
Chapter 2

Normed ideals of K (H)

In this chapter we review the classical theory related to compact operators: their singular
values and their eigenvalues, some operator ideals, etc. We shall mainly follow [Sim]
but an alternative reference is [GK]. Note that some results might be improved in the
subsequent chapters. Before starting with any new material, let us emphasize one tiny
but important point.

Remark 2.0.6. Up to now, choosing N = {0, 1, 2, . . . } or N = {1, 2, 3, . . . } was not
relevant and we did not impose any choice. However, in some of the subsequent formulas
starting with n = 0 or with n = 1 makes a difference. So from now on we shall take the
convention that N := {1, 2, 3, . . . } and stress that some formulas look different with the
other convention. Thus, without further notice all sequences {fn} or (an) will start with
n = 1. Relatedly, we shall use the convenient notation N either for a finite number or
for ∞.

2.1 Compact operators and the canonical expansion

In order to study the ideal of compact operators K (H), a standard result on analytic
operator-valued functions has to be recalled. Its proof is provided for example in [RS1,
Thm VI.14]. For its statement, we recall that a subset S of an open set Ω is discrete if
it has no limit points in Ω.

Theorem 2.1.1 (Analytic Fredholm theorem). Let Ω be an open connected subset of C.
Let Ψ : Ω → K (H) be an analytic operator-valued function. Then one of the following
alternative holds:

(i)
(
1−Ψ(z)

)−1
exists for no z ∈ Ω,

(ii)
(
1 − Ψ(z)

)−1
exists for all z ∈ Ω \ S where S is a discrete subset of Ω. In this

case,
(
1−Ψ(z)

)−1
is meromorphic in Ω, analytic in Ω\S, the residue at the poles

are finite rank operators, and if z ∈ S then the equation Ψ(z)f = f has a nonzero
solution in H.
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26 CHAPTER 2. NORMED IDEALS OF K (H)

This theorem has several important consequences. We state a few of them.

Corollary 2.1.2 (Fredholm alternative). If A belongs to K (H), either (1−A)−1 exists
or Af = f has a solution in H.

Proof. Set Ψ(z) = zA and apply the previous theorem at z = 1.

Theorem 2.1.3 (Riesz-Schauder theorem). If A belongs to K (H), then its spectrum
σ(A) is a discrete set having no limit points except perhaps 0. In addition, any non-zero
λ ∈ σ(A) is an eigenvalue of finite geometric multiplicity.

Proof. Let us set Ψ(z) = zA, which makes Ψ an analytic K (H)-valued function on
C. Thus from Theorem 2.1.1 one infers that the set {z ∈ C | Ψ(z)f = f for some f ∈
H, f ̸= 0} is a discrete set. Now, if λ ̸= 0 and if 1

λ
is not in this discrete set then

(λ− A)−1 =
1

λ

(
1− 1

λ
A
)−1

exists, which means that λ ̸∈ σ(A). From this, one deduces that the spectrum of A
consists in the discrete set mentioned above, and possibly in the value 0. Finally, the
fact that the non-zero eigenvalues have finite geometric multiplicity follows directly
from the compactness of A.

The following statement is a direct consequence of Riesz-Schauder theorem together
with some information deduced from the spectral theorem for self-adjoint operators, see
Theorem 1.4.15.

Theorem 2.1.4 (Hilbert-Schmidt theorem). If A is self-adjoint and belongs to K (H)
then there exists a complete orthonormal basis {fn}n∈N of H such that Afn = λnfn and
limn→∞ λn = 0.

If A is not self-adjoint, a “canonical” description of A can still be provided. For its
statement, we shall use the convenient notation |f⟩⟨g| for the rank-one operator defined
by

|f⟩⟨g|h := ⟨g, h⟩f, for any f, g, h ∈ H. (2.1)

Theorem 2.1.5. If A belongs to K (H) then A has a norm convergent expansion

A =
N∑
n=1

µn(A)|gn⟩⟨fn| (2.2)

with N either a finite number or equal to ∞, with each µn(A) > 0 and satisfying
µn(A) ≥ µn+1(A), and with each family {fn} and {gn} orthonormal but not necessarily
complete. Moreover, each µn(A) is uniquely determined while the fn and gn are usually
not uniquely defined.
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Proof. From the polar decomposition provided in Theorem 1.6.5 one infers that there
exists a partial isometry W such that |A| = W ∗A. Thus, |A| is a compact and self-
adjoint operator to which Theorem 2.1.4 applies. With the notations introduced above,
this reads

|A| =
N∑
n=1

µn(A)|fn⟩⟨fn|

where the µn(A) are the eigenvalues of |A| and fn the corresponding eigenfunctions.
Clearly, the family {fn} is orthonormal. Since W is an isometry on Ran(|A|) and by
setting gn := Wfn one also infers that {gn} is orthonormal. Since the relationW |A| = A
holds, one directly deduces the equality (2.2). The uniqueness follows if one observes
that if (2.2) holds, then {µn(A)2} are the eigenvalues of A∗A, {fn} the eigenvectors of
A∗A and {gn} the eigenvectors of AA∗. The lack of uniqueness of fn and gn comes from
the possible degeneracy of the eigenvalues of A∗A and AA∗.

In the previous result, the real values µn(A) are called the singular values of A and
the equality (2.2) is called the canonical expansion of A. Let us also emphasize that

µn(A
∗) = µn(A), (2.3)

as it can be directly deduced from (2.2) or from the fact that the spectrum of A∗A and
AA∗ coincide (multiplicity counted) with the possible exception of the eigenvalue 0.

Let us still add one more useful result which can be easily deduced from the con-
struction provided in [Kat, Sec. III.6.4].

Lemma 2.1.6. If A belongs to K (H) and λ ∈ σ(A) is not equal to 0, then there
exists a finite rank projection Pλ such that APλ = PλA, σ

(
A � PλH

)
= {λ} and

σ
(
A � (1− Pλ)H

)
= σ(A) \ {λ}.

Note that a possible expression for Pλ is provided by the formula

Pλ := − 1

2πi

∫
|z−λ|=ε

(A− z)−1dz

for ε > 0 small enough. The dimension of Ran(Pλ) is called the algebraic multiplicity of
λ. We still recall that the geometric and the algebraic multiplicity of an eigenvalue can
be different, but the geometric multiplicity can never exceed the algebraic multiplicity.

