CHAPTER 11: ROLLING

Application of Newton's laws both
for linear and rotational motion

1. Rolling
a. Pure roll (smooth rolling)
b. Kinetic energy of rolling
c. Rolling down a ramp

CIRCULAR MOTION $: d R / d t=0$

$$
\begin{aligned}
& s=R \theta \\
& v=\frac{d s}{d t}=R \frac{d \theta}{d t}=R \omega \\
& a_{t}=\frac{d v}{d t}=R \frac{d^{2} \theta}{d t^{2}}=R \frac{d \omega}{d t}=R \alpha \\
& a_{c}=\frac{v^{2}}{R}=R \omega^{2}
\end{aligned}
$$

ω is represented as a vector along the rotation axis
Its orientation is given by the right-hand rule of vector cross products

FRICTION AND ROLLING (HORIZONTAL MOTION) CASE OF UNIFORM MOTION

If a wheel rolls at constant speed, it has no tendency to slide at the point of contact P, and thus no frictional force acts there.

$$
\overrightarrow{F_{n e t}}=m \overrightarrow{a_{c o m}}=0
$$

FRICTION AND ROLLING (HORIZONTAL MOTION) CASE OF ACCELERATED MOTION

A wheel is being made to rotate faster. $\overrightarrow{a_{c o m}} \neq 0$. The faster rotation tends to make the bottom of the wheel slide to the left at point P.
A frictional force at P, directed to the right, opposes this tendency to slide. (Newton $3^{\text {rd }}$ law)
No sliding $\boldsymbol{\rightarrow}$ Static friction!

If the wheel were made to rotate slower:
The directions of the center-of-mass acceleration and frictional force at point P would now be to the left.

ROLLING AND RELATIVITY

Velocities relative to center O

Each point on rim moving at speed $|\vec{v}|$ relative to center O

$$
|\vec{v}|=R \omega
$$

Velocities relative to road

Zero velocity at contact point P

PURE ROLL: ROTATION AND TRANSLATION COMBINED

$$
s=R \theta
$$

Also applies to pulleys

$$
v_{P}=\frac{d s}{d t}=R \frac{d \theta}{d t}=R \omega_{O}=v_{c o m}=R \omega_{P} \Rightarrow \begin{aligned}
& \omega_{O} \text { of wheel rotation } \\
& =\omega_{P} \text { of rotation about } P
\end{aligned}
$$

The com O and contact point P experience the same linear motion

ROLLING - WHEEL OF RADIUS R

Pure roll (no skidding, no sliding)
O : center of mass of wheel

> Rotation about contact point \mathbf{P}
> $s=R \theta$
> $v=\frac{d s}{d t}=R \frac{d \theta}{d t}=R \omega$

Instantaneous speed of O : $v_{O}=R \omega_{P}$
Instantaneous speed of $T: \quad v_{T}=2 R \omega_{P}$

Rotation about $P: V=0$ at P !

$$
v_{\text {com }}=R \omega
$$

ROLLING AS PURE TRANSLATION + PURE ROTATION

Pure rotation Pure translation \square Rolling motion

Complicated motion can be decomposed into elementary simple ones

THE KINETIC ENERGY OF ROLLING

A rolling object has two types of kinetic energy:

1. a rotational kinetic energy due to its rotation about its center of mass $\left(=1 / 2 I_{\text {com }} \omega^{2}\right)$,
2. a translational kinetic energy due to translation of its center of mass ($=1 / 2 \mathbf{M v}^{\mathbf{c}}$ com $)$

THE KINETIC ENERGY OF ROLLING - ANOTHER VIEW

If we view the rolling as pure rotation about an axis through P, then:

$$
K=\frac{1}{2} I_{P} \omega^{2}
$$

(ω is the angular speed of the wheel and I_{P} is the rotational inertia of the wheel about the axis through P).

Using the parallel-axis theorem $\left(\mathrm{I}_{\mathrm{p}}=\mathrm{I}_{\mathrm{com}}+\mathrm{Mh}^{2}\right): I_{P}=I_{\text {com }}+M R^{2}$
(M is the mass of the wheel, $I_{\text {com }}$ is its rotational inertia about an axis through its com, and R is the wheel's radius, at a perpendicular distance h).
Using the relation $v_{c o m}=\omega R$, we get: $\quad K=\frac{1}{2} I_{c o m} \omega^{2}+\frac{1}{2} M v_{c o m}{ }^{2}$

ROLLING DOWN A RAMP - FINDING $a_{c o m}$

- What about a block (not rolling) down a ramp?
- Depend on m ? size?

BLOCK DOWN A RAMP - FINDING $a_{c o m}$

Motion: only translation

Linear form (translation of com)
 $$
f_{k}-M g \sin \theta=M a_{c o m, x}
$$

$$
f_{k}=\mu_{k} F_{N}=\mu_{k} M g \cos \theta
$$

$$
a_{c o m, x}=-g\left(\sin \theta-\mu_{k} \cos \theta\right)
$$

Frictional force is empirical (not fundamental)
Without friction (fundamental theory only):

$$
a_{\text {com }, x}=-g \sin \theta
$$

Acceleration independent of M and size

ROLLING DOWN A RAMP - FINDING $a_{\text {com }}$

General motion (translation+rotation)
\rightarrow use Newton's $2^{\text {nd }}$ law in both linear and angular forms

Linear form (translation of com)

$$
\begin{equation*}
f_{s}-M g \sin \theta=M a_{c o m, x} \tag{1}
\end{equation*}
$$

Angular form (about com)

$$
\tau_{n e t}=I \alpha \Rightarrow R f_{s}=I_{\text {com }} \alpha(2)
$$

Relation linear - rotational motion $v_{\text {com }}=-R \omega \quad a_{\text {com }}=-R \alpha$ (3)

3 unknowns: $a_{\text {com }} f_{s}, \alpha$
\rightarrow need a $3^{\text {rd }}$ equation
(2) and (3)

$$
\stackrel{\searrow f_{s}=-I_{c o m}}{ } a_{c o m} / R^{2}
$$

Then, with (1):

ROLLING DOWN A RAMP - FINDING $a_{c o m}$

$$
a_{\text {com }}=-\frac{g \sin \theta}{1+I_{\text {com }} / M R^{2}}
$$

Type	$\boldsymbol{I}_{\text {com }}$	$a_{\text {com }, \boldsymbol{x}}$	Rank
Solid cylinder	$\frac{1}{2} M R^{2}$	$\frac{2}{3} g \sin \theta$	$\mathbf{2}$
Hollow cylinder	$M R^{2}$	$\frac{1}{2} g \sin \theta$	3
Solid sphere	$\frac{2}{5} M R^{2}$	$\frac{5}{7} g \sin \theta$	1

All accelerations are independent of M and R ! Ranking: rotational inertia at work.

FORMULA SUMMARY

Pure roll: pure rotation + pure translation

$$
\begin{gathered}
s=R \theta \quad v_{\text {com }}=R \omega \\
K=K_{\text {rot }}+K_{\text {tran }}=\frac{1}{2} I_{\text {com }} \omega^{2}+\frac{1}{2} M v_{\text {com }}{ }^{2}
\end{gathered}
$$

