

Nagoya University G30 Preliminary Lecture Series

Course III: Linear Algebra

Contents

Lesson 01 Basic Rules of Vectors

Lesson 02 Inner Product

Lesson 03 Vector Equations

Lesson 04 Basic Rules of Matrices

Lesson 05 Multiplication of Matrices

Lesson 06 Inverse Matrix and Simultaneous Equations

Lesson 07 Linear Transformation

Lesson 01 Basic Rules of Vectors

1A

- Definitions of vectors
- Basic rules
- Components of vectors

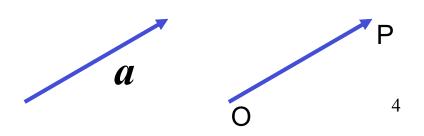
Scalars and Vectors

Scalar

- A scalar: a quantity described by a magnitude.
- Notation : normal italic type alphabet, Greek letters, etc. [Ex.] area A, temperature t, speed v, angle θ

Vector

- A vector : a quantity described by magnitude and direction.
 [Ex.] force, velocity
- A vector is commonly illustrated by "an arrow".
- Typical notation : \vec{a} , \vec{a} , OP
- The magnitude of a vector is denoted by $|m{a}|$ or a .



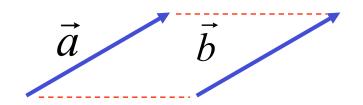
Basic Properties of Vectors

1. Equality

$$\vec{a} = \vec{b}$$

Same magnitude and direction

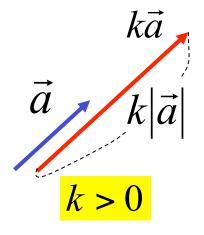
they are equal.

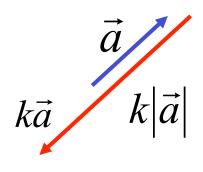


2. Scalar Multiplication

kā

k: a scalar





Basic Properties of Vectors

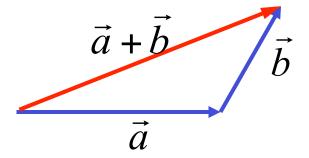
Contd.

3. Addition

Sum = the diagonal of the parallelogram

 $\vec{b} / \vec{a} + \vec{b} / \vec{a}$

Sum = the closing third side.

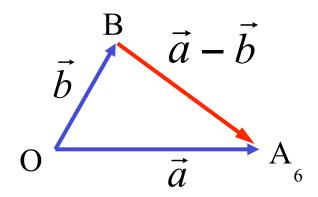


4. Subtraction

$$\vec{b}$$
 + \overrightarrow{BA} = \vec{a}

Therefore

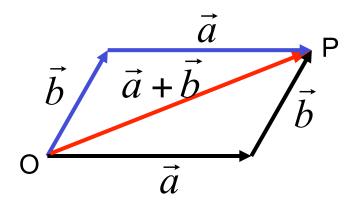
$$\overrightarrow{BA} = \overrightarrow{a} - \overrightarrow{b}$$



Basic Laws of Vectors

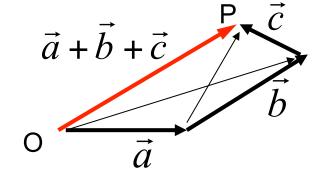
1. Commutative law

$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$



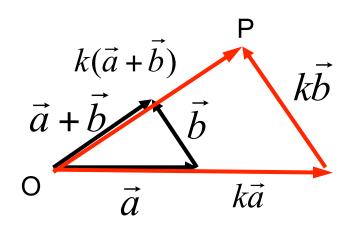
2. Associative law

$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$



3. Distributive law

$$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$$



Example

[Examples 1-1] Let $\vec{p} = 3\vec{a} + 2\vec{b}$ and $\vec{q} = -2\vec{a} + \vec{b}$. Answer the following questions. (1) Find \vec{x} which satisfies the equation . $3(\vec{x} - \vec{q}) = 2\vec{p} + \vec{x}$ (2) Find \vec{x} and \vec{y} which satisfy $2\vec{x} - 3\vec{y} = \vec{p}$ (i) $\vec{x} + \vec{y} = \vec{q}$ (ii)

Ans.

(1) Substituting \vec{p} and \vec{q} , we have

$$3\vec{x} - 3(-2\vec{a} + \vec{b}) = 2(3\vec{a} + 2\vec{b}) + \vec{x} \qquad \therefore \quad \vec{x} = \frac{7}{2}\vec{b}$$

(2) From (i) – (ii)×2, we have $-5\vec{y} = \vec{p} - 2\vec{q}$

$$\vec{y} = -\frac{1}{5}\vec{p} + \frac{2}{5}\vec{q} = -\frac{1}{5}(3\vec{a} + 2\vec{b}) + \frac{2}{5}(-2\vec{a} + \vec{b}) = -\frac{7}{5}\vec{a}$$

From (ii), we have

$$\vec{x} = \vec{q} - \vec{y} = (-2\vec{a} + \vec{b}) - (-\frac{7}{5}\vec{a}) = -\frac{3}{5}\vec{a} + \vec{b}$$

Exercise

[Ex.1-1] Find \vec{x} and \vec{y} which satisfy the following equation

$$3\vec{x} + 2\vec{y} = \vec{a} \qquad (i)$$

$$4\vec{x} - 3\vec{y} = \vec{b} \qquad (ii)$$

Ans.

Pause the video and solve the problem by yourself.

