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D-fferential  Geometry

Extrinsic / Intrinsic. ways to study DG (they're not so olifferent)

from ov\tswle of ontl\e mamfou
the mo«m‘fv

Extrinsic = to look ot curves or swrfaces from owtside 4n o bigger space
CGin Coleulus I) stmple for visualizotion
Intrinsic : no more any ambiant space, ke a 2D onimal in o flatlond weithe -
withont o 3™ dimension, wuseful -n generol relodivity 8 universe
(mostly used 4n this course) PRCTIRRRER
However, o mowifold can awoys embedded in o higher dimensional space
(Nosh embedo(wlg thm)
1) Differentioble montfolds
I.1 Topologicol manifolds (+ topolegy)
Def. a TOPOLOGICAL MANIFOLD of dimesion m s o [bopological space] M s.t. :
DM s [Haunsdorfe]
2)Ay pEM has o [reighborhood] V [romeorphid to on UcR".
3) M 4s |secondl countmble] el T
[Pf] o. TOPOLOGICAL SPACE M = (M. T)
ds fkem;svteytse{b};ﬁ@eﬂ’\er with o collectionT of subsets satisfying
i ¢ e 2 Whion X4
DIf Va7, then UVa€J (T 4s STABLE FOR ARBITRARY LNION)
I Vi, VnET. then ﬂ’\/ﬂ €7 *( LuNDtK FINITE INTERSECTION)
The elements of T are mlleA the OPEN SETS.
Their complement (M\V, VET) s colled a CLOSED SET.

I_D__ﬂLet M,T) bea tOPobjiml space (+.5.), ond et Pe:/b(_ Fé{
o NEIBOKHOOD of p s ory  gpen set containing p. ;_%?EJ
We write VP for “the set of oll Y\G\gthY)’\OOOIS o p. "’M‘
]QTﬂ (M, T) s Hausporrr 4f T V\
Vp,.p2 €M, p, #p2+ Vi€V (V€ Vp,: V. V,=0 NE

It 4s often diffionlt to dlescribe all open sets dn (M, T)
= Introduce the notion of a bosis. (reloted to Second Cowntwble)



Def. A subset B:={Va}¥<T vs & BASIS of (M. T) “If 3@@ /;
VpeMVVeV,:3UeB: pelicV N VeV,
Example : M =R" with 7 = {all open sets 4n K"} 4 a topolegical manifold.
An QPEN SET 4n K" s & set Vst. YpeV/:
there is & small boll centered at p and contoined in V.
We set Blp,r) = o ball czntereolwo»t p ond of rodlius v,

nerm in

Blp.r):={xe lK"IlIx—ylr< r}

Then - (| balls centered ot oany poir\t)
B:={B(x,r)|x€K", r >0} 4s.a basis for IK".’;,, a 140 1 (= bijective) relation
[Def) (M,7) s SECOND COUNTABLE +if 4t hos o countuble busis, F

For R", we can set
B:={Blx. &) x€®" neN} and it 45 a cowntable basis for R".
= R" s second countable..
[Pef] Let (M.7), W.S) be 2 t.s., ond let f: M =N,
f 4s CONTINUouS 4f f'(U)eT VUES
with the PRE-IMAGE f~'(W):={peM|f(p)eU)
Exersise.: When M =N =R and J=S={open sets in R}, check «f
this def corresponds to the €-§ def of coutinuousity.
If f 4s bijective and f, ™' are continuous,
we sow that f 45 HOMEOMORPHIC.

Def. M 4s CONNECTED 4f -t 4s nat the disjoint union Of 2 non-empty open sets.:



Def. Let A be o subset of M.

1) An OPEN COVER for A +s & subfamily {Vy}c T s.t. A€ YVa A

2)a SUBCOVER of an open cover for A (in which the green subsets are unnecessony)
s o subfomily {Vey<{Va} which still covers A.

3)A 4s COMPACT (small 4n this setting) <f any open cover of A oadmits a finite subcover
(If A=R", A 4 compact 4ff A 4s closed and bownded)

[ ﬂﬂN | & 46 not odd ond b 4s nat evens a<biabe NU{est}
= j I:! Id,\fdiw'egfo“}U{@}
( [A. B d)f\i\} Yok As 5 1ot odd and Ba 45 mot evens Aa<Ba) Aa. BCLEN ){co}

0o ‘
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In the exomple on P., B={B(x.7)|xe®", meN}
Let us define a half- space :
H™ :={(x., -, xa) €R"| x>0}
H" ={(x,, -, xn ) ER"| xn =0} for the boundary.
Def. o TOPOLOGICAL MANIFOLD of dimension M with o bOuno(ﬁg
ds o Housdoff second-countable topdogical space M
with each point peM hoving & neighborhood V
eigther homomarphic to on open subset of H"\dH"
or to on open subset of H" with the fmge of P inside. 9H" .
Remork]: If (M,T) 45 o topo. spaaif AcM.
Then the topology on A 4s given by Ta={VNAjveT}
(colled RELATIVE or SUBSPACE TOPOLOGY )
A An open sev for A (in Ta) s nat olw@; on gpen %t fo\— MnT).

=
. €T/ open SH"




e =
]1.2 Swmooth mom*ift?lofs & Smooth Mops

Def. a SMOOTH (or C%°) MANJFOLD M 45 on topo. momifold
-to_gethér with & fo\miM of Mm@ormrl-)hiSms
W, R" 2 Uy — M st
1Y g, () = M
2)If Pu (Ua)ﬂcpﬁ(l),s) =:Vap ¢ then
{ 0 Py * Pu' (Vap) = @p (Vatp)
Us'o@p * Wp (Vup) ™ @a (Vup)
ares of C® (from & Subset of R* to o subset of IR").
3 The family A ={(Us, Pu)}y 5 maximal.

A ds colled o0 € MAXIMAL ATLAS.
3) & 2)

(TRANSITION FUNCTIONS)

MAXIMAL : If o - Mc*!\g'/“]’lw sotisfies Lp"chD( ond qi;‘ocp (whenever d'efﬁn‘ed)f 4s smooth
then (U, @) €A,
Remork 104t 45 often ensy to describe on otlas, but not the maximal one .
o A topological wanifold con ke endowed with diﬁ’erent inegquivalent mooctmal  octlnses.
(see the Pi on todny’s handowt) (very dep)
INEQUIVALENT: take 2 mox otloses, f the union 45 not on atlas (some tromsision
functions ore not C*) then the 2 otloses are not equivalent
Exercises
1)Provide on exemple of smooth manifalds with an atlas.
(n=sphere, growp of mmpf;‘:cjrigfé\ Lie qrovps, real projective space P(R"), etc)

2) Show the (hique ness Of the maximal otlas
3) Look ot inequivalent ofloses on n-sphere.

e
. ("
oll'fFerenﬁoJ structure % ~
Remaowk : 1)

2) For (U, ¢) € A ond peg M, we set coment
Q@7 (p) =+ (x(p), £*(p), =, X" () s
ond coll it o LOCAL COORDINATE of p. It means
(7 () =:(3'¢), X ), . x"(+)) (o CHART or a LOCAL COORDINATE FUNCTION)

15 On homeomovphism frovv\ on open Subset Of/v( t0 on open swhset O)[ R".




Def. Let /M, N be smooth monifolds of dim m and n respectively.
A map £: M — N 45 a SMOOTH MAP -f
Y charts (U, @) of M ond (V) of M-
Wofo @™ ds smooth wherever defined.
The function WY ofop™ 4s colled & LOCAL. REPRESENTATION
We set C % (M, NV):= the set of such smooth functios. ot
and C* (M) := C*(M,R).
Def. If f€C*(LIV) 45 bijective and 4f £~'€C?W. M), we ol f o DIFFEOMORPHISM.
Remark : - o o{iffeomoq)hism 45 @lso o homeomorphism.
| cAmep f-M N s @ LOCAL DIFFEOMORPHISM of peM f
VeV ond VVGVf(P) ﬂv V= Woas o O{Iﬁeomoryhsm
Def Let f M= N be o smooth function and let (L/[ @) (V) be charts OfJ"l&J\/meecé/velv
For p€/M, the RANK of f at p (=: rank(f)p) oorre9yovxds o
the ronk  of Yhe Jocobion mabrix

