CHAPTER 10 (TORQUE, 2ND LAW FOR ROTATION) CHAPTER 11 (TORQUE, ANGULAR MOMENTUM)

Torque and Angular Momentum

- 1. Torque
 - a. Definition
 - b. Work, Power, W-K Theorem
- 2. Angular Momentum \vec{L}
 - a. Newton's 2nd Law in angular form
 - b. Systems
 - c. Conservation of \vec{L}

PRODUCING ROTATION ABOUT AN AXIS USING A FORCE

Opening a door

 F_1 and F_2 will not produce rotation

Top view

Producing rotation around an axis is much easier when:

- the force is greater ightharpoonup magnitude of \overrightarrow{F}
- the force is applied farther from the axis \rightarrow distance r from axis
- the direction of $ec{F}$ is closer to 90° with respect to the arm

ROTATION CAUSED BY TANGENTIAL COMPONENT OF F

 \vec{F} causes rotation around the axis

But actually only the tangential component F_t of the force causes rotation

TORQUE

we must define a new quantity that describes the effectiveness of an interaction at producing rotation about a specific axis.

This quantity is called **torque** τ and is a **vector** whose:

- magnitude is **Distance from axis** $X \mid F_{tangential} \mid$ or (**Moment arm* of** \overrightarrow{F}) $X \mid \overrightarrow{F} \mid$
- direction is related to the **direction of rotation** (remember $\vec{\omega}$).

*Also called "lever arm"

MAGNITUDE OF THE TORQUE

$$\tau = rF_t = rF\sin\varphi$$

2 WAYS TO EXPRESS THE TORQUE MAGNITUDE

Line of action of \vec{F}

$$\tau = rF_t = r(F\sin\varphi)$$

$$\tau = (r\sin\varphi)F = r_{\perp}F$$

TORQUE AS A VECTOR

To get the cross-product right, use a xyz reference obeying the righthand rule:

$$\vec{z} = \vec{x} \times \vec{y}$$

Direction of $\vec{\tau}$:

 $\tau = rF\sin\varphi$

$$\vec{\tau} = \vec{r} \times \vec{F}$$

(2) Screw rule

Rotation direction that \vec{F} tends to induce

SIGN OF A TORQUE

If the torque tends to produce a counterclockwise rotation, it is PositiveOtherwise, it is negative.

 $\vec{\tau} = \vec{r} \times \vec{F}$ Sign of τ given by direction along z axis

 $\tau = rF \sin \varphi$ Sign of τ is in $\sin \varphi$ φ is taken from \vec{r} to \vec{F} , negative when going clockwise

WORK DONE BY A TORQUE (PURE ROTATION)

$$\Delta W = \overrightarrow{F} \cdot \overrightarrow{\Delta s} = F \Delta s \cos \theta$$

$$\Delta s = R\Delta \theta$$

$$\Rightarrow \Delta W = R \cos \theta \, F \Delta \theta = r_{\perp} F \Delta \theta = \tau \Delta \theta$$

$$dW = \lim_{\Delta\theta \to 0} \Delta W = \tau d\theta$$

$$W = \int_{\theta_i}^{\theta_f} \tau d\theta$$

If τ is constant, $W = \tau(\theta_f - \theta_i)$

$$P = \frac{dW}{dt} = \tau \frac{d\theta}{dt} = \tau \omega$$

WORK-KINETIC ENERGY THEOREM (PURE ROTATION)

$$\Delta K = K_f - K_i = \frac{1}{2}I\omega_f^2 - \frac{1}{2}I\omega_i^2 = W_{i\to f}(\overrightarrow{\tau_{net}})$$

When using conservation of energy in general, rotational kinetic energy should also be considered.

NEWTON'S SECOND LAW FOR PURE ROTATION

$$F_{t} = ma_{t}$$

$$\tau_{O} = F_{t}r = ma_{t}r$$

$$\downarrow$$

$$\tau_{O} = m(r\alpha)r = (mr^{2})\alpha$$

$$\downarrow$$

$$\tau_{O} = I_{0}\alpha$$

For more than one force, we can generalize:

$$\tau_{O,net} = I_0 \alpha \quad (radian \, measure)$$

TRANSLATIONAL AND ROTATIONAL MOTION

Pure Translation (Fixed Direction)		Pure Rotation (Fixed Axis)	
Position	x	Angular position	θ
Velocity	v = dx/dt	Angular velocity	$\omega = d\theta/dt$
Acceleration	a = dv/dt	Angular acceleration	$\alpha = d\omega/dt$
Mass	m	Rotational inertia	I
Newton's second law	$F_{\text{net}} = ma$	Newton's second law	$\tau_{\rm net} = I\alpha$
Work	$W = \int F dx$	Work	$W = \int \tau d\theta$
Kinetic energy	$K = \frac{1}{2}mv^2$	Kinetic energy	$K = \frac{1}{2}I\omega^2$
Power (constant force)	P = Fv	Power (constant torque)	$P = \tau \omega$
Work-kinetic energy theorem	$W = \Delta K$	Work-kinetic energy theorem	$W = \Delta K$