2.2 Eigenvalues and singular values

In this section we begin the study of the singular values of any compact operator A,
and then state some relations between singular values and eigenvalues. The proofs for
most of these relations are not provided but references are given.

We start with some results on singular values. Since these values can be computed
by an application of the min-max principle, we first introduce this principle for positive
compact operator. Note that a similar statement holds for the negative eigenvalues of
any self-adjoint compact operator.
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Theorem 2.2.1 (Min-max principle). Let B be a positive compact operator in H,
and let {λn} be the set of its eigenvalues (counting multiplicity) and ordered such that
λn ≥ λn+1. Then

λn = min
{
sup{⟨f,Bf⟩ | f ∈ M⊥

n , ∥f∥ = 1} | Mn ⊂ H, dim(Mn) = n− 1
}
. (2.4)

Proof. For any n ∈ N let us set Fn := Span(f1, . . . , fn) with fj a normalized eigenvector
corresponding to the eigenvalue λj of B. Let us also consider any subspace Mn ⊂ H
with dim(Mn) = n−1. Clearly, Fn∩M⊥

n ̸= {0}, and thus one can choose f ∈ Fn∩M⊥
n

with ∥f∥ = 1. More precisely, f =
∑d

j=1 cjfj with
∑d

j=1 |cj|2 = 1. It then follows that

⟨f,Bf⟩ =
d∑
j=1

⟨cjfj, λjcjfj⟩ =
d∑
j=1

λj|cj|2 ≥ λn

d∑
j=1

|cj|2 = λn

since the eigenvalues of B are ordered. Hence we have obtained that

sup
{
⟨f,Bf⟩ | f ∈ M⊥

n , ∥f∥ = 1
}
≥ λn.

For the converse inequality, one can choose Mn := Span(f1, . . . , fn−1) and then

sup
{
⟨f,Bf⟩ | f ∈ M⊥

n , ∥f∥ = 1
}
= λn,

which implies the statement.

By setting B := A∗A in the previous statement and by recalling that µn(A)
2 corre-

sponds to the n-eigenvalue of A∗A one directly obtains a characterization of the singular
values of any compact operator A, namely:

Proposition 2.2.2. Let A belong to K (H) and let {µn(A)} denote its singular values
ordered such that µn(A) ≥ µn+1(A). Then

µn(A) = min
{
sup{∥Af∥ | f ∈ M⊥

n , ∥f∥ = 1} | Mn ⊂ H, dim(Mn) = n− 1
}
. (2.5)

As a consequence one directly infers the following estimates:

Corollary 2.2.3. For any A ∈ K (H) and B ∈ B(H) one has

µn(AB) ≤ µn(A)∥B∥ and µn(BA) ≤ µn(A)∥B∥. (2.6)

Proof. Observe that the first inequality can be deduced from the second one and from
(2.3). Indeed one has

µn(AB) = µn(B
∗A∗) ≤ µn(A

∗)∥B∗∥ = µn(A)∥B∥.

For the second equality, one uses (2.5) together with the inequality ∥BAf∥ ≤ ∥B∥∥Af∥
for any f ∈ H.
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In the next statement, we mention some generalizations of the previous result.
Proofs can be found in [Fan, Thm. 2].

Proposition 2.2.4. Let A,B belong to K (H). Then the following inequalities hold for
any m,n ∈ N:

µm+n−1(AB) ≤ µm(A)µn(B), (2.7)

µn+m−1(A+B) ≤ µm(A) + µn(B). (2.8)

Note that (2.6) corresponds to the special case m = 1 since µ1(B) = ∥B∥. One
additional relation between the singular values of A,B and AB is given by:

Lemma 2.2.5. For any A,B in K (H) and for any n ∈ N one has

d∏
j=1

µj(AB) ≤
d∏
j=1

µj(A)µj(B). (2.9)

Proof. See [Hor], Theorem 3 and its proof.

Let us still mention some relations linking singular values and eigenvalues. Note that
the eigenvalues of a compact operator are not enumerated arbitrarily but according to
the following definition.

Definition 2.2.6. If A belongs to K (H) its eigenvalues λ1(A), λ2(A), . . . are ordered
such that |λj(A)| ≥ |λj+1(A)| for any j ∈ N, and each eigenvalue is counted up to its
algebraic multiplicity.

The following result comes from the paper [Wey].

Lemma 2.2.7. For any A in K (H) and for any n ∈ N one has

d∏
j=1

|λj(A)| ≤
d∏
j=1

µj(A).

As a consequence of the previous two results one has:

Proposition 2.2.8. For any A,B in K (H) and for any monotone increasing function
ϕ : [0,∞) → R+ such that t 7→ ϕ(et) is convex one has

(i) ∑
j

ϕ
(
|λj(A)|

)
≤

∑
j

ϕ
(
µj(A)

)
, (2.10)

and in particular for any p ≥ 1∑
j

|λj(A)|p ≤
∑
j

µj(A)
p, (2.11)
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(ii) ∑
j

ϕ
(
µj(AB)

)
≤

∑
j

ϕ
(
µj(A)µj(B)

)
. (2.12)

Proof. These inequalities directly follow from Lemmas 2.2.5 and 2.2.7 together with
Corollary 2.3.4 introduced in the next section.

Note that the results mentioned above are usually proved for finite matrices, and
then a limiting procedure is applied in order to extend the result to certain compact
operators. As mentioned in the proof of Proposition 2.2.8 some additional technicalities
are now required. Some of them are introduced in the next section.

2.3 Technical interlude

Let us start by introducing some ideas and results about rearrangement or (sub)majori-
zation. This concept plays an important role when dealing with the spectrum of matrices
or compact operators, and has been extensively studied in the book [MOB]. In the next
definition we use the notation c0 for the set of complex sequences a = (aj)

∞
j=1 satisfying

limj→∞ aj = 0.

Definition 2.3.1. For any a = (aj) in Cd or in c0 we denote by a∗ the element of Rd

or c0 obtained by a non-increasing rearrangement of {|aj|}j.

In other words, if means that a∗j ≥ a∗j+1 and that the sets {a∗j} and {|aj|} are
identical, counting multiplicity. For simplicity, we shall say that an element a ∈ Rd or
a ∈ c0 is positive and ordered if aj ≥ 0 and aj ≥ aj+1 for any j. Clearly, a∗ is always
positive and ordered.