Pl 0k
X, O Xm
:'_ ((\O(P)) W"JC}\ F‘=\1[o-faL_P"
ofn 2Fn
X 9Xm

This rank 45 independent of the charts.
Thm. (not So eosy) Fromework (s before (Constant rank thm)
Suppose that rank (f)p=k VYpe M, with kEN. Then
VpeM 3 (W) (V, V) chorts of M, IV respectively st
*(p(p)=0=R"™ andlj/(f(P))'OElK"“/Cukm,K TR
cp(U)=CZ(0) and ¥ ( V)= Cc(0) Ie>05 and with x’ e (-¢,e)

aapofo o (gt e, x™) = [, %, 0, 55,0)
k
n-K



1.3 Tongent Spoce

Recall thot o PARAMETRIC SURFACE “n R’ 15 & mop m: R*2>Q—>R>
Set M:=m (). For p=M ond c: (e.€) > MR with c(0) = p and 4f ¢ A5 Smooth,
v:=¢’(0) 1s TANGENT to M ot p.
The set of all such vectors generate the TANGENT PLANE,
Intrinsively, 4f M 4s a smooth manifold and 4f (U,¢) o chort ot pe /M, then we could set
[gd- (peoc J (0)eR" ond coll it o tongent vector. (well-defined)
R M (-¢,¢)
But -t depends t00 much on the choice of a chart, o
| De,f. For PEM (e s.m.) we denote @ C?(p) the EQUIVALENCE CLASS of Smoot?/ﬁmcﬁons
deﬁneo‘ BCE Hei\gkborkooof of B are <dentically same
Two functions ove identified if they coincide on a neighborhood of ¢
/ The elements of C*(p) owe colled GERMS of € - fiunction at p.
Observotions = C L’x’(y) 45 o vector space with the vvmltipl;mﬁon of functions
& CP(p) 15 on algebro.
Def. The TANGENT SPACE Tp (M) of M ot p 45 the set of all mops
Xp: CP(p) = R sotisfy 1ng
1) Xp (of +9) = oXp (f) + Xp(9)  Vf.ge CP(p), Va €R
D Xp (3 ) = Xplf)-g(p) +£(#) Xp (9)  Vf.3S T Leibritzs ryle) R

Tp (M) s endowed with TR ( Sulf srpl s f\\\)
3 S ‘;\:’” 2 %! I’)E'r:’”‘rr\”(
D (XptYp)(f):=Xp (f) + Yp () o ooy TN e 5 \ FeXe)€ Tros (N
i ) P e S D)
2) (aXp ) () = Xp (f) S { i
whach makes Tp(M) o renl vector space. il

N\ A tongent vector at p 15 any Xp *C”(p) 2R,
Obscrve tka’c thas _def 45 -indep of ony chart, and <5 intrusic.
Thm. /)’"F \JF@ (proof as exercise) (simple)
Let l- M N be 6 Smooth map  between smeoth manifolds. For any peM:
F* = C® (Ftp)) = c(p). F* (f)=foF
Fa: T (M) = Ty W), [Fx (Xp) T (F) 5= Xp (F*(D) = Xp (foF) W EC® (F)
Then F* 45 o homomorphism of algebro (F*(F+okg) = F*(f) +oF *(9), F*(fg) = F*(F)F*(9)
2 means ‘preserveing structures
and Fa 15 o howwvnor}?h;sm of $vector Space. (Fx (Xp+Yp) = Fx (Xp) + ot Fx (Yp))
If H=GeF, H* = F*oG* and Hx =GxoFx. 7



Fu 45 colled the DIFFRENTIAL of F ond also denoted by dF=DF=F’
Now consider o local version of this result, with &/ = R".

let pEM ond (U.q) o coordinate system (= o chort)s ot p

Then s Tp (M) = Ty (R™) s 0 homomarphism Vg € U

If = @(p) € @), then ¢y Ta (R") ™ Tp (M) 45 o homomorphism

1t implies that cpx ond @ 'x ore isomorphisms.

~ We can borraw _4information from Ta (R")

2:C) =R »There exists one unique
Lemmo: ¥ Xn € Ta (R") F1peR” s 1.
Ka(f)= i—,\)j (%(E;)(OQ = v[Vf] (o) -‘-[va] (o) (direetional derivative)
and ony VER" defines an element of Ta (RY) by Xa = Dv.
Tn other words Ta (R") D Xa ¢2ELE; 4 e R?

less simple
—_—l s

Simple (to pmve)

We conclude that Ta (R") As of oim n.
A basis of Ta (R) 45 given by {-a%la 5= = ain‘a}
which con be written by E, , = 5|, with {E; o}, o bosis of Ta(R")
= [or any coordinate S‘\jS'bem (U.¢) em M, the “iMOHe
{“P*-' (ﬁlu)} s o bosis of i) (M),
we olso write ;= @y '(5%],) ond coll these bases the COORDNATE FRAMES.
In summany: “The tangent space is indep of ony coordirate systems, but once one is given
it provides o notwral chace of o basis, namely If fECT(p). then
Eip(f)= [ﬁ(&' 551D F) =35 oo™ (0w)
Exercise: 4f (V,yr) “is onother coor. system, what ove the relations between these bases?
Corollony: If F:M = A Hs smooth and 4f pEM,
the ronk of F at p 45 equal to the dim of Fi (Tp (M) 4n Ty (V)
(another def of rank indep of the coor: Systems)




Bowck to curves pore smoath manifolds
Consider c: (-¢,¢) =M & Smooth map, _unit vectar
On (-e.€) all tongert vector ot to € (-€,€) are given by "'ad?lto for vER
Then Cx (Fleo) f =l (Fo0)] b = @ (F&C= (et
If (U,®) 4s o coor. %Ste-m ot c(to)
ond 4f we set Cl=(goc) Yi=1,n
- —(d - == - : Sy 2 n
®—[ag (foep™opoc)] to) = 1;5%;(]%@ (AN AREN & ))] (to) < Calowlus T
R <R —(-ge)
= : —i—- (Poclto) O/ (4o) = }: &' @) Ej, ce) () € Tetta (M)
= A curve defines an element Of Tetta (M) R

174
F\

=

£

The converse - M_’:/"/ /‘;::,)s
Lemmo. . For any p€ /1. and any X, €Ty (M) R el
Je:(-e,e)» M, smooth and with ¢(0) ~=¢p, st \\\/}b
Cx (Hqt—ltq) = Xp __’_z) .
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Vector fields

We consider a mop X:M— U Tp (M),
PEM

p — Xp & Tp (M)

How com one impose Some smoothness on X ¢

15

nd

Def.

solution :  (best) (boo obstract)

consider T(M) = U Tp(M) with a certoin topdegy waking o smeoth manifold,
T(M) 4s called TANGLNT BUNDLE .= describe this: exercise for mathematiciens.
Then consider X as & smooth map between smooth wmanifolds,
solution:
‘far o ooordinate {ys‘tem W, ) on M omd for Peu,
we consider the basis {E; ,p}J:, €K
Then Xp€Tp(M) ond Xp = Zot, (P E;p (& decomposition of Xp on this basis)
By movig p -in U, the coe-ff?ouents o () 45 also varying,
So we ctn impose that

R"Dcp(U)BxPQ(oucp"')(x)EIK“ 45 Smooth.

This regquirement < firét solution. S % >R"
& C®-VECTOR FIELD on M cotu) o - 5"’*\;(?(\
ds o mop X:M > T(M) : /)X R" e %‘E/"(
whase oompanen‘ts o 1n the "*-“Lw?' B

coordinate frame {Eip} of ony cordinate system satisfy
R" 2 (U)Dx (o Nx) ER" s smooth.
The set of all C?- vector fields 15 denoted by %M.

Lemma: X:M = T(M) 45 o C*-vector field ff

Vel 204 K Xf=M'—->lK,EXfJ(1>)E[Xf],,== Xof s smooth.
(onother equivalent def) (cowld be an exercise)

Observe that -4n this lemma, X coan be c,onsidereal as o Mop

CP(M) of —2— Xf € CPM)

Remork: % (M) 45 o vector space ond hos e odditional structures:




NDXM) 45 o C”(M) - MODULE
@ VfECTMIVX € %(M): If X &x (M) defined bﬂ [fx],, = £(p) Xp
DX(M) s o Lie-algebra (very 4mportant)
@ We con endow X (M) with o Lde broccket :
X(M) % B((M) —> )((M) 31ver\ Izlj
( X ) Y )*—‘)[X Y1:= XY =YX sotisfying
i) linearity in each element
ii) antisymmetry = [X,Y1=-L[Y,X]
iii) Jacobi identity : [X, (Y, 2]] = [Y.[Z,x31=[Z,[X,Y7]
Exercise : show that 1) and 2) hold
In porbiowler check that [X.Y1p satisfies Leibniz's rule.
Recall that for any XpE Tp(M) Ic: (-€.€) > M with c(0) =p ond
€)= cy (a"lt o) = Xp
Thm, Let M u&i ﬁef:“::f.h mowvifold and X € X (M).
VpeMIlcy: (-€,€) P M wAith ¢, ) =p and Cp@t) = Xepet
Remarks: The curve ¢, 5 called the INTEGRAL CLRVE of X ot p.
and we call ¢, (¢-¢,€) the ORBITAL of .
I\ The value ¢ depends on p.
Whenever 4t 4s well-defined, the following relotion holds - C”C‘/“*\
Cps+t) = Ceper (5) n Appandixforf”‘lﬁ
Thm.The orbit of p s either the single pod:‘nt P or on 4‘mm$rsion of (-¢,€) n M,
if Xp=0 if Xp #0
Thm.For any x & X(M) and any pEM IVEVS, >0 and o smooth map
Free) <\ — M satisfying S e —=
. F0.3)= a2V and F(6.4) = Xecs,a) vZ‘Z‘\f'“’ /(‘Z\\
X The mop F 45 colled the LOCAL FLow of X at p. Note that F(t.p) = Cp (L)
Def. Let X € % (M) ond peM. If Xp =0 then p 45 called o SINGULAR POINT of the
vector field. Since cp(b)=pVt 4f ¢ 45 sigular, these points are very special
and we con Study +he integral cwrves arownd them.

