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The information channel capacity: definition

Consider a DMC N with input alphabet X = {x1, · · · , xm}, output alphabet
Y = {y1, · · · , yn}, and channel matrix [[pij ]] (1 6 i 6 m, 1 6 j 6 n).

Let X be an input RV, with range equal to X and probability distribution πi.

Feeding X through the channel N , we obtain a pair of dependent RVs (X,Y ),
with range X × Y and joint probability distribution Pr{X = xi, Y = yj} = πipij .

From πipij , we then compute the mutual information

I(X;Y ) =
m∑
i=1

n∑
j=1

Pr{X = xi, Y = yj} log2

Pr{X = xi, Y = yj}
Pr{X = xi}Pr{Y = yj}

.

If the channel N is fixed, [[pij ]] is fixed too, and I(X;Y ) is a function of the
probability distribution πi of X only.

The information channel capacity
The information capacity of the channel N is defined as

C(N )
def
= max
{πi}

I(X;Y ).
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Example: the information capacity of the BSC

Consider a binary symmetric channel (BSC) with error probability γ. Then:

I(X;Y ) = H(Y )−H(Y |X)

= H(Y )−
∑
x=0,1

p(x)H(Y |X = x)

= H(Y )−
∑
x=0,1

p(x){−γ log2 γ − (1− γ) log2(1− γ)︸ ︷︷ ︸
def
=H(γ)

}

= H(Y )−H(γ)

6 1−H(γ).

On the other hand, choosing p(0) = p(1) = 1/2, we obtain Pr{Y = 0} = Pr{Y = 1},
i.e., H(Y ) = 1.

Theorem: the capacity of the binary symmetric channel with error probability γ is equal

to C(γ) = 1−H(γ).
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Example: the information capacity of the BEC

Consider a binary erasure channel (BEC) with erasure probability γ. As for the binary
symmetric channel, I(X;Y ) = H(Y )−H(Y |X) = H(Y )−H(γ).
In order to compute H(Y ), we introduce the RV E, function of Y , defined as

E =

{
0, if Y 6= /,
1, if Y = /.

Since E is function of Y , H(E|Y ) = 0. This implies that:

H(Y ) = H(Y,E)−H(E|Y )

= H(Y,E)

= H(E) +H(Y |E)

= H(E) + Pr{E = 0}H(Y |E = 0) + Pr{E = 1}H(Y |E = 1)

= H(γ) + (1− γ)H(X) + γ · 0
= H(γ) + (1− γ)H(X).

But then, I(X;Y ) = H(Y )−H(γ) = H(γ) + (1− γ)H(X)−H(γ) = (1− γ)H(X).
The maximum is achieved when H(X) = 1.

Theorem: the capacity of the binary erasure channel with erasure probability γ is equal

to C(γ) = 1− γ.
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The operational channel capacity: definitions

Consider a DMC N with input alphabet X and output alphabet Y.

an (M,n)-code C is given by an encoding c : {1, 2, · · · ,M} → X (n)

and a decoding g : Y(n) → {1, 2, · · · ,M}.
the rate of an (M,n)-code is R

def
= log2M

n , and is measured in ‘bits per
transmission.’

(average) error probability: e(C )
def
= 1

M

∑M
i=1 Pr{g(Y n) 6= i|Xn = ci}.

maximum error probability: ê(C )
def
= maxi Pr{g(Y n) 6= i|Xn = ci}.

a rate R is (asymptotically) achievable, if, for any ε > 0, there exists
a sequence of (b2nRc, n)-codes Cn and an integer n0(ε) such that, for
any n > n0(ε), ê(Cn) 6 ε. (That is, limn→∞ ê(Cn) = 0.)

The (asymptotic) operational channel capacity

The operational capacity of the channel N is defined as

C ′(N )
def
= sup

R
{R achievable rate}.
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The noisy coding theorem for general DMCs

Information capacity ≡ (asymptotic) operational capacity

For any DMC N , any rate R < C is asymptotically achievable, i.e.,

C(N ) = C ′(N ).