Now, based on the rearrangement inequality1, as presented for example in [HLP,
Thm 368] one infers that for two sequences a and b as in the previous definition one has∑

j

|ajbj| ≤
∑
j

a∗jb
∗
j (2.13)

as long as the r.h.s. is meaningful (if a and b belong to Cd it is obviously the case). The
following result, stated first in [Ma1, Lem. 1] and proved in [Ma2, Thm. 1.2], will be
important later on. The version presented here is taken from [Sim, Thm. 1.9] where a
proof is provided.

1For any a ∈ Rd let us set a⋆ for the non-increasing rearrangement of {aj} (without the absolute
value). If a, b ∈ Rd the rearrangement inequality reads

d∑
j=1

a⋆j b
⋆
n+1−j ≤

d∑
j=1

aj bj ≤
d∑

j=1

a⋆j b
⋆
j .



2.3. TECHNICAL INTERLUDE 31

Theorem 2.3.2. Let a, b ∈ Cd and assume that

k∑
j=1

b∗j ≤
k∑
j=1

a∗j for any k ∈ {1, . . . , n}. (2.14)

Then there exist m points a(1), . . . , a(m) in Cd with (a(ℓ))∗ = a∗ for ℓ ∈ {1, . . . ,m} and
there exist {λℓ} ⊂ [0, 1] satisfying

∑m
ℓ=1 λℓ = 1 such that

b =
m∑
ℓ=1

λℓa
(ℓ). (2.15)

In addition if Φ is a positive valued function on [0,∞)d and if the function ϕ : Cd → R+,
defined by ϕ(c) := Φ(c∗1, . . . , c

∗
n), is convex on Cd, then

ϕ(b) ≤ ϕ(a). (2.16)

Note that condition (2.14) is often denoted by b Î a in the literature. In addition,
what (2.15) really says is that b belongs to the convex hull of a family of vectors of
the form (εkajk)

d
k=1 with |εk| = 1 and jk is an arbitrary permutation of the numbers

1, 2, . . . , n. The elements a(ℓ) are the points which define the convex hull. This, together
with the fact that ϕ(a(ℓ)) = ϕ(a) and the convexity of the function ϕ, directly implies
the inequality (2.16).

Exercise 2.3.3. Provide a proof of Theorem 2.3.2.

Before mentioning two results linked to the previous statement, let us show how one
can construct examples of functions Φ. Consider any function f : [0,∞) → R+ which
is convex and increasing and let us set Φ(x) :=

∑d
j=1 f(xj) for any x ∈ [0,∞)d. Then

one observes that for any θ ∈ [0, 1] and b, c ∈ Cd one has

ϕ
(
θb+ (1− θ)c

)
= Φ

(
(θb+ (1− θ)c)∗

)
=

d∑
j=1

f
(∣∣θbj + (1− θ)cj

∣∣)
≤

d∑
j=1

(
θf(|bj|) + (1− θ)f(|cj|)

)
= θϕ(b) + (1− θ)ϕ(c)

which means that ϕ is convex on Cd. As a consequence the function Φ satisfies the
requirement of Theorem 2.3.2.

The next statement is an application of Theorem 2.3.2 for transforming estimates
on products to estimates on sums.
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Corollary 2.3.4. Let a, b ∈ Rd be positive and ordered, and suppose that

k∏
j=1

bj ≤
k∏
j=1

aj for any k ∈ {1, . . . , n}.

Then, for any continuous, monotone increasing function g : [0,∞) → R+ with t 7→ g(et)
convex, we have that

k∑
j=1

g(bj) ≤
k∑
j=1

g(aj) for any k ∈ {1, . . . , n}. (2.17)

In particular, (2.14) can be obtained by taking g(x) = x.

Proof. Assume without loss of generality that aj and bj are all non-zero. By setting
then ãj := γaj and b̃j := γbj for γ large enough, we get that all ãj, b̃j are bigger
than 1. By considering then ln(ãj) and ln(b̃j), one observes that the condition (2.14)
is satisfied for these numbers. By setting then f(t) := g

(
γ−1 et

)
, the function f is

convex and increasing, and by the observation made above, the function Φ defined by
Φ(x) :=

∑
f(xj) for any x ∈ [0,∞)d satisfies the assumption of Theorem 2.3.2. The

inequality (2.17) follows then directly from (2.16).

Exercise 2.3.5. Check the details of the previous proof.

The second domain linked with Theorem 2.3.2 is related to the notion of doubly
substochastic matrices.

Definition 2.3.6. A matrix α = (ajk) ∈ MN(C) is called doubly substochastic (in

short dss) if
∑N

j=1 |αjk| ≤ 1 for all k ∈ {1, . . . , N} and
∑N

k=1 |αjk| ≤ 1 for all j ∈
{1, . . . , N}.

Note that such matrices can be constructed from elements of any Hilbert space
H. Indeed, if for any ℓ ∈ {1, 2, 3, 4} the family {f ℓj }Nj=1 ⊂ H is orthonormal, then
the matrix α defined by αjk := |⟨f 1

j , f
2
k ⟩|2 is a dss matrix, and the matrix β defined

by βjk := ⟨f 1
j , f

2
k ⟩⟨f 3

k , f
4
j ⟩ is a dss matrix. The fact that these matrices are doubly

substochastic can be obtained by applying Bessel and Schwartz inequalities.
The next statement is borrowed from [Sim, Prop. 1.12] to which we refer for its

proof.

Proposition 2.3.7. Let α ∈Mn(C) be a dss matrix and let c ∈ Cd. If one sets a := c∗

and b := αc, then a, b ∈ Cd satisfy condition (2.14) of Theorem 2.3.2.

We now introduce the notion of symmetric normed spaces. Note that a simple
introduction to the subject can be found in [Sch, Sec. V.3]. For that purpose, let us
denote by ℓ∞ the set of all bounded sequences (aj)

∞
j=1 endowed with the sup norm (also

denoted ℓ∞-norm), and let us denote by cc the set of complex sequences a = (aj)
∞
j=1
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with compact support. Clearly, cc is dense in c0 for the ℓ∞-norm. Recall that a norm
on cc is a map Φ : cc → R+ which satisfies for any a, b ∈ cc and λ ∈ C the following
properties: i) Φ(λa) = |λ|Φ(a), ii) Φ(a + b) ≤ Φ(a) + Φ(b), iii) Φ(a) = 0 if and only if
a = 0.