The possible behaviors depend on the topology, Nice subject but we con’t go further,
1

/



Def A C®-vector field is COMPLETE -f
ot omy peM, ¢p 5 defined on all K.

A Complete  veetor -fielal con contain  some SihguJo\r points.
ThW\.AYy C* -vector f»eH M o OOW\PO\ct mo\ni-]blal 45 OOMP,e‘CQ
Remark: Let X& %(M), peM and Cp the corresponding integral curve.

Then for oy & CZ(p):
Xof = 'éfL f(CP(t)),t o = [im (C"(t;)_f“

t20

If feC”(M,R) recall that
Xf=Lxf s defined by [Xf], = Xef
colled the L= DERIVATIVE of f
interpreted 05 the derivative of f dn the direction given by X
If YE X (M), the L1e o(envahvo LxY € %(M) of Y s defined by

LN
[LxY1, —th_v)vg —%—(F( ¥, \/cpcw)* Yep ™ YLE-)”GTP(M)
Evcr(f’ L’ech(t) M)

To M) Tepwr (M)

Lemma: LxY =[X,Y]



I Tensors, tensor fields and differential forms

I.1 Tensors [Bo 199-2141[GN 62-64]
. Let V be a finite dimensional ond real vector space (R
ond let V* be its DUAL.
(= the set of oll linear maps V=R, such a map is called
o LINEAR FUNCTIONAL on V)
‘ _ o exercise
Prop.If dim V=n, then dim V* =n
Def. o TENSOR ¢ on V s o multilinear: map

b VsV VYRR oy S R

r terms s terms
e.g- evxV ey*

¢(V|, O(Vz-l'ﬁVz,, wi) = A d) (VI/VLrwI) +ﬁ¢(V|/V£rwo)
We soy that ¢ -5 r-times COVARIANT and S-times CONTRAVARIANT.
We write ¢ € TL(V) =T ™5 (V,V¥)

Exoamples
Vr=1s=0: ¢:V—>R 45 an element of V*= Tl (Vv)
Ar=l,s=1: ¢(v.w)= wh) =<w.v> o o Froduct

Lemma: TS (V) is o vector space of dim n"° (exercise)
Remork: If ¢; € TGP (V). {=1,2, we set
$,QP, €T, (V) with
@ Py (Vi Ve Ve, e Ve )= P, (V17 V) @ (W a1, 7 Viners)
Similor def for ¢;€TL (W), §=1,2  DER Ler
If ¢, €TsW=T"(V), ¢, € T5V)=:Ts(V), then
$, @, € T5 (V) with
&, @b, (v, Ve, Wi, ws) = P, (Ve va) @y (wy, e Wa)
I\ This Prodvkct 15 not commutative !
Def. A tersor ¢ &€ T" (V) 4s SYMMETRIC if invariant wnder the permutation of 2 argumen
(for exomple if ¢viva) = @ lva, Vi)
ond ALTERNATING 4f 4t chonges the sign under the permutation of 2 orgwments.
(for exomple if ¢lvivi)==d(va,vi))
Some def for ¢ Ts (V).

13



We write Z7(V) for the set of symmetric tensors in T (V)

and A" (V) for 2 alternating !

Note that 2 "(V) ond A"(V) are vector spoces.
Let S, denate +the group of all permwintion of {I..,k}

ceS, if ¢ 15 a bijective map from {I. - k} to itself
with (L, k) = (6 (1), -+, 6 (k)

S8

We set sgn (0) =] if ¢ corresponds to on even number of

trans;;os‘itiorv i
] i " rmutowbio 2 eleme
and sgn (0) =-1 if odd permus nof lement
Def. On T"(V) one set

TV = TV and A T(V) - T(V) by
[3¢] (Vl;"',\/'\)::-—v%!- Z
&S

¢('\)o’(|), v, Vam) (SYMMETRIZE) }l‘

2 n
[Ad] (vi. = vn) ‘=‘3TG§S sgn ()9 (Vscn, =, Vo) (ANTI-SYmmeETRIZE)
Lemma: 1) 5* =%, A*=A

DIT(V) = Z"W), AT "N =AV) i and only if

NPeI"W)if $0=9, deA" V) if Ad=¢.
Remark: If F:V-W is o linear mop between 2 vector spaces
then it indwces o linear map
F*: T°(W) = T"(V) by ;
[E* T Gommva = TR, o Eva Ve & T (W)
Now let us set K

/\(v)==/\°'“(V) BA'(VBNW)e-@ /\J'_ (V)@
cTV)®T(V)@ T V@D T (V@ =: T (V)< lemoi odgebra\ gver V
The elements of ALV) or T (V) cousint in finite “Sums”<only a notation
P+ + P+ + i = (0°,9, 0% ) =9
for die N(V) or T (V)5 FRENVjzk: ¢pi=0 (k different for ench &)

Lemma: T(V) 45 o vector space ond an &ssocbirzgviy o«ljebro:# with ®)<- extended by linearity
- . V)Y = PA(V B¢
!:g((po +¢I) ® ('\'Vo-" \lf. +‘Vz)

+h, @ Yy b, B, i+ @Y, =T (V)
EeMEE s e m

m
R T'(WV) T T)
14



What abowt A(V)? The product @ dhes not generate 0\"(70‘\0»‘[7[13 tensor
Def. For de T (V) and e T3 (V) we set
Pay e T (V) with
da= L A(h@Y) colled EXTERIOR PRODUCT or WEDGE PRODUCT

r! sl
Lemmor. the Wedge product is bilinenr ond associative.

Cordlory: A(V) with the wedge product is on associntive a\gebm
[—called EXTERIOR or Grassman ALGEBRA over V
P Lemma. If e ATWV) and Y EASW) then pay =€) Yad
Thm. If dmV=n
VIf r>n, then A"(V)=0
DIf 0<ren, then dim A" W) = (R)= ey
In partionlar if r=n, dim A"(v) =1 = unicity of det
3)dim A(v) = 2"
(Next sime + A= U ACT3M)
1.2 About boases

Recall that if {E. =, En} is o basis of V. then 3! bosis {@,.-. Pn} of V¥ sit.

_ I if y=k
@; (Ek) =8;k: ={0 :Jtl':ermse

= YveV:vs= Zcp,(v)t
We call {@, - CPn} the CIS"J‘KCMBOASV;S" -
Consider M & smooth manifold, and (U, ) o local chort.
For oy peu o bosis of Tp(M) is given by the coordinate frame {E.p. " En,p3 with
E;.p= CP* ax,!cp(\:)
Thus if we consider the dwel space Tp (M) * = TE (M)
there exists o duel bosis for £E.p. . Enp}, usually denoted by {(dx)p};m,
Justification for the notation (chonge of point of view)
Let f€C®(p) and X Tp(M). We set (df)p (Xp):= Xpf €R and in particular
(df)p (E5.0) = [0 (ol oen)] (F) = [5%5(Fo ™)) (o (o)
If we choose f=¢': V,2VHR = R \"=ga;; (x)(eptp) = §;;
Observe that (df)p : Tp(M) — R is lineor, ond thus on element of TF (M)

= (d¢')p 45 on element of the dwal bosis. ,
I5



f M IR 'looef or o basts
then ¢ = 4dentﬁgy omd 4f fe€C*?(p) then (df),, ,}: Ai (dxP)p wHth -
% )\l EP ] (f) = 3)(' )

= @)y = 2 35 (p1dx), ,

CorresPOnds to df = f}%dx “f'z dx* "’“""'ja,‘f* dx", seen in Caleulus I.