C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J.,
27:379-423,623-656 (1948).

A. Feinstein, A new basic theorem of information theory. IER Trans. Inf. Theory,
IT-4:2-22 (1954).

R.G. Gallager, A simple derivation of the coding theorem and some applications. IEEE
Trans. Inf. Theory, IT-11:3-18 (1965).
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Coding theorem for the BSC: direct part

We will only prove this particular statement:

Coding theorem: achievability (direct part)

Given a binary symmetric channel with bit-flip probability 0 6 γ < 1
2 , for any

choice of parameters 0 < δ 6 1
2 − γ and η > 0, there exists a sequence of

(Mn, n)-codes Cn such that

lim
n→∞

ê(Cn) = 0,

and
Mn =

⌊
2n[C(γ+δ)−η]

⌋
,

i.e., any rate R < C(γ) is asymptotically achievable.

Remark. The statement is restricted to the case γ < 1/2: the case γ > 1/2 is

obtained by flipping all the bits received, while the case γ = 1/2 is obtained by

continuity.
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Useful facts required for the proof

Chebyshev’s inequality (for coin tosses)

Consider a coin with Pr{head} = 1− Pr{tail} = γ. The probability that, in a sequence
of n tosses, the number of heads H is strictly greater than nγ is bounded as

Pr{H > nγ + ∆} 6 nγ(1− γ)

∆2
,

for any ∆ > 0.

Example: tossing 100 times a fair coin (γ = 1/2), the probability of obtaining 60 or more heads

is at most 25%. For 70 heads, 611%. For 90 heads, 62%.

The tail inequality

For any 0 6 ξ 6 1/2,
bξnc∑
k=0

(
n

k

)
6 2nH(ξ).

Reminder: the symbol
(n
k

)
denotes the Newton binomial coefficient n!

k!(n−k)! (note that

0!
def
= 1): it gives the number of k-element subsets of an n-element set.
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Proof: (random) construction of the code

Encoding:

1 Fix integers M (the size of the code) and n (the length of the code):
the codebook is an M -element subset of Vn (the set of all 2n binary
strings of length n).

2 All codewords ci are drawn at random from Vn: Pr{ci = x} = 2−n for
all 1 6 i 6M and for all x ∈ Vn. (For example, it could be ci = cj
for i 6= j; we do not care.)

Decoding:

1 Fix integer r > 1 and construct the sphere of Hamming radius r

around each element y ∈ Vn: Sr(y)
def
= {z : d(z,y) 6 r}.

2 Upon receiving y, if inside Sr(y) is contained one and only one
codeword cj , we decode y with j. Otherwise an error is declared.

Francesco Buscemi Fundamentals of Mathematical Informatics Lecture Five 9 / 16

Proof: error probability analysis (part 1 of 3)

Remember: γ < 1/2.

Imagine that Y is received: a decoding error happens if more than r bit-flip errors
occurred (event A) or if there are two (or more) codewords in Sr(Y ) (event B).

Since Pr{A or B} 6 Pr{A}+ Pr{B}, we independently consider events A and B.

Let us begin with Pr{A} = Pr{more than r bit-flip errors}.
Pr{A} is equal to the probability of obtaining more than r ‘heads’ with n tosses of
a coin with Pr{head} = γ.

Fix δ > 0 such that γ + δ 6 1/2 and take r = bnγ + nδc.

By Chebyshev’s inequality, Pr{A} 6 γ(1−γ)
nδ2

.

Let us move onto Pr{B}.
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Proof: error probability analysis (part 2 of 3)

Remember: γ < 1/2, 0 < δ 6 1/2− γ, and r = bnγ + nδc.
How to evaluate Pr{B} = Pr{two or more codewords in Sr(Y )}?
How many distinct elements are in Sr(Y )? There is Y itself... There are n

distinct elements that differ from Y in one place... There are the n(n−1)
2

distinct
elements that differ from Y in two places... In general, there are the

(
n
k

)
distinct

elements that differ from Y in k places. Therefore, for any Y ∈ Vn, Sr(Y )
contains exactly

∑r
k=0

(
n
k

)
distinct elements.