ANGULAR MOMENTUM (SINGLE PARTICLE)

Linear Angular
$$\vec{F}$$
 \rightarrow $\vec{\tau} = \vec{r} \times \vec{F}$ $\vec{p} = m\vec{v}$ \rightarrow $\vec{l} = \vec{r} \times \vec{p}$

Angular momentum defined:
$$\vec{l_0} = \vec{r} \times \vec{p} = m(\vec{r} \times \vec{v})$$

In general, \vec{l} of the particle of mass m is defined about a point (O origin of \vec{r})

MAGNITUDE OF ANGULAR MOMENTUM

$$\vec{l} = \vec{r} \times \vec{p} = m(\vec{r} \times \vec{v})$$

 \vec{l} of particle A about point O

$$\ell = rmv \sin \phi$$
. $= rp_{\perp} = rmv_{\perp} = r_{\perp}p = r_{\perp}mv$

PURE ROTATION – SINGLE PARTICLE

Single particle in pure rotation about axis Oz (oriented out of page)

Another way to write \vec{l} in this case:

$$\overrightarrow{l_0} = I_0 \overrightarrow{\omega}$$

NEWTON'S SECOND LAW IN ANGULAR FORM FOR A SINGLE PARTICLE

$$\vec{l} = m(\vec{r} \times \vec{v})$$
 \Rightarrow $\frac{d\vec{l}}{dt} = m\left(\vec{r} \times \frac{d\vec{v}}{dt} + \frac{d\vec{r}}{dt} \times \vec{v}\right)$

$$\rightarrow \frac{d\vec{l}}{dt} = m(\vec{r} \times \vec{a} + \vec{v} \times \vec{v}) \quad \rightarrow \quad \frac{d\vec{l}}{dt} = m(\vec{r} \times \vec{a}) = (\vec{r} \times m\vec{a})$$

$$\overrightarrow{\tau_{O,net}} = \frac{d\overrightarrow{l_0}}{dt}$$

The (vector) sum of all the torques acting on a particle is equal to the time rate of change of the angular momentum of that particle. All taken with respect to point O.

ANGULAR MOMENTUM OF A SYSTEM OF PARTICLES

The **total angular momentum** \vec{l} of the system is the (vector) sum of the angular momenta \vec{l} of the individual particles (here with label *i*):

$$\vec{L} = \vec{l_1} + \vec{l_2} + \vec{l_3} + \dots + \vec{l_n} = \sum_{i=1}^{n} \vec{l_i}$$

With time, the angular momenta of individual particles may change because of interactions between the particles or with the outside.

$$\frac{d\vec{L}}{dt} = \sum_{i=1}^{n} \frac{d\vec{l}_i}{dt} = \sum_{i=1}^{n} \overline{\tau_{net,i}}$$

Therefore, the net external torque acting on a system of particles is equal to the time rate of change of the system's total angular momentum \vec{L} .

$$\overrightarrow{\tau_{O,net}} = \frac{d\overrightarrow{L_O}}{dt}$$

Newton's 2nd law in angular form for a system of particles

Analogy with Newton's 2nd law in linear form: F=dp/dt

CONSERVATION OF ANGULAR MOMENTUM

If total net torque is zero

If the net external torque acting on a system is zero, the angular momentum \vec{L} of the system is constant, no matter what changes take place within the system.

$$\overrightarrow{\tau_{net}} = \frac{d\overrightarrow{L}}{dt} = 0$$

$$\vec{L} = a constant$$

$$\overrightarrow{L_i} = \overrightarrow{L_f}$$
 (isolated system)

If net torque along axis z is zero

If the net external torque acting on a system is zero along a given axis z, the angular momentum L_z of the system is constant.

$$\tau_{z,net} = \frac{dL_z}{dt} = 0 \qquad \Rightarrow L_z = a \ constant$$

FORMULA SUMMARY

Torque:
$$\vec{\tau} = \vec{r} \times \vec{F}$$

Work (pure rotation):
$$W = \int_{\theta_i}^{\theta_f} \tau d\theta$$
 If τ is constant: $W = \tau (\theta_f - \theta_i)$ Power: $P = \frac{dW}{dt} = \tau \frac{d\theta}{dt} = \tau \omega$

W-K Theorem for
$$\Delta K = K_f - K_i = \frac{1}{2}I\omega_f^2 - \frac{1}{2}I\omega_i^2 = W_{i\to f}(\overline{\tau_{net}})$$

Angular momentum:
$$\vec{l} = \vec{r} \times \vec{p}$$

Newton's 2nd law: $\tau_{net} = \frac{d\vec{L}}{dt}$ Pure rotation: $\tau_{net} = I \frac{d\omega}{dt} = I\alpha$