1.2 Tensor field
Recall thot a vector field s a map
X:M = UPeM Tp (M) = TFLM).
Def. a (r,s)-TENSOR FIELD on M 4s a mop
$: M Upeu Ts (Tp (M)
b s $pr= T (T P0) F s
Exomples
1) A vector field X: M= TM) 45 a (0.1)-tensor field . Tndeed :
a (0.0 -tensor field ¢ 4s a map
¢: M UpeMT,o (Tp(M) on exe::rc[se
linear mop from Tp (M) to R =>element of T¢™ (M) =Tp(*M)
2) Reciprocally, o C1,0)-tensor field ¢ -5 o map
b: M= Upep To (Tp (M) = Upep T (M)
linear mop from Tp(M) to IR = element of T¢ (M)
Upen Ty (M) 45 called o COTANGENT BUNDLE.(exercise: 4t’s a smooth monifold)
In this case ¢ +s a COVECTOR FIELD. ‘
A map $: Mo Uper T4 (Tp (M) As called FIELD of BILINEAR FORMS.
VpEM: Gy To (M) x Tp (M) KL R
Observagion: A bilinear map can be io‘entifaed with & Nxn matrix :
ijop = Pp (Eip. Ejop) Cirie{l n})



About smoothness
There are several eguivelent defs for the smoothness for o tensor fiek.
For example, 4f X.,-.Xr € %X (M)={smooth vector fields}
and 4f Y., . Ys are smooth covector fields,
then one imposes that . the mop
M3p ""(ﬁp (Xup. = Xep. Yoo = Ys,p) €R s smooth.
Or. 4f (U, @) 45 o chart, if peU and 4f we consider {E;r};2, and {(dx)p}
the ooordmate frames and coframes. Then we con write
Py = E Qi (P )@ ®(Jx")® Ei,p @@ Ej.p
i1 mfﬁuen‘c in o local basis)
and 4dmpose that the coefficients are C® on U.
We call such smooth tensors C°°- TENSOR FIELDS.
Def. The set of all smooth (r,s)-tensor fields on M 4s denoted by T5 (M).
Lemma T5(M) s a vector Field
2)To (M) 45 a0 CZ(M) - module:& @ (x, . FXj. = Xn) = Fb (X, =, X, =, Xa)
3)If $€ 75 (M) and Y€ T35 (M) then ¢®YeT T (M)
with (4@ Y )p = ¢ @ Yy
Remarks
DIf fE€CP®(M) = C®(M,R) then we define o covector field by the formule
df - M T* (M) = Upeu To (M), (©dfeTs (M)
(df)p (Xp):= Xy (f)
2 colled the DIFFERENTIAL of f
2)If F:M =N a smooth mop and 4f ¢ 45 a (v, 0) - tensor field on N
then we set F*¢ a (r.0)-tensor field on M by
(F*d)p (Xip, =0 Xep) = Pripy (Fx (Xup), =, Fx(Xep))
It means € Teg) (W)
¥ T — TTAM)



7 {sym. tensors}
Def. A tensor field ¢ & Th (M) 45 SYMMETRIC 4f Yper: $pp €L (Tp (M)
ALTERNATING 4f A\
Remork: (Very dmportaﬁ) bilinear forms on M > folt. tensors}
A symmetric tensor field ¢ € T2 (M) 4s POSITIVE DEFINITE Af
VpEMVYXp € Tp (M) Pp (Xp,Xp) 20 equality & Xp =0
A manifold with o symwetric positive definite bilinear form 4s colled a
Riemany MANIFOLD 5 ¢ 4s called o Riemann METRIC. (2 Integration)

(Good for geometry)

I.3 Differential forms and exterior derivative
Def. A tensor field e T (M) which 45 alternating -is called an
EXTERIOR DIFFERENTIAL FORM of cegree r 3 or o r-FORM.
We write A" (M) for the set of all r-forms, and
A M) = @ AT(M), with A° (M) = CRM),
Properties (—I)'s‘l[f;\l ¢
DVIf €A (M) and Y EN (M) then day e AT (M)
2) A(M) 4s on olgebra with the Wedge product A .
3 If (U.@) 45 a local chart, ond 4f pe U, then the set
{(dx")p A+ A (dxi)p} with 1€ig<~<irgn
s a basis for A" (Tp (M), and accordingly
{(dx"), -+, (dxi)} s & basis for A”(U) e AT(M).
= A(M) is the algebra of differential forms or exterior algebra.



Main result of this chapter (for def of grod, div, curl, etc)

Thm. Let M b a smooth momifold, and A(M) the exterior algebra,
There 4s o unique linear map
d: A (M) = AM)  satisfying d(f) differentiol of f
NIf fEN(M=CPM), then df = df € T, (1).(df)p(Xp) = Xp (f)
2)If e AN (M) and Yre A°(M), then
d(@ayr) = (dd) Ay + (=1)" A (dyr)
3d*=ded=0
In local coordinates, we have on explicit formule for d:
| Recall that 4f (U.p) 4s o chart, pe U, then
| {E;.p};z 45 a bosis for Tp (M) ond {(dx’)p}se ds a bosis for T; (M).
Then ¢ A" (M) con be vepresented by
®p =1$i-<Z<i,sn B s () (dx*)p A A (dxin)p (o speciol case of T 5(M)
= ZI_'. a;  (p) (dx*)p with a;: U= R smooth.
 Then (def) eTiM  ENW
(ddp:= (o) ~ [, &A™ (20
Exercise: check that this def satisfies the 3 conditions [GN p74]
Remaarks
10d 45 o Jocal operator: If UcM and ¢ € AU)<A(M) then dud =dmu P
2)d maps A" (M) to AT (M)
3)d 45 colled the EXTERIOR DERIVATIVE
Exercise (Thm?)
If weA'(M) and X,Y € % (M) :={C*-vector fields}, then

L dw YD) = Xw () = Yw (X) - w (IX,YI) € C®(M)
eCc(M) EC(M) eC®M)

~

(WX)p = Wp (Xp) €R
Proof: In o chart (U, ) wp = Z"_'a) (pXdx))p
For shortness, we write wp = fdg for £, € C®(M)
Then dw (X, ¥) =d(fdg) (X.T) == 22 (df ~dg) (X, Y) 2 df (x)dg O ~dF(Y)dg(X)
= (Xf)(Yg) - (Yf) (Xg) € L2 (M)
Xw N = Yw(X)-w([X,Y1) = X (fdg(¥) = Y (fdg (X)) - fdg (CX.¥1)
= X(Y9)- Y (FXg) - FOXY-1X1g 2y pryg 4 £xvg - YF Xg-f g - FXTg+FYX9 1

| = (Xf) (‘(i) - (Yf)(X39) -



Xw(Y) = Yw(X)- w([X, Y1) = X (fdg () - Y (fdg(x)) - felg (LX.YI)
= X (FYg) - Y (£Xq) - f(XY-YX) g Leibniz. x £yg + fXYq=YfXg-fYXg-TXYg+f¥Xq
= (Xf)(Yg) = (YF)(Xg) o

Generalization
Prop. ["GN" 3.8.2 p.75~761] (independent of any coordinate systems)
Let v X,, =, Xnn € ¥ (M), th i
et g A"(M) ond n+ ehA/OMIt

[dCbJ (X1, Xewr) = i; ("')”‘Xi ¢ (R 2l =, Xr-nj\

I 0P PUIX X5 T, X X, X5 Xew),

Exercise: This sotisfies conditions 1~3 of Thm. EcmM)
Recall that 4f F:M =N a smooth map between wmonifolds, then

F*: T7(N) > T (M) by
(F*¢)p (XI,P/ 7] &‘;L) :=”¢F(P) (F* (Xup)/ 'y F* (Xr,p))
EM ETP(M) , ETF(})-(N)

which 45 alsa F*: AT(NV) = A" (M) (alternating property 4s preserved)

Lemma: In s framework

F*od, =duF* [Bo Thm 8.2 p.223]

Exercise for mathemogicians: about de Rhom cohomology
LGN, $.76 ex 5]

I.4 Ordentotion on o manifald (easier)
Let V be o real vector space of dim m, and {E;};2, ond {F;};Z, 2 bases

eff. of the

Set A € Maxn (R) by Fi= Z:'. a; E; cghmge of bosis
Def. The two boses has the SAME ORIENTATION <f det (A) >0

ond of OPPOSITE ORIENTATION 4f det (A) <o

= There ex-ist 2 classes of equivalence of bnses.
We soy either they are ejther POSITIVELY ORIENTED

or NEGATIVELY ORIENTED.
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Def. Let M be a smooth manifold of clim n>1, A Convention changed
M 4s ORIENTABLE <f there exists a covering (= atlas) {(U;. ¢;)}Y; s.t. all T
s oepi = p; (Ui NU;) = ¢p; (Ui NU;) 45 ORIENTATION PRESERVING
@ 4f det Jac (@;°p7') >0
Lemma: A comnected orientable manifold of dim >) has enly 2 possible orientations.
Remark: If M ={p} (of dim 0)
an orientation 4s & map from p to =1, We meed this becouse
f: f'(x)dx = f(b) ’-Tf(a)

Ly : "
Mof dim 0, bm+1, am -1 are what we need from orientations.

