G30 Studium generale June 9 2016

Natural History: past and present ways to understand the Tree of Life

Isabelle Vea

JSPS Postdoctoral Fellow Graduate School of Bioagricultural Sciences Laboratory of Applied Entomology

How many species on Earth?

How many species on Earth?

About 2 million species described Estimates: 10-300 million

5W INFOGRAPHICS; ALEXANDER STEGMAIER, NGM STAFF SOURCES: IUCN; ARTHUR D. CHAPMAN, AUSTRALIAN BIODIVERSITY INFORMATION SERVICES

Mammals 5,600 species estimated

5,501 (98%) species discovered

Insects 5,000,000 1,000,000 (20%)

Natural History

 A subfield of natural sciences that involves the study of natural organisms in their environment and based on observation

Systematics

- Taxonomy = describing and classifying species
- Phylogenetics = assessing the evolutionary relationships

—>phylogenies = phylogenetic trees
(e.g., Tree of Life)

- zoology, botany, mycology, microbiology
- palaeontology and neontology

Ephraim Chambers (1728) Cyclopaedia

Why build the Tree of Life?

- Creates fundamental knowledge and provides a framework to answering evolutionary questions
- Allows to understand today's biodiversity
- Genetic diversity for food, origin of pathogens etc...
- Making decision in conservation biology
- Changes our self-perception in relation to other living things: we are a tiny part of a giant group of life on Earth

Antiquity

- Aristotle 384–322 BC: first careful observer of diversity in the natural world (*Historia Animalium* with 520 species)
- Pliny the Elder (23–79 AD): Naturalis historia (on plants)

Middle Ages: Scala Naturae or Chain of Being

From Renaissance

- Jan Swammerdam (1637-1680) *Historia* Insectorum Generalis
- John Ray (1627-1680) *Historia insectarium*

Bust of Aristotle. Marble, Roman copy after a Greek bronze original by Lysippos from 330 BC; the alabaster mantle is a modern addition Source: <u>https://commons.wikimedia.org/wiki/</u> <u>File:Aristotle_Altemps_Inv8575.jpg</u> 5

Antiquity

- Aristotle 384–322 BC: first careful observer of diversity in the natural world (*Historia Animalium* with 520 species)
- Pliny the Elder (23–79 AD): Naturalis historia (on plants)

Middle Ages: Scala Naturae or Chain of Being

From Renaissance

- Jan Swammerdam (1637-1680) *Historia* Insectorum Generalis
- John Ray (1627-1680) *Historia insectarium*

Didacus Valades (1579) Rhetorica Christiana

• First natural history museums (~1630)

Carl von Linné (1707-1778)

- Basis of modern natural history
- Hierarchical classification
- Characters reflects natural classification
- Binomial names of species

Adding the theory of evolution by natural selection: Wallace and Darwin (*On the Origin of Species*, 1859)

Formal phylogenetic methods (Willi Hennig, 1966)

Carl von Linné, Alexander Roslin, 1775 (oil on canvas, Gripsholm Castle)

CAROLI LINNÆI EQUITIS DE STELLA POLARI, ARCHIATRI REGII, MED. & BOTAN. PROFESS. UPSAL.; ARCHIATRI REGII, MED. & BOTAN. PROFESS. UPSAL.; AND, MONSPEL. TOLOS. FLORENT. SOC. SYSTEM DONSPEL. TOLOS. FLORENT. SOC. SYSTEMA SYSTEMA NATURA PER REGNA TRIA NATURÆ, BECUNDUM CLASSES, ORDINES, GENERA, SPECIES, CUM CHARACTERIBUS, DIFFERENTIIS.

EDITIO DECIMA, REFORMATA. Cum Privilegio S:e R:e M:tis Syecie.

HOLMIÆ, Impensis Direct. LAURENTII SALVII, 1758.

1758 edition of Linnaeus's Systema Naturæ Source: <u>http://</u> <u>www.biodiversitylibrary.org/</u> <u>bibliography/542#/summary</u>

• First natural history museums (~1630)

Carl von Linné (1707-1778)

- Basis of modern natural history
- Hierarchical classification
- Characters reflects natural classification
- Binomial names of species

Adding the theory of evolution by natural selection: Wallace and Darwin (*On the Origin of Species*, 1859)

Formal phylogenetic methods (Willi Hennig, 1966)

Charles Darwin John Collier (1881)

Alfred Russell Wallace London Stereoscopic & Photographic Company (1886)

Only figure in *On the Origin of Species* (1859)

• First natural history museums (~1630)

Carl von Linné (1707-1778)

- Basis of modern natural history
- Hierarchical classification
- Characters reflects natural classification
- Binomial names of species

Adding the theory of evolution by natural selection: Wallace and Darwin (*On the Origin of Species*, 1859)

Formal phylogenetic methods (Willi Hennig, 1966)

Willi Hennig, photo taken by his son Gerd Hennig in 1972 (CC BY-SA 3.0)

Natural History research today

Natural History Museums

Curators, researchers, technicians, students

Main activities of a naturalist

- Collecting data (fieldwork and collection visits)
- Preservation of specimens
- Record of data and management of collections
- Description/ interpretation of specimens : photos, drawings, microscope, sequencing DNA/ genomes, CT scan images
- Analysis: computational
- Output: descriptions of new species, phylogenies

Costa Rica 2010. Image: Isabelle Vea

Main activities of a naturalist

- Collecting data (fieldwork and collection visits)
- Preservation of specimens
- Record of data and management of collections
- Description/ interpretation of specimens : photos, drawings, microscope, sequencing DNA/ genomes, CT scan images
- Analysis: computational
- Output: descriptions of new species, phylogenies