Therefore, for each Y ∈ Vn, the probability that a codeword belongs to Sr(Y )
can be exactly computed as 2−n

∑r
k=0

(
n
k

)
.

Given that one codeword, say cj , is in Sr(Y ), then

Pr{c1 ∈ Sr(Y ) or · · · or cj−1 ∈ Sr(Y ) or cj+1 ∈ Sr(Y ) or · · · or cM ∈ Sr(Y )}

6
∑
i 6=j

Pr{ci ∈ Sr(Y )}

= (M − 1)2−n
r∑
k=0

(
n

k

)
< M2−n

r∑
k=0

(
n

k

)
6M2−n2nH(γ+δ) = M2−n(1−H(γ+δ))

= M2−nC(γ+δ).
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Proof: error probability analysis (part 3 of 3)

Until now, we have evaluated the (average) error probability of a
randomly constructed (M,n)-code C as follows:

e(C ) 6
γ(1− γ)
nδ2

+M2−nC(γ+δ),

where n, M , and 0 < δ 6 1
2 − γ are free parameters.

This means that, for any 0 < δ 6 1
2 − γ, there always exists a

sequence of random (Mn, n)-codes Cn such that e(Cn)→ 0, but...
provided that Mn2

−nC(γ+δ) → 0.

For example, for any arbitrarily small η > 0, take
Mn = b2n[C(γ+δ)−η]c, so that Mn2

−nC(γ+δ) = 2−nη → 0.

Then, for any δ > 0, there exists a large enough n that achieves the
rate Rn = C(γ + δ)− η, for any arbitrarily small η > 0.

We still need to evaluate the maximum error probability!
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Proof: from average error probability to maximum error
probability

Assume that e(C ) = 1
M

∑M
i=1 Pr{g(Y n) 6= i|Xn = ci} 6 ε.

We can conclude that no more than M/2 codewords in C can be such that
Pr{g(Y n) 6= i|Xn = c} > 2ε.

This implies that there exist at least M/2 codewords in C such that
Pr{g(Y n) 6= i|Xn = c} 6 2ε.

So, if we know that there exists a sequence of (Mn, n)-codes Cn with
e(Cn)→ 0, we know that there exists a sequence of (Mn

2 , n)-codes C ′n with
ê(C ′n)→ 0.

Computing the rate of C ′n: 1
n log2(

Mn

2 ) = 1
n (log2Mn − 1)→ 1

n log2Mn.

This implies that, without decreasing the asymptotic rate, we can make the
maximum error probability go to zero.

In other words, for any δ, η > 0, the rate Rn = C(γ + δ)− η is
asymptotically achievable.

By taking the limits δ → 0 and η → 0, any rate R < C(γ) is asymptotically
achievable.
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Some remarks

The proof shows that, for length n large enough, a good code can be
constructed very easily, just by choosing the codewords at random.

We pay this at the decoding stage: the receiver needs to use a table
lookup scheme, i.e., a ‘big book’ where it’s written what to do for
each received y, but the size of this book grows exponentially in n.

Coding theory aims at constructing coding techniques that strike a
good tradeoff between capacity and decoding efficiency.

What happens if we try to transmit data at a rate R > C? Weak
converse: the error probability cannot go to zero, i.e., for any
sequence of (Mn, n)-codes with limn

1
n log2Mn > C, there exists

ε0 > 0 such that e(Cn) > ε0, for all n. Strong converse: for any
sequence of (Mn, n)-codes with limn

1
n log2Mn > C, e(Cn)→ 1.

Remark: the theorem (and its converse) does not address the case
R = C.
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Summary of lecture five

For any DMC channel, its information capacity is asymptotically
achievable.

The construction in the achievability proof involves a random coding
argument.

With random coding, coding is easy, decoding is hard.

Actual codes try to balance rate and decoding efficiency.

The capacity is a sharp transition point: error goes to zero for
R < C, while it goes to one for R > C.
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