Definition 2.3.8. A norm Φ on cc is symmetric if Φ(a) = Φ(a∗) for any a ∈ cc.

Let us observe that a norm on cc is symmetric if and only if it is invariant under
permutations and under the map aj 7→ eiθj aj for any θj ∈ R.

Definition 2.3.9. Let Φ be a norm on cc. The maximal space JΦ consists in the set of
sequence a = (aj)

∞
j=1 such that the limit limn→∞ Φ

(
(a1, a2, . . . , an, 0, 0 . . . )

)
exists (we

denote it then by Φ(a)). The minimal space J
(0)
Φ consists in the closure of cc with the

norm Φ. If JΦ = J
(0)
Φ , that is if cc is dense in JΦ the norm Φ is called regular (or

mononormalizing in some references).

Examples 2.3.10. 1) For p ≥ 1, if Φ(a) ≡ ∥a∥p :=
(∑

j |aj|p
)1/p

then JΦ corresponds
to the usual ℓp space. We also set ∥a∥∞ := supj |aj|. Note that if p <∞ the norm ∥ · ∥p
is regular.

2) For p > 1 let us set

∥a∥p,w := sup
n

(
n−1+ 1

p

d∑
j=1

a∗j

)
, (2.18)

which is a symmetric norm, called Calderón norm. The maximal space associated with
this norm is denoted by ℓp,w and called weak ℓp-space. The minimal space corresponds to

the elements a ∈ ℓp,w satisfying the additional condition limj→∞ j
1
pa∗j = 0, which means

that the Calderón norms are not regular. Note also that the following inequalities hold

∥a∥′p,w ≤ ∥a∥p,w ≤ p

p− 1
∥a∥′p,w

with ∥a∥′p,w := supj(j
1
pa∗j). Clearly, this expression is simpler than (2.18) but ∥ · ∥′p,w

does not define a norm. However, the set of a ∈ ℓ∞ satisfying ∥a∥′p,w < ∞ corresponds
to ℓp,w, and this expression can also be used for p = 1.

In the following statement, several properties of maximal and minimal spaces are
summarized. Note that Theorem 2.3.2 and Proposition 2.3.7 play an important role in
the proof, and that condition (2.14) is explicitly mentioned in the point (b). For the
proof of these statements, we refer to [Sim, Thm. 1.16].

Theorem 2.3.11. Let Φ be a symmetric norm on cc, then

(a) If a ∈ JΦ and limj→∞ aj = 0, then Φ(a) = Φ(a∗),

(b) If a, b ∈ JΦ with limj→∞ aj = 0 and limj→∞ bj = 0, and if
∑d

j=1 b
∗
j ≤

∑d
j=1 a

∗
j for

any n ∈ N, then Φ(b) ≤ Φ(a),
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(c) If Φ
(
(1, 0, 0, . . . )

)
= c, then c∥a∥∞ ≤ Φ(a) ≤ c∥a∥1 for any a ∈ JΦ,

(d) Both JΦ and J
(0)
Φ are Banach spaces,

(e) If α is a substochastic matrix and a ∈ JΦ, resp. a ∈ J
(0)
Φ , then αa is in JΦ, resp.

in J
(0)
Φ , and Φ(αa) ≤ Φ(a),

(f) If Φ is inequivalent to ∥ · ∥∞, then JΦ consists only of sequences which vanish at
infinity,

(g) If JΦ = JΨ, then Φ and Ψ are equivalent norms.

For each symmetric norm Φ on cc one can define a conjugate norm Φ′ on cc by the
following construction: For any b ∈ cc one sets

Φ′(b) := sup
{∣∣∑

j

ajbj
∣∣ | a ∈ cc,Φ(a) ≤ 1

}
. (2.19)

As a consequence of (2.13) one easily infers that for b, c ∈ cc with c = c∗

sup
{∣∣∑

j

ajbj
∣∣ | a∗ = c

}
=

∑
j

b∗jcj

and then that Φ′ is a symmetric norm on cc. Some additional standard duality results
are gathered in the following statement.

Theorem 2.3.12. Let Φ be a symmetric norm on cc. Then

(a)
∑

j |ajbj| ≤ Φ(a)Φ′(b),

(b)
(
J
(0)
Φ

)∗
= JΦ′ in the sense that any continuous linear functional on J

(0)
Φ has the

form a 7→
∑

j ajbj for some b ∈ JΦ′,

(c) J
(0)
Φ , resp. JΦ, is reflexive if and only if both Φ and Φ′ are regular.

The proof of the above statement is provided in [Sim, Thm. 1.17] and is based on
standard duality arguments.

Exercise 2.3.13. Provide the proofs of Theorems 2.3.11 and 2.3.12.

We close this section with a few results related to singular values of pairs of compact
operators. Proofs can be found in [Sim, Sec. 1.8 & 1.9].

Proposition 2.3.14. a) For any pair of compact operators A and B one has

µn(A)− µn(B) =
∑
m

αnmµm(A−B) (2.20)
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for a dss matrix α.
b) For any pair of finite dimensional self-adjoint matrices A,B, let λ⋆n(A) denote

the eigenvalues of A listed in decreasing order. Then

λ⋆n(A)− λ⋆n(B) =
∑
m

βnmλ
⋆
m(A−B) (2.21)

for a dss matrix β.

For any A ∈ K (H) we set ∥A∥p :=
(∑

n µn(A)
p
)1/p

whenever the summation is
meaningful.

Proposition 2.3.15 (Clarkson-McCarthy inequalities). a) For 2 ≤ p <∞ one has

∥A+B∥pp + ∥A−B∥pp ≤ 2p−1
(
∥A∥pp + ∥B∥pp

)
. (2.22)

b) For 1 < p ≤ 2 and for p′ = p/(p− 1) one has

∥A+B∥p′p + ∥A−B∥p′p ≤ 2
(
∥A∥pp + ∥B∥pp

)p′/p
. (2.23)

Note that for A,B positive an additional relation holds:

Proposition 2.3.16. For p ≥ 1 and for A,B positive compact operators, one has

21−p∥A+B∥pp ≤ ∥A∥pp + ∥B∥pp ≤ ∥A+B∥pp. (2.24)

Exercise 2.3.17. Consider the matrices ( 0 1
1 0 ) and ( 0 i

−i 0 ) and compute ∥A∥1, ∥B∥1 and
∥A+ iB∥1. What do you observe and can you compare this result with the commutative
case ?