Image: Chip Clark The Smithsonian National Museum of Natural History

Main activities of a naturalist

- Collecting data (fieldwork and collection visits)
- Preservation of specimens
- Record of data and management of collections
- Description/ interpretation of specimens : photos, drawings, microscope, sequencing DNA/ genomes, CT scan images
- Analysis: computational
- Output: descriptions of new species, phylogenies

Systematics

The study of biodiversity

TAXONOMY CLASSIFICATIONS

Discover/describe/name biodiversity

PHYLOGENETICS

Assess evolutionary relationships of this biodiversity

Everyone can describe a species

Essential elements of a species description

- A binomial name
- A type specimen
- A diagnosis = minimum features that differentiates to other species
- A public distribution of the article (prints in libraries)

Additional elements

- Images, drawings
- Complete description
- Identification key

NEVI Clark Coj Spring Rauge Willow Cricek 5 June 1939

HOLOTYPE Euphilotes ancilla purpura Austin, 1998

> MGCL/FLMNH Specimen no. 47449

McGuire Center for Lepidoptera and Biodiversity (<u>http://butterfliesofamerica.com/</u> <u>euphilotes_ancilla_purpura_types.htm</u>)

What is a species scientific name?

Source: https://www.flickr.com/photos/kachnch/16364273038

Hierarchical classification

Image: Peter Halasz (https://en.wikipedia.org/wiki/ File:Biological_classification_L_Pengo_vflip.svg)

Can you read a phylogeny?

Taxon (pl. taxa)= a set/group of organisms (e.g., species, genus, family etc..)

Can you read a phylogeny?

Same or different trees?

Taxon (pl. taxa)= a set/group of organisms (e.g., species, genus, family etc..)

How do we build a Tree of Life?

Main principle: Related groups share a common hypothetical ancestor

Similarity in evolution

- Homology: feature that is inherited by the last common ancestor
- Homoplasy: similarity acquired from convergence (e.g., from same environment)
- It is important to distinguish each of the similarity and homology is used in phylogenetics

Source: University of California Museum of Paleontology's Understanding Evolution (http://evolution.berkeley.edu)

Source: Michael Rothmans 16 (http://www.pbs.org/wgbh/evolution/library/01/4/I_014_01.html)

- Morphological observation
 - Seeing the small
 - Seeing the hidden
 - Seeing more details
- DNA
 - genes (usually 1-5)
 - genomics/ transcriptomics

Scanning Electron Microscope (SEM)

provides high details of surfaces

Male scale insect. Image: Isabelle Vea

Phase contrast X-ray synchrotron imaging

- Morphological observation
 - Seeing the small
 - Seeing the hidden
 - Seeing more details
- DNA
 - genes (usually 1-5)
 - genomics/ transcriptomics

Synchrotron in Grenoble

Increase contrasts between materials

Source: http://www.esrf.eu/UsersAndScience/Publications/Highlights/2006/XIM/XIM10

- Morphological observation
 - Seeing the small
 - Seeing the hidden

Computerised Tomography

= CT scan uses X-rays

CT scanner at AMNH Image: <u>http://research.amnh.org/mif/node/12</u>

- Seeing more details
- DNA
 - genes (usually 1-5)
 - genomics/ transcriptomics

Phylogenomics of insects

- Morphological observation
 - Seeing the small
 - Seeing the hidden
 - Seeing more details
- DNA
 - genes (usually 1-5)
 - genomics/ transcriptomics

- 101 worldwide authors
- 2.5 Gb of transcriptome data (~1400 genes)
- 144 insects

Source: Misof et al., 2014. Science 346(6210):763-7 (Figure 1)

From observation to data

Morphological features compared and translated to a matrix

Aligned DNA/amino acid sequences

(a) Character table

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings

8

Analytical methods

- More than 5-10 characters/5 taxa => need computers to find the trees
- Algorithms following different philosophies (parsimony, maximum likelihood, bayesian inference)
- Adding a time scale on phylogenies: DNA sequences have rates of evolution (molecular clock)
- Combining fossils and extant: provides time calibrations

Other examples and applications

Understanding the origin of flight in birds

Source: Brusatte et al., 2015 Current Biology, 25(19):pR888–R898 (Figure 1)

Rainford JL, Hofreiter M, Nicholson DB, Mayhew PJ (2014) Phylogenetic Distribution of Extant Richness Suggests Metamorphosis Is a Key Innovation Driving Diversification in Insects. PLoS ONE 9(10): e109085. doi:10.1371/journal.pone.0109085 http://journals.plos.org/plosone/article?id=info:doi/10.1371/journal.pone.0109085

Searching for new medicine

The tree of life can tell us where to look for new chemical compounds that can prevent/cure human diseases

Venom originated several times in fish evolution: potential branches to look for chemical compounds

The future of Natural History

If there are 10 million species on Earth and we described 2 million species in 2 centuries, do we need 8 more centuries?

- Human expertise vs. Barcode of Life?
- Preserving specimens (infrastructures)
- Theory behind phylogenetic analyses (e.g., models of evolution for morphological characters)
- Bioinformatics in the age of genomics
 - Large scale data storage/sharing and analysis
 - Fast algorithms

Back to the Tree of Life

- The largest synthetic Tree of Life so far
 - <u>https://tree.opentreeoflife.org/opentree/argus/</u> <u>opentree5.0@ott93302</u>
- How far away are we from other species?
 - <u>http://www.timetree.org/</u>

Open question for you

While scientists are discovering new branches of the Tree of Life, other branches are being trimmed off from extinction

In your opinion, is it still worth discovering the natural world? Why?