Thm. [Bo. p.2181 (very deep but. intruisive) ¢ 15 colled a VOLUME FORM
A monifold s orientoble ff I A" (M) VpeM:p #0 (dp € A" (Tp (M)
Recall that H" ={(x. ., x)€R"| xn 20} and
M 4s a smooth monifold with boundary 4f evew chart
(Us, Qo) wAth P : Ua M" 45 « homeomor})h3’5m. (+ atlas conditions)
The BOUNDARY of M 4s denoted by M and 4s given by
IM 1= U ¢ (IHaN e (U)
which 45 o smooth manifold with dim (m-1)
Next time: If M 4s oriented then 4t vnduces also an orientation on IM
(needed “n Stroke’s Thw)

2}



Propositions
1) The boundary of a smooth manifold M of dim n
4s o smooth manifold dM of dim (n-1).
2) If M s orientable then aM ds also orientable.
More precisely, <f an-orientation ds chosen on M,

then there exists om INDUCED ORENTATION on M.
) x"

The outword } 2 'S%n'lcm,)

pointing vector

We set @k (=53 [qp) = Mo
For o basis on @M, we choose o bosis {e., ~,en} of Tp(aM)
such that {ng, €., =, en} generates a basis of Tp(M)
of the same orientation as en M.
A™ (M)

;5 (U;)

-

22



II. Integration on manifolds

I.1 Integration of n-forms preserving
Let M be an oriented A"(M) moanifold and let {(U;.w3)}; be an ordenm;
Let w €A™M) with supp(w) cU; and with supp(w) compact.
| o (O:»(a:)) = op) (dx')p A A(dx™)p WAth ae C® (M)
Recall that cp}‘* maps A" (M) to A"(R™)

= @] w)=ae ;' dx'a-adx”.

Function on ¢p; WU RrR" . .
Then we set > wsual Riemann integral in R

fuw = Ju, 0 = Joup @0 @3  didxn = [ ) 201 AV *)
Lemma: If supp (w)c Uk for an other localization map (U, i), then
fqn(uk) Qe epy dx, o dn = o a0’ dodxa
(independence of the coordinate system) (proof as Exercise)
Def. Let M be an ordented smooth manifold, {(Us. 9;)}; o covering preserving
: , 5 ;
the orfentation, and w €A"(M) with compact support. . b sl
Let {f;} be a partition of unity of M subordinoted to Us. Then
wa = [ Zfiws= g '—')-;—-fm f;w as defind 4n ().
the sum -s finite because s’(\/:\p(ﬁ)w) 15 compoct
Remarks
« fyw s dndependent of the choice of o partition of wnity. (Exercise)
- The mop A"(M)Dw - [, w €R ds o linear mop.
«We con avoid the " comwpactedly supported” but be coreful about the convergence.
< If FrMe N s a diffeomorphism and <f we AN (V). compactedly supported,

* . =
JuFfw=2fyw
EAM) ¥ (£ depends on 4f F preserves the orientation or not)

‘Ps(lb\-—
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Thm. (Stokes’ Theorem) (The modn thm of this chopter)
Let M be an oriented smooth manifold of dim m,
with boundary dM. (with 4nduced ordentation).
Let 4:9M = M be the dnclusion map. (identity) = 4% : A" (M) —> A" (9M)
Let we A" (M) with compact support. Then
SaMi:‘B = fM d\j’,
EAVIAM)  EAN(M)
Reference for the proof : [GN p.82-84][Bo p.260-261]
Remork:" If oM =@ then [, dw =0
2) The proof s similor to the ome of Calewlus I on R* or R?,
and the madin. ivgrediewt 4s f: f'(x)dx = f(b)-f(a).
Exercise: Show thot the Greem Thm, Stokes Thm 4n R’ .or -Divergence Thm
are special cases of this theorem. See Bo p.262-263.
Recall that M 4s orientable 4ff Ipe A" (M)VpEM : ¢p # 0.
Def. Let us fix one of them, and for any f€C®(M) with compact support we set
[wf:=fufd. A This def depends on the choice of 4.
In porticular 4f M 4s compact we set the volume of M as
Vol (M):= [y 1¢ = [4 ¢
L.2 |ne '{Mtgﬂrals ACopital 5 it is a monifold
Let c:Lo,bl— M be a diffeomorphism onmd set C=c(la.bl)

If we A (M) we set

fow=§ .c¥w =" feo dt
€NA'([o.b])

V)
t - f(t)dt

Lemma:If w=d¢ for some & /\°(M)=C7 (M) then
few = ¢(ct) - ¢ (c )

(Proof os exercqse)
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Consider o smooth mop . ; 3

1023 [0, b1 e

rol /

with H(s.a) =peM and H(s,b)=qeM Vse[0.1]
We say that Co ond C, are

We set Co:[a, bl =M, Colt)=H (‘O,t)}
Ci:La.bl=M, C, (+) =H(1,4)/ HOMOTOPIC paths between p and q.
Thm. Let w e A'(M) sit. dw=0 everywhere. Then
.Ycow = fe, w
Remark : 4f w =d¢ with ¢ €CM)= A"(M), then dw =d*¢ =0

ond the statement follows from the previous lemma.
« If M 4s of dim 2, the statement s “almost” a consequence of Stoke's Thm,

but we don't have the smoothness of the boundory at p and g,

* More generously, see [Bo p.271]
Remoark: Smoothness can be relaxed <n wmost of the statements.
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IV  Riemonnian Mamfolds

1IV.1 Definition amd basic properties
Recall that 4f V 4s o real vector space of dimension n,
a POSITIVE DEFINATE BILINEAR FORM 4s a moap ¢: V=V = R
which s linear 4n each argument -
ond s.t. §(v.v) 20 YveEV and gv.v)=0S v=0.
¢ 4s SYMMETRIC 4f ¢ (v, va) = ¢ (v, V1),
Def. A smooth manifold wdth o positive definite. symmetric bilinear tensor field
4s colled o RIEMANNIAN MANIFOLD.
& I T*(M):
bp € Z* (Tp (M) A[VXp €Tp (M) : dp(Xp, Xe) 30 with =0 Xp =0]
We call ¢ a RIEMANNIAN METRIC.
Lemma.: If F:M =N 4s an IMMERTION (: & dim F(M) = dim M i see App. 2)
and 1f ¢ 45 am Riemannion metric on N,
Then F*(¢d)e T2(M) 4s a Riemonnion wmetric on M.
Proof as exercise; recall that fETp(N) =0 4ff Yp =0
(F*¢) (Xp, Yp) = ¢ (FelXe) . Fx (Yp))
Thm. Any smooth monifold con be endowed with & Riemonnian metric.
"2 proofs” : @ Use a covering + local coordinate system + Lemma above
@ Use Whitney Imbeald'irlg Thm + Lemma above
Remork: For a Riemonnian manifold, Tp(M) has an 4nner product provided by ¢
= We com now define orthonormel bases on Ty (M) ot every peM,
Thm. Let (M, @) be o Riemannian wmonifold which 45 ordented.

B fi m
Then 211 ushine: Sermtl ik VMt Ol g™, Frpdid (%)

whenever {Fup. . Fap} 45 om oriented orthonormal basis of Tp (M),
Proof : Since dim (A" (Tp (M) = 1, then £ 45 uniquely defined by k).

We have to show that 4t does not vawish.

Let (U.c) be a local chart with peU;

Let {El,p, ) En,p} be the COFFBSPOnOli:\j basis for TP (M). (Coo'rdino\te frmme at p)'
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Set gi; (p):=¢p (EiLp. Ejp).
Since Eip = {_::10('.( Fe.p ond since Oy (Fip Fip) =8i;
> gi; ()=, (Eip.Ejp) = by (;C)L:"FK,P y 2:——10(: Fe.p)
=got'fo<',-< = (TAA)i; wAth Ay =of
=3 olet(g;j (p)l);‘i = det. (TAA) =(det (:‘\))z >0
m >0 (exercise = =1 by def f'>>0 by choice of on’ev\tation‘
D 2, (Eqp, . Enp) = det (A)Qp'(F1,p,"‘,Fn,ﬁ=det () = Jdetmg sg
Since p. (U.w) are arbitrary, then 0 45 o volume form.