2.4 Normed ideals of B(H)

In this section we begin the study of two-sided ideals in B(H). By definition, as linear
subspace J of B(H) is a two-sided ideal of B(H) if AB and BA belong to J whenever
A ∈ J and B ∈ B(H). Some of these spaces will be linked to sequences introduced in
the previous sections. We begin with two standard results about operator ideals. The
first one state that the biggest ideal of B(H) is K (H).

Proposition 2.4.1. Let J be a two-sided ideal of B(H) containing an element A
which is not compact. Then J = B(H).

Proof. By the polar decomposition of Theorem 1.6.5, there exists a partial isometry
W such that |A| = W ∗A. If follows that J contains the positive self-adjoint oper-
ator |A| which is not compact. By the spectral theorem, for any a > 0 let us set
Pa := χ[a,∞)(|A|) ≡ E

(
[a,∞)

)
where E denotes the spectral measure associated with

the operator |A|. If each Pa is a finite dimensional projection, then |A| = u−lima→0 |A|Pa
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would be compact (as a norm limit of finite dimensional operator) which is a contra-
diction with the fact that |A| is not compact. Thus there exists at least one Pa which is
not finite dimensional. In addition, since |A|−1Pa is bounded (by functional calculus),
then Pa = |A| (|A|−1Pa) is an element of J (as a product of an element in J and a
bounded operator). Thus there exists an infinite dimensional projection Pa which be-
longs to J . Then, by a general argument there exists an isometry V from H to PaH,
and then V ∗PaV = 1 ∈ J , since Pa ∈ J . The fact that 1 ∈ J automatically implies
that J = B(H).

As a consequence of the previous statement, any two-sided ideal in B(H) consists in
compact operators. On the other hand, one easily shows that if this ideal J contains
at least one rank one projection and is norm closed, then it is automatically equal
to K (H). However, without this assumption of closeness, more possibilities exist. Let
us first add a short but rather astonishing lemma of comparison between elements of
K (H).

Lemma 2.4.2. Let J be a two-sided proper ideal in B(H), and let A,B ∈ K (H)
with µn(B) ≤ µn(A) for any n ∈ N. If A ∈ J , then B ∈ J .

Proof. Let A =
∑

n µn(A)|gn⟩⟨fn| and B =
∑

n µn(B)|kn⟩⟨hn| be the canonical expan-
sion of A and B, as introduced in (2.2). Since these respective families of vectors are
orthonormal there exist a partial isometry D with D∗fn = hn and a contraction C with
Cgh = µn(B)µn(A)

−1kn. Since B = CAD it follows that B belongs to A, as stated.

Corollary 2.4.3. Every two-sided ideal J of B(H) is invariant under taking the
adjoint, i.e. if A ∈ J then A∗ ∈ J .

Proof. Since µn(A
∗) = µn(A) for any n ∈ N, the statement follows from the previous

lemma.

Another consequence of the previous lemma is that two-sided ideals of B(H) are
completely described by a set of sequences. Let us be more precise about such a state-
ment, by following the adaptation of the main result of [Cal, Sec. 1] provided in [Sim,
Chap. 2].

Definition 2.4.4. A vector subspace J of c0 is called a Calkin space if it possesses the
Calkin property, namely whenever a ∈ J and b ∈ c0 with b∗j ≤ a∗j for any j ∈ N, then
b ∈ J .

Theorem 2.4.5 (Calkin correspondence). There exists a bijective relation between the
set of Calkin spaces and the set of two-sided ideals of B(H).

Exercise 2.4.6. Provide a proof of this theorem, and provide a construction for this
correspondence as explicitly as possible.
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The previous result together with Theorem 2.3.11 establish a relation between sym-
metric norms discussed in Section 2.3 and two-sided ideals. Indeed, if Φ is a symmetric
norm on cc which is not equivalent to ℓ∞ then the maximal space JΦ and the minimal
space J

(0)
Φ are Calkin spaces. The corresponding two-sided ideals of B(H) will be de-

noted respectively by JΦ and J (0)
Φ . More precisely JΦ, resp. J (0)

Φ , are defined by the

set of compact operators whose singular values belong to JΦ, resp. J
(0)
Φ . Then, for any

A ∈ JΦ we set

Φ(A) := Φ
(
(µ1(A), µ2(A), . . . )

)
. (2.25)

Let us mention a different way of computing this number, see [Sim, Prop. 2.6] for
its proof. For that purpose we let L represent the set of all orthonormal sets {fn} ⊂ H.

Proposition 2.4.7. If A ∈ JΦ, then

Φ(A) = sup
{fn},{gn}∈L

Φ
(
(⟨gn, Afn⟩)

)
.

The links between Φ and JΦ are summarized in the following statement.

Theorem 2.4.8. Let Φ be a symmetric norm on cc, and let JΦ be the corresponding
two-sided ideal of B(H).

(a) Φ defines a norm on JΦ by the relation (2.25) and satisfies for all B ∈ JΦ and
A,C ∈ B(H):

Φ(ABC) ≤ ∥A∥∥C∥Φ(B) (2.26)

Φ(B) ≥ ∥B∥Φ
(
(1, 0, . . . )

)
. (2.27)

(b) JΦ and J (0)
Φ are Banach spaces with the norm Φ, and J (0)

Φ is the closure in

JΦ of the finite rank operators. For any A ∈ J (0)
Φ the canonical decomposition

provided in (2.2) converges in the Φ-norm.

(c) Any norm on a two-sided ideal J obeying (2.26) agrees, on the finite rank op-
erators, with a norm Φ̃ defined by a symmetric norm on cc. In addition one has
J ⊂ JΦ̃, and if J is a Banach space with its norm then J (0)

Φ̃
⊂ J .

(d) (non-commutative Fatou Lemma) If Am ∈ JΦ with w−limm→∞Am = A ∈ K (H)
and if supmΦ(Am) < ∞, then A ∈ JΦ and Φ(A) ≤ supmΦ(Am). If Φ is not
equivalent to ℓ∞, then A need not be assumed to be compact a priori.

As a consequence of the point (a) we shall call JΦ a normed ideal of B(H).

Exercise 2.4.9. Provide a proof of the above statement. Note that the material in-
troduced in Section 2.3 and in particular Theorem 2.3.11 are extensively used for this
proof.
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Let us still mention and prove some general results which apply to arbitrary norms
Φ. More detailed investigations on certain normed ideal will be realized in the next sec-
tion. For the time being, let us just mention the spaces Jp and Jp,w which correspond
to the normed ideals constructed from the symmetric norms ∥ · ∥p and ∥ · ∥p,w exhibited
in Examples 2.3.10.

