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The information channel capacity: definition

@ Consider a DMC N with input alphabet X = {z1,- -, 2}, output alphabet
Y ={y1, -+ ,yn}, and channel matrix [p;;] (1 <i<m,1<j<n).

@ Let X be an input RV, with range equal to X’ and probability distribution ;.

@ Feeding X through the channel AV, we obtain a pair of dependent RVs (X,Y),
with range X x ) and joint probability distribution Pr{X = z;,Y = y;} = mip;;.

@ From m;pi;, we then compute the mutual information

Pr{X =ux;,Y =y}
r{X =z} Pr{Y =y;}

I(X;Y)=>_ > Pr{X =u;,Y =y;}log, P

i=1 j=1

If the channel N\ is fixed, [p;;] is fixed too, and I(X;Y) is a function of the
probability distribution 7; of X only.

The information channel capacity
The information capacity of the channel NV is defined as

C(N) OI:ef{{naicf(X;Y).

v

Francesco Buscemi Fundamentals of Mathematical Informatics Lecture Five 2 /16



Example: the information capacity of the BSC

Consider a binary symmetric channel (BSC) with error probability v. Then:
I(X;Y)=H(Y)—-H(Y|X)
= H(Y)~ 3 p@)H(Y|X =)

=HY) - p(z){—7vlogyy — (1 —7)log,(1 —7)}
o ()

= H(Y) - H(v)

<1—H(y).

On the other hand, choosing p(0) = p(1) = 1/2, we obtain Pr{Y =0} = Pr{Y = 1},
e, H(Y) = 1.

Theorem: the capacity of the binary symmetric channel with error probability v is equal
to C(y) =1—H(v).
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Example: the information capacity of the BEC

Consider a binary erasure channel (BEC) with erasure probability . As for the binary
symmetric channel, I(X;Y)=H(Y)—- H(Y|X)=H(Y) — H(v).
In order to compute H(Y'), we introduce the RV E, function of Y, defined as

s o ify#oe,
1, ifY =o.

Since E is function of Y, H(E|Y) = 0. This implies that:

H(Y)=H(Y,E) - H(E|Y)

=H(Y,E)
(E)+ H(Y|E)
(E)+Pr{E=0}H(Y|E=0)+Pr{E=1}H(Y|E=1)
M+ A =7HX)+~-0
(v) + (1 =) H(X).
But then, I(X;Y) = H(Y) — H(y) = H(y) + (1 = y)H(X) — H(y) = (1 — y)H(X).
The maximum is achieved when H(X) = 1.
Theorem: the capacity of the binary erasure channel with erasure probability ~ is equal
to C(y)=1-—1.
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The operational channel capacity: definitions

Consider a DMC N with input alphabet X' and output alphabet .

@ an (M, n)-code ¥ is given by an encoding ¢ : {1,2,--- , M} — X
and a decoding ¢ : Y™ — {1,2,---, M}.

o the rate of an (M, n)-code is R = %, and is measured in ‘bits per
transmission.’

@ (average) error probability: e(%) = ﬁ Zf\il Pr{g(Y") #i|X" = ¢;}.

@ maximum error probability: &(%) = max; Pr{g(Y™) # i| X" = ¢;}.

@ a rate R is (asymptotically) achievable, if, for any € > 0, there exists
a sequence of (|2™|, n)-codes %, and an integer ng(e) such that, for
any n = ng(e), é(%,) < e. (Thatis, lim,_,~ &(%,,) =0.)

The (asymptotic) operational channel capacity

The operational capacity of the channel N is defined as

C"(N) = sup{R achievable rate}.
R

v
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The noisy coding theorem for general DMCs

Information capacity = (asymptotic) operational capacity

For any DMC N, any rate R < C'is asymptotically achievable, i.e.,

C(N) = C'(N).

@ C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J.,
27:379-423,623-656 (1948).