4

Smoothness 4s oautomatic. a
0 4s called the NATURAL VOLUME ELEMENT
on the Oriented Riemannion momifold (M., @).
We often see gf;(_ljafg dxq A Adxa
en®) L.« det (gij00")
Remark : We con use 2 to define
fuf = fu O VFe o0
Let c:la.bl— M be a smooth curve on & Riemomnian moanifold (M, ).
The tongent vector s
Cx (éjﬂt) =: E(t) € Tewr (M)
Def.The LENGTH of the crve s defined by
» Lee 2 [Gece (080, EeN]™ dt
Exercise: This 4s <4ndep. of the parametrization.
The ARC LENGTH s defined by s:[a, b1 —[0,L1],
s 1= [¥ [$er (€00, 0e0] ™ de
We often write [(45)* = ¢ (¢.8)]

Thm. [Bo. 4.189~191] A connected manifold 4s a metric space with the metric defined
by d(p.a) = 4nf on the length of all paths (:= curves of C*or C*) between ¢ and q.
The metric topology and the manifold topology coincide.

)| Renvinder: & METRIC SPACE +is a podr (M, d) with d:MxM— R, s.t.
Nd(xy) 20 3)d(x,v) = d(v,x)

2)d(x.y)=0& x=y 4)d(x.2) € d (x.y)+ d(v,.2) (A 4nequality)
by |



2 Riemannion

Def. Two K. wanifdds (M..¢.) and (M., ¢.) are ISOMETRIC +f
JF: M, = M, a diffeomorphism such that F* ¢, = ¢,
A~ distonce &
= d, (b.9) = d. (Fp),FQ))
Remark : (Nash embedding thm) asserts that

oy Ro monifold com be -sometrically embedded -in RY, for o(?—-—————“(g"z‘ﬂn )

IV.2 Differentiotion
Differentiotion 45 amportomt for the description of om evolubion or o tremsport.
Exomple: In R® for o f{xed relovence system, x(t) = v

 One can dso consider a moving reference system. (moving frome)
Example : We ottach o reference system to o point moving in RS,
Let s—c(s) be o curve in R’, with the orc length parameter.
Set T(s) = c’(s), with the property [Tsll=1.
Then T(s) = T'¢s) LT(s) omd set T(s) = Kts) N(s) with K()20 and INGI=
Consider {T(s), N(s), B(s)} ,[-tke curvature LSULFPOSQ K(s) #0
as a basis at c(s) orthonormal
The equation of motion of this frome 4s given by the Sevret-Frenet formulo
There are 2 porvmeters:
K (s) = the curvatinre T / M
T(s) = the torsion _ o3
Exomple: Let M be o manifold of dim n -in RY, . |
let Zex(RY) and let peM. = Z,€Tp(RY) but not always Z, & Tp(M).
If ZpeTp(M) (tongent to M ot p) for oy peEM,
we say that Z 45 a tangent vector field.
Since RY has a scolar product, <t endows M with o scalar ‘project
2 Tp(RY) hoas a scolar ?rOduct, os well as Tp(M).
= Tp(RY) = Tp (M) @ Ty (M)*
= 3Ty and " two orthogonel projections on Ty (M) and Tp(M)™,

u
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| Def. Let Y€ %X (M)c % (RY) and consider t—ctt) e Mc RY a curve on M|
Set T(t)“ Yewr € Tewws (M) and consider
(t) Tew (’cr‘ Y ) € Tewr (M)
& comp wtation in

caued the COVAK!ANT 'DERIVATIVE of ¥ along c.

Thus Y ond ¢ dt belong to X(M) but the definotion "fT uses R

Prop. a- Yo+ Ya) = gt + 31‘

z)-a— (fY)=f’ Y*f ot With any f e C?(M)
YY) = <—%ﬁ,n>+ <Y 22> with[Y, =Y, oc, Yo=Y, oc!]

[_-'\_—-o:#

— End of example 3
Remark
If we consider Xp€ Tp (M) and -
-if we choose a curve t+—c@®) €M with c(to) =p ond & (to) = Xp
then %% (to) does not depend on c) but only on Xp.
(proof as exercise)
It means we con define a map
Tp (M) x (M) — Tp(M)

w U] B
Xp Y g (o) =2 va Y
or more 5enero\”3; ‘ U new notation
X(M) x X (M) — X(M)
w w V]
X - UxY

wAth (UxY)p = Vx,,Y
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Def. An  AFFINE CONNECTION on o smooth monifold M 4s o bilinear mop
V: X(M) x ¥ (M) — X (M)

X Y = VX Y)= Uy Y satisfying

5 o9 - . . . -abb
NUee Y = F Uy Y CZ(M)-linearity 4n the first vart

2T, N = (XF)Y + £ T Y
Def. For any X.Y € X(M) we set
TX,Y):= Vg Y - Uy X-[X, Y] € X (M)
colled the TORSION of the connection’ amd set
R (X, Y):=Vx Ty = Vy Vs = Vx y3 € End (% (M)
[ﬁ()(,‘f, Z):= R(X,Y) Z] 1 X (M) — X (M) ;5 endomorphism @158
colled the CURVATURE of the connection.
Lemma :
T(X,Y) 45 C®(M) -linear 4n both oaguments s
Rix.v,z) 4s " '
[Exercisei see Tu (geometry) p.441
Def.On o Ro monifold, o torsion free (:& T(X.¥)=0VX,Y) connection satisfying
ZAX XY = AT X XY+ X, T X Yy ECTEM)YXN. Z € X M)
4s colled o RIEMANNIAN CONNECTION or LEVI C1viTa CONNECTION.
(compobility condition between the Riemownian metric ¢ and the comection V)
KY) s M= [R5 KXY Yp = Py (Xp. Yp) €R
Thm. On & Riemonmion mondifold 3! Riemomnian connection.

in the 3 ocaguments .

Thds connection sotbisfies
U2y = R AY.ZY & YLZK) = 2 <KD
=X, LY,Z23) +<Y,0Z,X1) +<Z,LX. Y1)

(Koszul formula)
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\
‘Lemmw Let M be o smooth monifold of dim n  (Réiemonnion not assumed) ond
(et V be onm offine comnection en M.
Let (U.p) be o chort ond consider o coordinate froame on the tongent spoces.
Then W 4s defined by n° funchions :
NS U—R for i,f.ke {1, -, m} called the ChRisToFFEL SYMBOLS.
Proof: Let X.Ye€ X(M), ond Vpeu
Xp = :b (P Eipi Yp = Za‘(P) Eip

-1~—V-Jk)

| Set ETp(M) R 2
VEi., Eip = T{:% 75 () Eny
Then Linearity and 1) 2)

.Y = eele niE: -i_zj b Vg, (03 E5) 2 b {(E,a)E; + 0 5 B
i J e L i)

bases of Tp(M)

‘E(X&“Zab P.J)Ek k)
= Vcombeexfresseo( by [ .,
Converseb;, if we start with @, -it defines om offine commection. (5-min exercie) D
Remork? with these motations
T = Dy Y = Dy X=[XY1 = T (D Ny alb By
Thus VX, Y € %(M) - TOGY) 20 € Vi ke i = 0
2)If (M, ) 4s Riemonnion, recall thot

g') (P) = ¢P (El,y; ) P) VlJe{i } a’V\A ﬂ\a’f\
M =45 gkl (agh 4294 _ ag.,)
=1

ox 3 ox! ox!
{nverse. matrix of (9i;)

(proof os exercise)

=



A rew look at the covoadiomt derivabive :
let c: It =ct)eEM be o smooth cune on M, ond let Ye X (M),
Let (U.cp) be o locol chart, omd for peU
Mpl= g L OO N S
Then we set
LL (p) = [Vé(t) Y] ) - g\—: (é t) b* (ct) +§:’ Mg (c) b’ (c(t))qczs (t)) | SR

Observe that c'(t)=¥ R B e
) bk=cy (-a— l -ad'(bk"c)lt 'a" b* (c (b)),
e R ) k i ¥
= ‘E (-—-a—-—db (i(t) + Zl; M () bileen ¢ (t)) Ex, cctr (/)

Remork: only the volues of Y on the crve are token dnto account.
Def. Let c: I M be o curve on M, and ¥ an offine connection on M.
A vector field Y: I3t +— Y(t) € Tew(M) 4s PARALLEL along ¢ -f
Hw=0 vtel
Sfmce @ 4s o growp of first-order differentinl equotions we have:
P'rop Given o smooth curve c: (-g,e)o¢t —cit) € M and
given Yeio) € Tewo (M) then
FIY:(Ce.e)mt — YR E Tewy (M) porallel to c,
2)If (M, ¢) 4s o Riemonnion manifold ol
Af {F., . Fn} 4s on orthonormal basis of T e (M)
then 3! orthorormal frame at ct) which 45 powallel to c.
More genernlly on Riemannon moavifolds,
pamllel tronsport preserves the Ievlgﬁ‘\ and the -inner product.
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IV.3 Geodes-cs
Let c: I M be aa cunve on M ond YV be o offine connection,
(é’cg’ﬁ) o set of Chrastoffel’s symbOIs)
Def. ¢ 45 GEODESIC (with respect to V) 4f ¢ 45 poralle] oJeng c, which means
LS w=0 viel
© &k +Zr‘Jc ¢i=0 Vk=1,,n (geodesic equation)
Remark : sdnce tke geodesic equotion s o second-order drifferentinl equation,
griven peM and Xp € Tp (M),
Jlc: (-e,e) = M geodesic S.t. cl@=p amd &0)=Xp.
M

