FUNDAMENTALS OF EARTH SCIENCES 1

FALL SEMESTER 2018

ES1-LAB SESSION

POLARIZING MICROSCOPY

http://www.olympusmicro.com/

ANISOTROPIC MINERAL

Interference colors depend on

- (1) Mineral optical properties (retardation, wavelengths of fast and slow ray)
- (2) Crystal orientation
- (3) Crystal thickness

Based on Imperial College Rock Library http://www.earth.ox.ac.uk/~oesis/atlas/metmins/

When the mineral rotates, it becomes **extinct** (black) every 90°. Extinction occurs when the vibration direction of the slow and fast ray is parallel to the polarizers.

https://www.ig.cas.cz/en/structure/departments/tectonics-and-geodynamics/microstructural-analysis

Quartz (SiO₂) Plane polarized light (PPL)

Calcite (CaCO₃)

Fosterite (Mg₂SiO₄) Mg-rich Olivine

Crossed polarized light (CPL)

http://www.earth.ox.ac.uk/~oesis/nws/nws-a98-16.html http://www.earth.ox.ac.uk/~oesis/atlas/metmins/

Rotating an isotropic mineral does not affect the outgoing light because the physical properties of the mineral is the same in all direction.

Garnet

Plane polarized light (PPL)

Crossed polarized light (CPL)

SCANNING ELECTRON MICROSCOPE (SEM)

Secondary electrons → sample image

BSE and DBSE → Structure and orientation of minerals

X-rays (EDS)
→ Chemical composition

Visible light (cathodo.) → Chemical composition

http://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html

Figure 1.11. Schematic drawing of the electron and x-ray optics of a combined SEM-EPMA.

http://serc.carleton.edu/research_education/geochemsheets/eds.html

"Cathodoluminescence (CL) is the emission of photons of characteristic wavelengths from a material that is bombarded by high-energy electrons. The electron beam is typically produced in an electron microprobe (EPMA) or scanning electron microscope (SEM-CL) or in a cathodoluminesce microscopy attachment to a petrographic microscope (Optical-CL)."

Darrell Henry, Louisiana State University (http://serc.carleton.edu/research_education/geochemsheets/CLTheory.html)

Trace elements promoting CL: Mn²⁺, Cr³⁺, Fe³⁺, Ti⁴⁺, rare earth elements (REEs).

http://www.bgs.ac.uk/scienceFacilities/laboratories/mpb/cathodo.html

X-rays are produced and directed at a rotating sample. The angle at which X-rays are diffracted depend on the spacing between atoms in the crystal lattice of a mineral.

This technique is used for mineral identification and reconstruction of mineral structures.

http://serc.carleton.edu/research_education/geochemsheets/techniques/XRD.html

X-ray fluorescence (XRF)

An intense X-ray beam is directed at a sample. Some of the energy is absorbed by the sample and used to dislodge electrons of lower energy levels (usually K and L) = ionization. These electrons are replaced by electrons from outer orbitals, a process accompanied by the emission of radiations in a range of wavelengths. The emitted wavelengths are characteristic of the atoms present in the sample.

The wavelength is given by Planck's law:

 $E = hc/\lambda$

- E = energy
- h = Planck constant
- λ = wavelength
- c = speed of light in a vacuum

This technique is used to determine the abundance of major and trace elements in geological samples.