Theorem 2.4.10 (Abstract Hölder inequality). Let Φ1, Φ2 and Φ3 be three symmetric
norms on cc and let JΦ1, JΦ2 and JΦ3 denote the corresponding maximal spaces. If for
any a ∈ JΦ2 and b ∈ JΦ3 one has ab ∈ JΦ1 (pointwise product) and

Φ1(ab) ≤ Φ2(a)Φ3(b),

then if A ∈ JΦ2 and B ∈ JΦ3 it follows that AB ∈ JΦ1 and

Φ1(AB) ≤ Φ2(A)Φ3(B).

If either A ∈ J (0)
Φ2

or B ∈ J (0)
Φ3

, then AB ∈ J (0)
Φ1

.

Proof. By the inequality (2.9) together with Corollary 2.3.4 one infers that

d∑
j=1

µj(AB) ≤
d∑
j=1

µj(A)µj(B).

Then, by Theorem 2.3.11.(b) one deduces that

Φ1(AB) = Φ1

((
µn(AB)

))
≤ Φ1

((
µn(A)µn(B)

))
≤ Φ2

((
µn(A)

))
Φ3

((
µn(B)

))
= Φ2(A)Φ3(B).

The second part of the statement is straightforward.

Corollary 2.4.11. Let p, q, r ≥ 1 satisfy p−1 = q−1 + r−1. If A ∈ Jq and B ∈ Jr,
then AB ∈ Jp with

∥AB∥p ≤ ∥A∥q ∥B∥r.
For p > 1, if A ∈ Jq,w and B ∈ Jr,w, then AB ∈ Jp,w with

∥AB∥p,w ≤ p

p− 1
∥A∥q,w ∥B∥r,w.

Proof. The first part of the statement is a direct application of the previous theorem
together with Hölder inequality while the second one follows from the inequality

(p− 1)

p
∥ab∥p,w ≤ ∥a∥′q,w ∥b∥′r,w ≤ ∥a∥q,w ∥b∥r,w

with the notations introduced in Examples 2.3.10.

Extension 2.4.12. Study the complex interpolation in this general framework as in-
troduced in Theorem 2.9 and 2.10 of [Sim]. Provide some applications of these abstract
results.
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2.5 The Schatten ideals Jp

In this section we focus on the normed ideals Jp which are closely related to the
commutative ℓp-spaces. As mentioned earlier, the norm on Jp is constructed from the
usual ℓp-norm. This material is very classical and can be found in any textbook on
operator theory. Note that J2 is usually called the set of Hilbert-Schmidt operators
while J1 corresponds to the set of trace class operators. More generally, the space Jp

is called the p-Schatten ideal.
The first result about Hilbert-Schmidt operators is useful in applications. We refer

for example to [Sim, Thm. 2.11] or [Amr, Prop. 2.15] for its proof.

Theorem 2.5.1. Let (Ω, µ) be a measure space such that H := L2(Ω, µ) is separable.
An operator A belongs to J2 if and only if there exists a measurable function k ∈
L2(Ω× Ω, µ⊗ µ) such that

[Af ](x) =

∫
Ω

k(x, y)f(y)µ(dy). (2.28)

In addition the following relation holds

∥A∥HS := ∥A∥2 = ∥k∥L2(Ω×Ω). (2.29)

Note that we have used the convenient notation ∥ · ∥HS for the norm ∥ · ∥2 which is
often used for Hilbert-Schmidt operators. Now, such a simple characterization of trace
class operators does not exist, and this is quite unfortunate since trace class operators
often play an important role. Nevertheless, some partial results exist, as presented in
the next statement for positive operators.

Theorem 2.5.2. Let µ be a Baire measure2 on a locally compact Hausdorff space Ω. Let
H := L2(Ω, µ) and let k be a continuous function on Ω×Ω. Assume that the following
two conditions hold:

(i) For any f ∈ Cc(Ω) one has∫∫
Ω×Ω

f̄(x)f(y)k(x, y)µ(dx)µ(dy) ≥ 0,

(ii)
∫
Ω
k(x, x)µ(dx) <∞.

Then there exists a positive operator A defined by (2.28) which belongs to J1 and the
following relation holds:

∥A∥1 =
∫
Ω

k(x, x)µ(dx). (2.30)

2Recall that the Baire sets form a σ-algebra of a topological space that avoids some of the patho-
logical properties of Borel sets. However, in Euclidean spaces the concept of a Baire set coincides with
that of a Borel set.
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For the proof, we refer to page 65 of [RS3, Sec. XI.4], or to [GK, Sec. III.10] for a
more comprehensive approach to the subject.

Extension 2.5.3. Study the more recent results obtained by C. Brislawn in [Bri] and
mentioned in the Addendum D of [Sim, page 128].

Let us add two results which are often used as a definition of trace class and Hilbert-
Schmidt operators. Since we have introduced J1 and J2 through a different approach,
one has to show that the two definitions coincide. We refer for example to [Mur, Sec. 2.4]
for this alternative approach. Note that in the approach used for example in [Mur]
various properties of the norms ∥ · ∥1 and ∥ · ∥2 have to be shown independently, while
in our approach all these results follow from the general theory of symmetric norms on
cc.

Proposition 2.5.4. 1) Let A ∈ B(H) be positive and let {fn} be an orthonormal basis
of H. Then

∑
n⟨fn, Afn⟩ is independent of the choice of basis, and it is finite if and

only if A ∈ J1, with
∑

n⟨fn, Afn⟩ = ∥A∥1.
2) Let B ∈ B(H) and let {fn}, {gn} be orthonormal bases of H. Then

∑
n ∥Bfn∥2

and
∑

n,m |⟨gm, Bfn⟩|2 are independent of the choice of bases and equal. They are finite

if and only if B ∈ J2, and in this case are equal to ∥B∥22.

Proof. Let us first observe that 1) follows from 2). Indeed, by setting B := A1/2, one
infers from 2) that for any orthonormal basis {fn}∑

n

⟨fn, Afn⟩ =
∑
n

∥Bfn∥2 = ∥B∥22 =
∑
j

µj(B)2 =
∑
j

µj(A) = ∥A∥1

where we have used that µj(B)2 = µj(A) which is a direct consequence of the spectral
theorem for self-adjoint operators.