@ A. Feinstein, A new basic theorem of information theory. |IER Trans. Inf. Theory,
IT-4:2-22 (1954).

@ R.G. Gallager, A simple derivation of the coding theorem and some applications. |EEE
Trans. Inf. Theory, IT-11:3-18 (1965).
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Coding theorem for the BSC: direct part

We will only prove this particular statement:

Coding theorem: achievability (direct part)

Given a binary symmetric channel with bit-flip probability 0 < v < 1, for any
choice of parameters 0 < § < % —~ and 1 > 0, there exists a sequence of
(M,,,n)-codes %,, such that

lim é(%,) =0,

n— 00

and
M, = Pn[cwm—n]J ,

i.e., any rate R < C(v) is asymptotically achievable.

Remark. The statement is restricted to the case v < 1/2: the case v > 1/2 is
obtained by flipping all the bits received, while the case v = 1/2 is obtained by
continuity.

Francesco Buscemi Fundamentals of Mathematical Informatics Lecture Five 7 /16

Useful facts required for the proof

Chebyshev's inequality (for coin tosses)
Consider a coin with Pr{head} = 1 — Pr{tail} = «. The probability that, in a sequence

of n tosses, the number of heads H is strictly greater than n~ is bounded as

ny(l —
Pr{H > ny+ A} < %,

for any A > 0.

v

Example: tossing 100 times a fair coin (7 = 1/2), the probability of obtaining 60 or more heads
is at most 25%. For 70 heads, <11%. For 90 heads, <2%.

The tail inequality
Forany 0 < ¢ <1/2,

2 n H(¢)
< o .
3 (k)

k=0
v
Reminder: the symbol () denotes the Newton binomial coefficient k,"—' (note that
'(n—k)!
def o
0! = 1): it gives the number of k-element subsets of an n-element set.
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Proof: (random) construction of the code

@ Encoding:

© Fix integers M (the size of the code) and n (the length of the code):
the codebook is an M-element subset of V,, (the set of all 2" binary
strings of length n).

© All codewords ¢; are drawn at random from V,,: Pr{c, = «} = 27" for
all 1 <47 < M and for all € V,,. (For example, it could be ¢; = ¢;
for i # j; we do not care.)

@ Decoding:

@ Fix integer » > 1 and construct the sphere of Hamming radius r

around each element y € V,.: S, (y) £ {z : d(z,y) <r}.
© Upon receiving y, if inside S,.(y) is contained one and only one
codeword c¢;, we decode y with j. Otherwise an error is declared.
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Proof: error probability analysis (part 1 of 3)

Remember: v < 1/2.

@ Imagine that Y is received: a decoding error happens if more than r bit-flip errors

occurred (event A) or if there are two (or more) codewords in S,(Y') (event B).
@ Since Pr{A or B} < Pr{A} + Pr{B}, we independently consider events A and B.
@ Let us begin with Pr{A} = Pr{more than r bit-flip errors}.

@ Pr{A} is equal to the probability of obtaining more than r ‘heads’ with n tosses of
a coin with Pr{head} = ~.

@ Fix 6 > 0 such that v+ 0 < 1/2 and take r = [ny +nd|.
@ By Chebyshev's inequality, Pr{A} < M
@ Let us move onto Pr{B}.
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Proof: error probability analysis (part 2 of 3)

Remember: v < 1/2,0<§ < 1/2—7, and r = [ny+nd|.

@ How to evaluate Pr{B} = Pr{two or more codewords in S,(Y)}?

@ How many distinct elements are in S,.(Y')? There is Y itself... There are n
distinct elements that differ from Y in one place... There are the % distinct
elements that differ from Y in two places... In general, there are the (}) distinct
elements that differ from Y in k places. Therefore, for any Y € V,,, S,.(Y)
contains exactly >, _, (7) distinct elements.

@ Therefore, for each Y € V,,, the probability that a codeword belongs to S, (Y")

can be exactly computed as 27" >~ _ (7).