@Pdﬂ = exp(Xe)
c(o) Xp

Note that Ya >0, 4f we set co: (-&, &) — M then
Ca (0) =P, Cal0) = aXp omd ca As agoin geodesie. Then
Def. exp(Xp) := c(1) whenever defined. & VueUVaelod]: auel
- Prop. Vee M 3 open set Uc Tp (M) star-shaped with o€U s.t.
exp: U— M s a diffeomorphism onto Ve M wHith pEV.
The proof <nvolves some uoviformity.
Exp (U) 45 called o NORMAL NEIGHBORHOOD of p on M,
ond exp s called the EXPONENTIAL MAP.
Remark: If (M, @) 4s o Riemoonion momifdld,
and ~if {F., =, Fa} 4s an orthmormal bosis of Tp(M), then
=1 x'F; (unique decomposition)
T tep
The'r\ u
P exP(U)Se.xp(XP)-exp(Fx Fi) — (x!', -, x™) €R"
and (exp(U), ) 4s o coordinate system oround , ca”ecj
the NORMAL COORDINATE SYSTEM around 4.

(wAith speciol properties)

33



In summoay, for o given peM Jv eV, (neighborheod) s.t.
ony g€V com be joined to p by a unique geodesic.
W4th more work one gets
Thm. If ¢ -4s o piecewrse differential path between p and q with
length _ distance between p and q .
of e «L(c) = d(p,a)~> on the Riemomion manitokl 4 (for defs of L and d, see .27 in IV.1)
Then c 4s a geodesic when porometrized by 4ts arc length.
Ideo of proof : do 4t locally. /i \\\
A The distonce 4s mot olways realized by a poth. (="
) 5 b 'R"\vj
Example : R*\{0}, $= (0.1), qg=(0,-1)
Thm. (Hopf omd Rinow)
Let (M.,®) with Levi-CAwvita commection V.
Are equivolent :
1) exp 4s defined every on Tp(M) ¥VpeM s

2) (M, d) 45 oo COMPLETE wetric space (:<= w+th o heles”)
L every Comchy sequence < M
has o limit € M

3)Every geodesic c: 1M can be extended on K.
Def (M.¢) +s GEODESICALLY COMPLETE
if one (D all) of these conditions s sodisfied.
Lemma. If (M, @) 45 COMPACT then it 45 geodesically complete.
Proof = Bosed on the fact that any compoct metric space -is complete. a
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V Curvature

V.1 Several curvatures
Fromework: M o smooth wmowifold w+th ¥ a conmection.
If (M,9) 45 Riemomnion, then ¢ 4s the Lewi Civita conmection.
Recoll thot the curvature R +is defined on X.Y <€ %(M) by
RCX, ) := Ux Uy - Yy Vs = Vexyy € End (%)
RIX, XY XEM). DF =5 R IXXNZ € X:0M)
Lemma: If < -s torsion free then
R{X,Y)Z + R(Y.Z)X + R(Z,X)Y =0
[Bionchi 4dentity 5 GN p. 1251
True also for Levi CAvite connectien.
In loce) coordhinates [= with a chart (U,$) ond the coordinate frome {E;.e%; ]
R (Ei.E)Ex = I Rj; Ey
with Rijk' = -a-;L:\'“fk - 5% Dk + 30l P 7 e
cgmpor\ev\ts of R 4n o basts
N Tt com be shightly different depending en the authers
For (M.,¢) . let us ako set
$(RX.Y)Z, W) =: R(X.Y,Z.W) €C®(M)

d
\____\"r,_l
e C(M) RIEMANNIAN CURVA TURE TIENSOR

oand “n loca| coordinates
Rijkt = ¢ (R(Ei, EjIEL,EL) = 2 Rk
Lemmo.: For (M, ¢)
NR(X,Y.Z,W) =-R(Y.X.Z,W)
2)R(X.Y,zZ,wW)=~-R(X,Y.W,Z)
3)R(X,Y,zZ. W) = R(Z,W.X,Y)
[Exercise s see Boo p. 383 and GN p.126]
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For any peM, let us devote by T a PLANE SECTION 4n T (M),
4t meons T 45 o 2D subspace of Tp (M).
Let Xy, Yp be 2 elements <n Tp (M) generating o bosis of T st.
(Xp, Yp) 45 an grthonormel basis of: <,
Def. The SECTIONAL CURVATURE K(T)p of the Section T with basis (Xp. Yp) s
KMy 1= =R (Xp, Yo, X, Yp) = = Pp (R(Xp.Yp) Xp ., Ysp)
Exercise : K(My depends only on the plome T and not on the choice of a basis.
Thm, For (M,$) with dim(M) >3
the Riemannion curvature tensor ot p 4s uniguely determined
by the velues of all sectional curvatures ot p.
[Exercuse.» see Boo $.385 ond GN p.127]
Def. (M.9) 45 ISOTROPIC ot p Af
K(Mep = Kp = constont V1T 5
2)(M,¢) 4s ISOTROPIC 4f -t 4s -Asotropdc ot any ¢ € M5
3) If Kp s constont on any p e M, we soy that

M hos CONSTANT CURVATURE, The Riemannian Shnesrsr®|
Report: momifolds with constant curvature ore classified|the sectional curvature,
Remork: If dim(M) = 2 then M 4s -sotropic, and the RiceA curvoture and

Ke = K(p) 45 colled the Gauss CURVATURE, the scalar curvature
Report : on Gauss curvature or on Gowuss - Bonnet Thm. give some Anformadion
Lemmoe: Tf M 45 <sotropic then locally on the local structure

Rijet (p) = - Kp (gikg;e - gic 95x) () of the manifold.

Def. The Ricct CURVATURE tensor field
Ric=R=SeT*(M) 4s def«‘neo{ on X,Y € %(M) by
Sp(Xp Yo := ZK(FJ P Xo Y, Fip) with {F;.p3; an orthonormal bosis
Remark It 13 —tr\dependen‘c of the chaice of o basis of Tp(M). pelind 1
Locally, Sij = S(Ei.E;) = Z.(Kkij
2) The obove operation 4s called o. CONTRACTION of & tensor.
If we contract the Ricci curvabwre we get the SCALAR CURVATURE g-iven

Sp) = 2 S(Fj.p, Fip) =T Sijg'i ()
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V.2 Equation of structure

Recoll thot o conmection ¥ +4s o map
T: (M) x X (M) —> X(M)
X Y = Y
which 45 bilineor omid sotisfies
N Vpx ¥ = F Y
2) Iy (fY) = (XF)Y + F UxY
U s torsion free 4f VUxY -VyX-IX.YI(=:TX,Y) =0 and
V s compatible with the metric Ko +f ®
ZEKYY =T XYY + X, Tz > ok e P e sl erpgoncl
Let () be an open subset of M ond ’
let {Fi};%, be a. C®-f4eld of fromes on U Efi'Pv?ecfss:mt”;f—th?:oli|(ﬁlv:ﬁzﬂ;d by o chart
e.g. the coordinote fromes given by o chart (U.cp)
Let {€°3% be a duol coframe, <t meons {0°} 4s & C-field of frames on T(M)’
ond {6i} 45 o bosis of Tp(M)* weith Oi(F,) = B TR
Recall thoat W 4s uniquely determdned by {r*t defined * by
Ve, Fi =5 Mij*Fe
Def.  Of=1.I"6" e TU frm
{6;¥} ore colled CONNECTION FORMS. Clearly
= )=y ond -
A TMISX=Tb'F then  Lecmw
VyFi = Uy oir Fi e T b Ve B S b DR F

Def ;
= — Lg.k ; Jintority, .k
] Zkzl. b eJ (FI)FK m Zk:e_) (X) Fk

Thus, 0;% (X) ore the components of Vx F; w-th respect to {FJ,
For o Ro manifold (M, d) ond for the Levi Civita connection ¥,

the n* connection form ove not indep because of the relations .
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Thm. (Structure Thm of Cartan) [GN p.133]
Let (R.9) be o Ro monifild, ¥ the Levi Civitm connection, U.{E;}. {6} above,
Then the connection forms {6;%} are the unique sdution of the equations :

1)de'=2_8'~ 0’ ﬁ’ﬂﬁi Wi st R
: equalit
2) d.gi'.i = z.:‘(_glg eik * 9y e_j k)betwm Yi-'Forms
(Becmm.
one-forms

Remark: If {F;} +s an orthonormal bosis,
gi; = ¢ (Fi,F;) = &j ond 2) becomes
2) 0= g;i + 95
Simdlarly, one con “introduce the CURVATURE FORM for X,Y € ¥ (M) : ]
OLXY) = 0L (RIX.YIF) eCPM) = 0fle T (U T (M)
which geives %xu«)* € %X(M)
RIX. Y Fe = I N} (XY F;
Thus 2 (X.Y) o:‘re companents of RO Y)Fy on the basis {F;}
Remark: Qg € T*(W) €T (M) and one hos

Thm. (Structure Thm of Carton) [GN ¢.135; Bo p. 3911

el M
K~ N

j ; k wality
.Qi = de;J G I - Dl ejk beegdeen 2-forms // \
k //’ P X)) C,
{
V3 Hol for o Connected \x@ €2
V.3 Ho onomy  Riemannion manifold

/N Exdsts 4n o more general context of vector bundles or principal bundles.