Answer to the Exercise

[Ex.1-1] Find \vec{x} and \vec{y} which satisfy the following equation

$$3\vec{x} + 2\vec{y} = \vec{a}$$

$$4\vec{x} - 3\vec{y} = \vec{b}$$

Ans.

From Eq.(i) ×3, we have $9\vec{x} + 6\vec{y} = 3\vec{a}$

From Eq.(ii) $\times 2$, we have $8\vec{x} - 6\vec{y} = 2\vec{b}$

Adding, we have $17\vec{x} = 3\vec{e}$

$$17\vec{x} = 3\vec{a} + 2\vec{b}$$
 $\therefore \vec{x} = \frac{3}{17}\vec{a} + \frac{2}{17}\vec{b}$

$$\vec{y} = -\frac{3}{2}\vec{x} + \frac{1}{2}\vec{a} = -\frac{3}{2}\left(\frac{3}{17}\vec{a} + \frac{2}{17}\vec{b}\right) + \frac{1}{2}\vec{a} = \frac{4}{17}\vec{a} - \frac{3}{17}\vec{b}$$

Lesson 01 Basic Rules of Vectors

1 B

Components of Vectors

Components of a Vector

Unit Vector

Vector whose length is 1

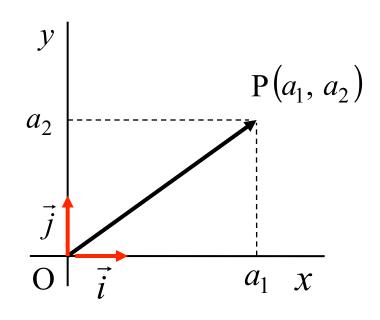
$$\vec{e} = \frac{\vec{a}}{|\vec{a}|} \qquad |\vec{e}| = 1$$

Basic Unit Vector

$$\vec{i} = (1,0)$$
 and $\vec{j} = (0,1)$

Components of Vector

$$\vec{a} = a_1 \vec{i} + a_2 \vec{j} = (a_1, a_2)$$
Component



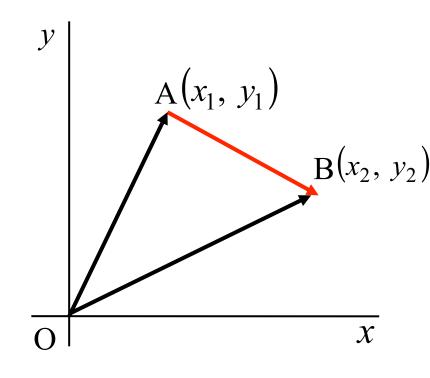
Vector Connecting Two Points

Vector Connecting A and B

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$= (x_2, y_2) - (x_1, y_1)$$

$$= (x_2 - x_1, y_2 - y_1)$$



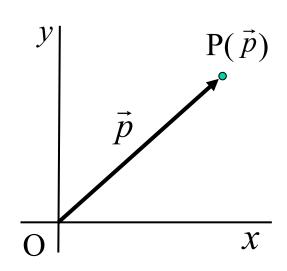
Length AB

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Position Vector

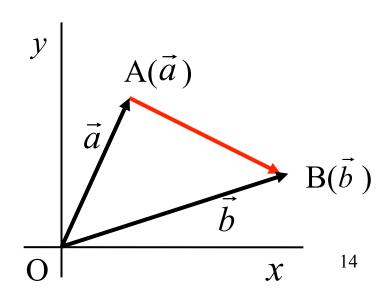
Position Vector

If we select the initial point of the vector at the origin, a point is designated by a vector.



Vector Connecting A and B

$$\overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}$$



Example

[Examples 1-2] Find the position vector of point C which divide the line connecting A(\vec{a}) and B(\vec{b}) internally in the ratio m: n

Ans.

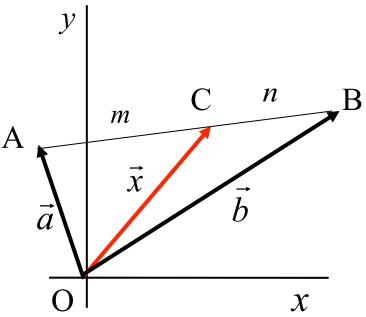
AC and CB have the same direction.

Magnitudes
$$|\overrightarrow{AC}| : |\overrightarrow{CB}| = m : n$$

Therefore

$$n(\vec{x} - \vec{a}) = m(\vec{b} - \vec{x})$$

$$\therefore \quad \vec{x} = \frac{n\vec{a} + m\vec{b}}{(m+n)}$$



Exercise

[Ex1-2] Find the position vector \vec{g} of the center of gravity of the Δ ABC. The position vectors of A, B, and C are \vec{a} , \vec{b} and \vec{c} . [Note] The center of gravity is given by the point which divide the line AM by the ratio 2:1 where M is the center of side BC.

Ans.

Pause the video and solve the problem by yourself.

Answer to the Exercise

[Ex1-2] Find the position vector \vec{g} of the center of gravity of the Δ ABC. The position vectors of A, B, and C are \vec{a} , \vec{b} and \vec{c} .

Ans.

The center of side BC is $\vec{m} = \frac{b + \vec{c}}{2}$

Since the center of gravity G divide the line AM internally in the ratio 2:1, we have

$$\vec{x} = \frac{\vec{a} + 2\vec{m}}{2 + 1} = \frac{\vec{a} + 2\left(\frac{\vec{b} + \vec{c}}{2}\right)}{3} = \frac{\vec{a} + \vec{b} + \vec{c}}{3}$$

