express $\Gamma_{\mu\nu} S \longrightarrow R_{\mu\nu} S^{*}$ and then $R_{\mu\nu}$ and R in terms of $g_{\mu\nu}$, and solve Θ
 $a) Set $\Theta^{\circ} := A(r) dt$ $\Theta^{\circ} := rd\theta$ $f \in T^{*}(M)$
 $G^{\circ} := B(r) dr$ $\Theta^{\circ} := rd\theta$ $f \in T^{*}(M)$
 $g = \sum_{\nu} n_{\mu\nu}, \theta^{\mu} \otimes \Theta^{\nu}$ and $n_{\mu\nu} = (\stackrel{\circ}{O}(\cdot)$ and that
 $\{\theta^{\circ}, \theta^{\circ}, \theta^{\circ}, \theta^{\circ}\}$ is an orthonormal corroware tensors) and write
the structure relations of Cartan.
 O he obtains some differential equations for A and B , which can be solved
 $A(r) = (1 - \frac{2m}{T})^{-\frac{1}{T}}$ and $B(r) = (1 - \frac{2m}{T})^{-\frac{1}{T}}$ with $m \in \mathbb{R}$ an integration const
Conclusion
Textbooks on general relativity are now accessible
(but still the theory, is complicated).
 $4^{2}$$