CHAPTER 11: ROLLING

Application of Newton's laws both for linear and rotational motion

1. Rolling

- a. Pure roll (smooth rolling)
- b. Kinetic energy of rolling
- c. Rolling down a ramp

CIRCULAR MOTION : dR/dt = 0

 ω is represented as a vector along the rotation axis Its orientation is given by the right-hand rule of vector cross products

FRICTION AND ROLLING (HORIZONTAL MOTION) CASE OF UNIFORM MOTION

If a wheel rolls at constant speed, it has no tendency to slide at the point of contact P, and thus no frictional force acts there.

$$\overrightarrow{F_{net}} = m \overrightarrow{a_{com}} = 0$$

FRICTION AND ROLLING (HORIZONTAL MOTION) CASE OF ACCELERATED MOTION

A wheel is being made to <u>rotate faster</u>. $\overrightarrow{a_{com}} \neq 0$. The faster rotation tends to make the bottom of the wheel slide to the left at point *P*.

A frictional force at P, directed to the right, opposes this tendency to slide. (Newton 3^{rd} law)

No sliding **→ Static** friction!

If the wheel were made to <u>rotate slower</u>:

The directions of the center-of-mass acceleration and frictional force at point P would now be to the left.

ROLLING AND RELATIVITY

Velocities relative to center O

Velocities relative to road

Each point on rim moving at speed $|\vec{v}|$ relative to center *O*

 $|\vec{v}| = R\omega$

Bernard Gelloz - Nagoya U. G30 - Fundamentals of Physics II

PURE ROLL: ROTATION AND TRANSLATION COMBINED

ROLLING – WHEEL OF RADIUS R

Pure roll (no skidding, no sliding)

O: center of mass of wheel

Rotation about contact point P $s = R\theta$ $v = \frac{ds}{dt} = R \frac{d\theta}{dt} = R\omega$ Instantaneous speed of *O*: $v_0 = R\omega_P$ Instantaneous speed of *T*: $v_T = 2R\omega_P$

Rotation about P: V=0 at P!

$$v_{com} = R\omega$$

ROLLING AS PURE TRANSLATION + PURE ROTATION

Complicated motion can be decomposed into elementary simple ones

THE KINETIC ENERGY OF ROLLING

A rolling object has two types of kinetic energy:

- 1. a rotational kinetic energy due to its rotation about its center of mass (= $\frac{1}{2}$ I_{com} ω^2),
- 2. a translational kinetic energy due to translation of its center of mass $(=\frac{1}{2} \text{ Mv}_{com}^2)$

THE KINETIC ENERGY OF ROLLING - ANOTHER VIEW

If we view the rolling as pure rotation about an axis through P, then: 1

$$K = \frac{1}{2} I_P \omega^2$$

(ω is the angular speed of the wheel and I_P is the rotational inertia of the wheel about the axis through *P*).

Р

Using the parallel-axis theorem (I $_{P}$ = I $_{com}$ +Mh²): $I_{P} = I_{com} + MR^{2}$

(*M* is the mass of the wheel, I_{com} is its rotational inertia about an axis through its com, and *R* is the wheel's radius, at a perpendicular distance *h*).

Using the relation
$$v_{com} = \omega R$$
, we get: $K = \frac{1}{2}I_{com}\omega^2 + \frac{1}{2}Mv_{com}^2$

ROLLING DOWN A RAMP – FINDING *a*_{com}

- What about a block (not rolling) down a ramp?
- Depend on m? size?

BLOCK DOWN A RAMP – FINDING a_{com}

ROLLING DOWN A RAMP – FINDING *a*_{com}

Bernard Gelloz - Nagoya U. G30 - Fundamentals of Physics II

ROLLING DOWN A RAMP – FINDING *a*_{com}

$$a_{com} = -\frac{g\sin\theta}{1 + I_{com}/MR^2}$$

Туре	I _{com}	a _{com,x}	Rank
Solid cylinder	$\frac{1}{2}MR^2$	$\frac{2}{3}g\sin\theta$	2
Hollow cylinder	MR^2	$\frac{1}{2}g\sin\theta$	3
Solid sphere	$\frac{2}{5}MR^2$	$\frac{5}{7}g\sin\theta$	1

All accelerations are independent of *M* and *R*! Ranking: rotational inertia at work.

FORMULA SUMMARY