@ Given that one codeword, say c;, is in S-(Y), then

Pr{ci € S;(Y)or --- orcj—1 € Sp.(Y)orcjy1 € S-(Y)or --- oremr € S-(Y)}

<Y Pr{e; € 5:(Y)}
i#]
= (M —1)27" Z (Z) < M2—nz (Z) < Mo~ nonH(O+8) g ro—n(1-H(v+9))
k=0 k=0
— M2—”C(’Y+5).
Francesco Buscemi Fundamentals of Mathematical Informatics Lecture Five 11 / 16

Proof: error probability analysis (part 3 of 3)

@ Until now, we have evaluated the (average) error probability of a
randomly constructed (M, n)-code € as follows:

no2

where n, M, and 0 < § < % — v are free parameters.
@ This means that, for any 0 < 6 < 5 — 7, there always exists a

sequence of random (Mn,n)—codes %, such that e(%,) — 0, but...
provided that M,,2~"¢(7+9) 0,

@ For example, for any arbitrarily small n > 0, take
M, = [2MCO+)=nl| 'so that M2 "C(1+0) = 2™ _; (.

@ Then, for any § > 0, there exists a large enough n that achieves the
rate R, = C(y + §) — n, for any arbitrarily small n > 0.

@ We still need to evaluate the maximum error probability!
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Proof: from average error probability to maximum error

probability

o Assume that e(%) = & S M Pr{g(Y") #i|X" = ¢;} < e.

@ We can conclude that no more than M /2 codewords in %" can be such that
Pr{g(Y"™) #i| X" = ¢} > 2e.

@ This implies that there exist at least M /2 codewords in € such that
Pr{g(Y"™) # i|X" = ¢} < 2e.

@ So, if we know that there exists a sequence of (M,,,n)-codes %, with
e(%,) — 0, we know that there exists a sequence of (%2, n)-codes %/, with

é(¢)) — 0.
@ Computing the rate of %,: L log,(X=) = L(log, M,, — 1) — L log, M,,.
@ This implies that, without decreasing the asymptotic rate, we can make the

maximum error probability go to zero.

@ In other words, for any §,n > 0, the rate R, = C(y+9) —n is
asymptotically achievable.

@ By taking the limits § — 0 and n — 0, any rate R < C(~) is asymptotically
achievable.
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Some remarks

@ The proof shows that, for length n large enough, a good code can be
constructed very easily, just by choosing the codewords at random.

@ We pay this at the decoding stage: the receiver needs to use a table
lookup scheme, i.e., a ‘big book’ where it's written what to do for
each received y, but the size of this book grows exponentially in n.

@ Coding theory aims at constructing coding techniques that strike a
good tradeoff between capacity and decoding efficiency.

@ What happens if we try to transmit data at a rate R > C7 Weak
converse: the error probability cannot go to zero, i.e., for any
sequence of (M, n)-codes with lim,, 1 log, M,, > C, there exists
€0 > 0 such that e(%),) > €, for all n. Strong converse: for any
sequence of (M,,,n)-codes with lim,, 1 log, M,, > C, €(%,) — 1.

@ Remark: the theorem (and its converse) does not address the case
R=C.
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Summary of lecture five

@ For any DMC channel, its information capacity is asymptotically
achievable.

@ The construction in the achievability proof involves a random coding
argument.

@ With random coding, coding is easy, decoding is hard.
@ Actual codes try to balance rate and decoding efficiency.

@ The capacity is a sharp transition point: error goes to zero for
R < C, while it goes to one for R > C.

Francesco Buscemi Fundamentals of Mathematical Informatics Lecture Five 15 / 16

Keywords for lecture five

information channel capacity, operational channel capacity, the noisy
coding theorem for DMCs, random coding argument

Francesco Buscemi Fundamentals of Mathematical Informatics Lecture Five 16 / 16