For the proof of 2), observe first by Parseval’s identity one has∑
n

∥Bfn∥2 =
∑
n,m

|⟨gm, Bfn⟩|2 =
∑
n,m

|⟨B∗gm, fn⟩|2 =
∑
m

∥B∗gm∥2.

By symmetry, one directly gets the required equality and the independence with respect
to the choice of a basis. Now, if B ∈ J2, i.e. if

∑
n µn(B)2 = ∥B∥22 < ∞, one easily

gets from the canonical decomposition of B provided in (2.2) that
∑

n ∥Bgn∥2 is finite
and equal to

∑
n µn(B)2. Conversely, if

∑
n,m |⟨gm, Bfn⟩|2 <∞ one has∑

n

|⟨gn, Bfn⟩|2 ≤
∑
n,m

|⟨gm, Bfn⟩|2 <∞

and B ∈ J2 by Proposition 2.4.7.

In the next statement we emphasize once more the relation between Hilbert-Schmidt
operators and trace class operators. Its proof follows easily from what has been intro-
duced so far, see also [Mur, Thm. 2.4.13].
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Proposition 2.5.5. Let A be an element of B(H). The following conditions are equiv-
alent:

(i) A is a trace class operator,

(ii) |A| is a trace class operator,

(iii) |A|1/2 is a Hilbert-Schmidt operator,

(iv) There exists Hilbert-Schmidt operators B1, B2 such that A = B1B2.

We close this section with several results on convergence in Jp. The first one
is clearly an analog of the dominated convergence theorem. Note that we shall use
the convenient notation A(∗) for A and for its adjoint A∗. For example, the condition
|A(∗)| ≤ B means |A| ≤ B and |A∗| ≤ B.

Theorem 2.5.6. Let Am, A,B ∈ B(H) with B self-adjoint. Assume that |A(∗)
m | ≤ B,

|A(∗)| ≤ B and that w − limm→∞Am = A. Then, if B ∈ Jp for some p < ∞, then
∥Am − A∥p → 0 as m→ ∞.

A proof of this statement is provided in [Sim, Thm. 2.16]. The following result is
also proved at the end of chapter 2 of [Sim].

Theorem 2.5.7. Let p belongs to [1,∞), and let {An} ⊂ Jp and A ∈ Jp. If w −
limn→∞An = A and limn→∞ ∥An∥p = ∥A∥p, then limn→∞ ∥An − A∥p = 0.

Let us mention that more generally, results like the previous one are a consequence
of the uniform convexity of some Banach spaces. We shall not go further in this direction
here.

Extension 2.5.8. Study the notion of uniform convexity for Banach spaces and deduce
from this notion the content of the previous theorem.

2.6 Usual trace

We can finally define the notion of trace, which extends the usual one on matrices. Based
on Proposition 2.5.4.(1) one infers that the domain for the “trace” which is closed under
A 7→ |A| can only be J1. More precisely one has:

Theorem 2.6.1. Let A ∈ J1 with its canonical decomposition A =
∑

n µn(A)|gn⟩⟨fn|.
Then for any orthonormal basis {hm} of H one has

∑
m |⟨hm, Ahm⟩| <∞ and∑

m

⟨hm, Ahm⟩ =
∑
n

µn(A)⟨fn, gn⟩ =: Tr(A) (2.31)

is independent of this basis. Moreover

|Tr(A)| ≤ ∥A∥1, (2.32)

the map A 7→ Tr(A) is a bounded linear functional on J1, and for any A ∈ J1 and
B ∈ B(H) one has Tr(AB) = Tr(BA).
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Proof. Let us set αnm := ⟨fn, hm⟩⟨hm, gn⟩ which is a dss matrix. Then
∑

m |αnm| ≤ 1
for each n, and one has∑

m

|⟨hm, Ahm⟩| =
∑
m,n

|αnm|µn(A) ≤ ∥A∥1

which directly proves (2.32). In addition, the absolute convergence of the last double
sum justifies an interchange in∑

m

⟨hm, Ahm⟩ =
∑
m,n

αnmµn(A) =
∑
n

(
µn(A)

∑
m

αnm

)
=

∑
n

µn(A)⟨fn, gn⟩.

The linearity of the map A 7→ Tr(A) follows again from the absolute convergence of the
sums. Finally, if B ∈ B(H) one has

Tr(AB) =
∑
m

⟨hm, ABhm⟩ =
∑
n

µn(A)⟨B∗fn, gn⟩ =
∑
m

⟨hm, BAhm⟩ = Tr(BA).

Corollary 2.6.2. If A ∈ J1 and B ∈ B(H), then one has

|Tr(AB)| ≤ ∥B∥Tr(|A|).

Proof. By the previous theorem one has

|Tr(AB)| ≤ ∥AB∥1 ≤ ∥B∥∥A∥1 = ∥B∥Tr(|A|).

From the duality theory for symmetric norm introduced just before Theorem 2.3.12
and from the results contained in this statement one easily gets:

Theorem 2.6.3. Let Φ and Φ′ be conjugate symmetric norms on cc. If A ∈ JΦ and
B ∈ JΦ′, then AB ∈ J1. Moreover, for each fixed B ∈ JΦ′ the map A 7→ Tr(AB)
is a bounded linear functional in JΦ with norm Φ′(B). If Φ′ is not equivalent to the

ℓ∞-norm, then every functional on J (0)
Φ is of this form, that is

(
J (0)

Φ

)∗
= JΦ′. In

particular, JΦ is a reflexive space if and only if both Φ and Φ′ are regular. If Φ is the
ℓ1-norm, then J ∗

Φ = B(H).

Since the trace on elements of J1 has now been defined in (2.31), a natural question
is about the equality

Tr(A) =
∑
n

λn(A) (2.33)

where {λn(A)} corresponds to the set of eigenvalues of A, multiplicity counted. This
equality is indeed correct, but as emphasized in any textbook on the subject its proof
is surprisingly difficult. It has only been proved in 1959 by Lidskii. Note that the main
difficulty comes from nilpotent or quasinilpotent operators (an operator A satisfying
respectively Ad = 0 for some n ∈ N or σ(A) = {0}). We do not provide the proof of
the equality (2.33) but suggest to study it as an extension:
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Extension 2.6.4. Study the proof the Lidskii’s theorem, namely the equality (2.33),
either from the information provided in [Sim, Chap. 3] or from any other reference.