Let ¢c:[0.1]12t > ct)eM o smooth curve on (M, P) “
wHth c(0) = c(4) = p.

Let Xp € Tp(M) and let X(t) be the porallel transport of Xp along e
with X (0) = Xp. Let

Pe: Top(M)D Xp = Xo ¥ X, € Tp (M), and clearly

i ; _ p-! leading to the fact

Boeae, = PeyPeyls i Pan = P’ 356 COMPOSes o Group.

T—oompvsition . T packword i
ah-pacbs invertible modrices

In oddition Pc € GL(Tp (M) becouse the parallel tromsport is o solution

of o homogenous equation. = lineor in the initiol condition
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- i
In fact Pee OCTp(m) SrEe, nomies

becowse the porallel transport preserves norms and scalar products.
Remark: Instead of smooth curve, we con consider C” -piecewdise curves.
We have obtodned thot
{Pe3x € O(Tp (M) +4s a group ;;Z,i‘ﬁp,
colled the HOLONOMY GROUP ot p and denoted Hol ($).

¥:="c any C'-piecewise curve starting and ending ot p”

If pond q are 2 points on M then
Hol (p) 4s <4somorphic to Hol (3) since
Hol (#) = Pc' Hol (a) Pe '
for somé fixed poth ¢ between q and p.
Def. We set Hol (M) = Hol () = O( ) for o fixed p €M, ond
call 4t the HoLONOMY GROUP of M.
We also set Hol® (M) constructed only w-th C'-piecewise pocth
which con be deformed to the zero path.
Remarks :
1) These growps are tepresentations of the group of poths on M.
2) Hol® (M) 4s o normal subgrowp of Hol (M).

Lemmo. determinant 1 and never -1
M 4s orientable 4ff Hol (M) c SO(M)

Thm (deep noteation)
Hol° (M) 4s compact (4t 4s o closed set -n O(n))

Remark [see App. 121
'HwereY-is o link between holonomy ond the curvature tensor R(X.Y)
~— R(X.X)

X
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They are not so mony holonomy  groups ! * 3k
Thm. Let (M.9) omd suppose that Hol’(M) cO(n) s -rreducible Q:b;;:g%?tlk
(For o monifold wmode by product of two manifolds, this 45 mot setisfied )
Suppose that M A4s mot LOCALLY SYMMETRIC,

Then Hol°(M) 4s ome of the follow-ing groups :

1) SO () Fenerc 5)4f n=4m, Hol (M) = Sp(m)

2) 4f n=2m, Hol (M) = U (m) 6) m=16, "  =Spin ()

3)4f n=2m, Hol (M) = SU(m) R Vi "= Span ()

4)  n=4m, Hol (M)= Sp(1)Sp(m) 8) m=T, SR 1

Loter -t 45 found that (6) coes mot actually oppear 4n omy manifolds.
extension of C

4)~8) ore 1n qualernions ~55 54p
Def. M 4s LOCALLY SYMMETRIC 4f for ony peM:
the geodesic symmetry Sp <s on -sometry 5:;:?’2 e
romely, we have Sp (c(t) = c(-t) for any geodesic c with c(o)=p
Excmple: R" 4s locally symmetric (easy to show). And

Hol (R") = Hol°(R") = {e} which 45 not one of the 8 kinds of groups cbove.



VI General relativity

Def. o PSEUDO-RIEMANNIAN MANIFOLD <s o podr (M, ¢) wAth
M o smooth monifold and ¢ & T2(M), symmetmc and 'nor\’o(ggenemte
I\ No Tpositive definite; required ! (X, Y)-¢(Y><) @(X, Y)‘O VY € X (M)
a LORENTZIAN MANIFOLD 45 o pseudo- Riemormionm 'mom-lfold x<q

g O

weith (95) =. ,_ ) 4n switoble coordinates (locally).
C 1/ — signature (trace) =n-2

Foacts for pseudo - Riemannian monifolds
Nunicity of Levi Civita commection when the 2 conditions are -imposed.
2)Koszul formula still holds.
3) Hopf - Rinow £hm + geadesically complete ore no wmore wolid.
= We dont hove o metric spuce omymore.
4)Cortan structure thm ore still volid.

Recoll thot the length of a vector <s mot changed under parallel tronsport olong e
Geodesics ¢ satisfy that & -is  porllel tromsported a]org e o TR
= $(E.¢) = est

Def. A geodesic ¢ on o pseudo-Riemonnian monifold (M.§) -is

TIMELIKE, °~ NULL, or SPACELIKE ~if
$(&,é) <0, $lé.c)=0 or P(E.é) >0 :js;",;:‘u;gmag.ig‘;'g’wi"'
Remork: these expressions come from speciol relobivity with M= R* ond

! a special coase
(5%) = 3(Q 1()) w Of

pve0.12 l a Lorentzion mon-fold.

For o Lorentzion monifold (M.4) of dim 4. with the Levi Givito connection,
the E-dnstein fdeld equod-rion reao{s

R/A\)_—i_lig'u,\) +Q3"W = cq. T,b(\) ‘fO‘r ,u\) OLd2.3 @
Riced  scalar  cosmological stres‘s energy .o G = grawitation constant
curvature Curveture  constant >0 or energy~momentum o = speed of Mght
( about !'- Einstein contoins the physics
geo G  Soswor (energy + modter) \

/N Not so much freedom for writing o mesrwingful equotions.
This 4s a system of 10 equotions becouse of symmetry between p ond v.

In oddition the thms of structure reduces the number of -ndep eg.
4




7 Remark: These equations define the pseudo metric tensor G
d Indeed, R yyyp® and R puv con be expressed 4n terms of Myw® ond 4ts derivatiy
And My’ con be expressed 4n terms of guv omd -ts dervatives.
,=> @ s o system of nom |ineor portial differentiol equations for guy. ,
Schwarzschild  solution
Assumptions: o Ty = 0 ,
°Guv 15 time 4ndependent (stotic ~ solution)

> spherically symmetric in space (= +n the 4ndices 1,2,3)
_ Sz R for t and
°M=RxRs*§ R+%$* 45 R® 4n- spherical coordinoses
Suppose. that
g=-A ) dtedt+B*(r) dr®dr +r:doedg + r*sin*(e) dop@de € T2 (M)

with A,B:[R+ — R unknown,
(dt.dr.d8.dep) e T' (m) generote o bosis of T*(M). ;
{(a—i:),,},-zi is & basis of Ty (M), and {dx}};7, 45 a basis of To (M), |
i =>{dxi®dx3};,j 4s o basis of T (M)
Question: com we find A.B such that @ 4s sat»{sf'ied (with T =0)7
Two  approaches :

|

NExpress M yy® ~ Rus? and then Ruy and R in terms of Guv. and solve @
2)Set 0°:= Al dt 6= ydo

0':= Bridr  6%=rsin(@)de and observe that
5"’;‘,71,"‘, eﬂgev'oﬂ\d Nuv = <E’)'l?) ond thot

{6° 6', 6%, 0%} 45 an orthonormal coframe S}:b?ffm 1

"Define 8u¥ and Qu” (conmection omd curvature tensors) omd write
the structure relations of Cortan.

*One obtoins some differentiol equotions for A omd B. which com be solved.
o

"AG) = (1-3)F ond Br) = ( -28)7F with meR an “ntegration const

|

}ET'(M)

Conclus1ion

Textbooks on_ general relativity are now accessible

(but still the theory 4s complicated).
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