One direct consequence of the equality (2.33) is contained in the following statement.

Corollary 2.6.5. If A,B ∈ B(H) have the property that both AB and BA belong to
J1 (as for example if A ∈ JΦ and B ∈ JΦ′ for any conjugate symmetric norms on
cc), then

Tr(AB) = Tr(BA). (2.34)

Proof. As well known, and shown for example in [Sak, Prop. 1.1.8], the operators AB
and BA share the same spectrum, including the algebraic multiplicity, with the only
possible exception of 0. Thus, the equality (2.34) follows directly from this fact and
from (2.33).

Let us add one more result related to integral operators which are trace class. Note
that the following statement does not contradict Theorem 2.5.2 since it is assumed from
the beginning that the operator is trace class.

Theorem 2.6.6. Let H := L2([a, b]) and let A ∈ J1 be of the form [Af ](x) =∫ b
a
k(x, y)f(y) dy for some continuous function k : [a, b] × [a, b] → C and all f ∈ H.

Then

Tr(A) =

∫ b

a

k(x, x)dx.

The proof of this statement is provided in [Sim, Thm. 3.9] and is based on the
construction of an explicit basis for H := L2([a, b]). Many applications of the theory
developed so far could be presented. Quite a lot of them are presented in the subsequent
chapters of [Sim].

Up to this point, the uniqueness of the above trace has not been discussed. In fact,
this uniqueness holds under an additional condition which we are going to introduce.
The following material is borrowed from [Les], and we start by recalling an extension of
the notion of trace. Recall that if V is a real vector space, then a map Φ : V → [0,∞]
is positive homogeneous if Φ(λv) = λΦ(v) for any λ ≥ 0 and v ∈ V , and is additive if
Φ(v + w) = Φ(v) + Φ(w) for any v, w ∈ V .

Definition 2.6.7. A weight on B(H) is a map τ : B(H)+ → [0,∞] which is positive
homogeneous and additive. Such a weight is tracial if τ(BB∗) = τ(B∗B) for any B ∈
B(H).

Note that in some references a tracial weight is simply called a trace. However, let
us emphasize that a weight is only defined on the positive cone of B(H), and it can
take the value ∞. Now, the trace Tr defined in (2.31) for any A ∈ B(H)+ is clearly
a tracial weight on B(H), see also Proposition 3.4.3 and Corollary 3.4.4 in [Ped] for
the proof of this statement. In addition, if we define the subset of B(H)+ on which Tr
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is finite, one gets (J1)+, and then its linear span leads to J1, as introduced in the
previous section.

Let us now show that up to a normalization constant this trace is the unique one
on the set F (H) of finite rank operators in H. In the present context, a trace τ on a
complex algebra A is a linear functional A → C satisfying τ(AB) = τ(BA) for any
A,B ∈ A .

Lemma 2.6.8. Any trace on F (H) is proportional to Tr.

Proof. Let P,Q ∈ F (H) be rank one orthogonal projections, or in other words P =
|f⟩⟨f | and Q = |g⟩⟨g| for some f, g ∈ H with ∥f∥ = ∥g∥ = 1. We now set T := |g⟩⟨f |
which is still a finite rank operator and satisfies TT ∗ = |g⟩⟨g| = Q and T ∗T = |f⟩⟨f | =
P . Thus, if τ is a trace on F (H) one has

τ(P ) = τ(T ∗T ) = τ(TT ∗) = τ(Q),

which means that τ takes the same value λτ ∈ C on all rank one orthogonal projections.
Thus for any rank one orthogonal projection P one has

τ(P ) = λτ = λτTr(P ).

Since any T ∈ F (H) is a linear combination of rank one orthogonal projections, the
result follows by linearity of τ and Tr.

The properties of Tr mentioned so far are not sufficient for showing that any tracial
weight on B(H) is proportional to Tr. The necessary additional property is normality,
as introduced below. Note that we shall also impose that τ(B) ≥ 0 if B ≥ 0, which is
a natural requirement.

Definition 2.6.9. A tracial weight τ on B(H) is normal if for any increasing sequence
{Bn} ⊂ B(H)+ such that s− limn→∞Bn = B ∈ B(H)+ one has τ(B) = supn τ(Bn).

One can now prove the following statement:

Theorem 2.6.10. (i) The usual trace Tr on B(H) is normal,

(ii) If τ is any normal tracial weight on B(H) then there exists a constant λτ ∈ [0,∞)
such that τ(B) = λτTr(B) for any B ∈ B(H)+.

Note that an additional pathological case also exists: The tracial weight τ∞ is defined
by τ∞(B) = ∞ for any B ∈ B(H)+ \ {0} and τ∞(0) = 0. In such a case one has
λτ∞ = ∞. We shall not consider this case subsequently.

Proof. i) Let {fm} be an orthonormal basis of H and let s− limn→∞Bn = B in B(H)+
be an increasing sequence. Then one has ⟨fmBnfm⟩ ↗ ⟨fm, Bfm⟩ for any m, and there-
fore supn⟨fmBnfm⟩ = ⟨fm, Bfm⟩. It follows then from the monotone convergence theo-
rem for the discrete measure on N that

Tr(B) =
∑
m

⟨fm, Bfm⟩ =
∑
m

sup
n
⟨fm, Bnfm⟩ = sup

n

∑
m

⟨fm, Bnfm⟩ = sup
n

Tr(Bn).
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ii) As in the proof of Lemma 2.6.8 one observes that τ � F (H) = λτTr � F (H) for
some λτ ∈ [0,∞). Let us now choose any increasing sequence {Pn}n∈N of orthogonal
projections with the dimension of Ran(Pn) equal to n. Then, given any B ∈ B(H)+
one can consider the increasing sequence {B1/2PnB

1/2}n∈N ⊂ F (H) which converges
strongly to B. Since τ is assumed to be normal we get

τ(B) = sup
n
τ
(
B1/2PnB

1/2
)
= sup

n
λτTr

(
B1/2PnB

1/2
)
= λτTr(B).

The conclusion of the previous construction is that on B(H) and up to a multiplica-
tive constant, the only tracial normal weight is Tr. If we drop the condition of normality,
this is not the case, as shown in the next chapter. Note finally that the previous proof
is based on the fact that the strong closure of K (H) is B(H) itself. In other contexts,
such an approximation argument might not be available.
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