

Lesson 15 Linear Differential Equations (2)

15A

First Order Linear Differential Equation

First Order Linear D.E.

First order linear D.E.

$$y' + P(x)y = Q(x)$$

: Nonhomogeneous D.E.

When Q(x) = 0

$$y' + P(x)y = 0$$

: Homogeneous D.E.

How to solve first order linear D.E.

Step 1: Find the solution of homogeneous D.E.

(Since this homogeneous is a separable D. E., we can apply the previous process.)

Step 2: Find the solution of nonhomogeneous D.E. utilizing the result of the corresponding homogeneous equation

Solving Homogeneous D.E.

Homogeneous first order linear D.E.

$$y' + P(x)y = 0$$

Separate the variables

$$\frac{1}{y}dy = -P(x)dx$$

By integration

$$\int \frac{1}{y} dy = -\int P(x) dx \quad \therefore \quad \ln|y| = -\int P(x) dx + C_1$$

Therefore, the

$$y = Ce^{-\int P(x)dx}$$

Solving Nonhomogeneous D.E.

Nonhomogeneous D.E.

$$y' + P(x)y = Q(x)$$

Assumption

$$y = u(x)e^{-\int P(x)dx}$$
 Revise

Solution of the homogeneous D.E.

$$v = Ce^{-\int P(x)dx}$$

Substitution

$$\left[\frac{du}{dx}e^{-\int P(x)dx} - u(x)P(x)e^{-\int P(x)dx}\right] + P(x)u(x)e^{-\int P(x)dx} = Q(x)$$

$$\therefore \frac{du}{dx} = Q(x)e^{\int P(x)dx} \qquad \therefore u = \int Q(x)e^{\int P(x)dx} dx + C$$

General solution
$$y = \int (Q(x)e^{\int P(x)dx})dx + C e^{-\int P(x)dx}$$

Example

[Examples 15-1] Find the solution of y' - 2xy = 2x

Ans. First step:
$$\frac{dy}{dx} - 2xy = 0$$

$$\int \frac{dy}{y} = \int 2x dx \quad \text{i.} \quad \ln|y| = x^2 + C_1 \quad \text{i.} \quad y = e^{x^2 + C_1} = Ce^{x^2}$$

Second step: Put
$$y = u(x)e^{x^2}$$

$$\left\{ u'e^{x^2} + 2uxe^{x^2} \right\} - 2xy = 2x \quad \therefore \quad u'e^{x^2} = 2x \quad \therefore \quad u = \int 2xe^{-x^2} dx + C$$

After substitution, we have

$$\therefore u = \int 2xe^{-x^2} dx + C e^{x^2} = (-e^{-x^2} + C)e^{x^2} = Ce^{x^2} - 1$$

Exercise

[Ex.15-1] An object of mass m is dropped from a bridge. It is assumed that the air resistance CV proportional to the velocity v works. From Newton's Law, the equation of motion is given by $m\frac{dv}{dt} = -cv + mg$

Find the velocity v as a function of time t.

Ans.

Pause the video and solve the problem by yourself.

Answer to the Exercise

[Ex.15-1] An object of mass m is dropped from a bridge. It is assumed that the air resistance CV proportional to the velocity V works. From Newton's Law, the equation of motion is given by $m\frac{dv}{dt} = -cv + mg$ Find the velocity v as a function of time t

Ans.

Introducing
$$\gamma = \frac{c}{m}$$
, we have $\frac{dv}{dt} + \gamma v = g$

[Step 1]
$$\frac{dv}{dt} + \gamma v = 0 \qquad \therefore \int \frac{dv}{v} = -\gamma \int dt$$

$$\therefore \ln |v| = -\gamma t + c_1 \qquad \therefore v = e^{-\gamma t} e^{c_1} = C e^{-\gamma t}$$

Answer to the Exercise - Cont.-

[Step 2]

Assume the solution $v = u(t)e^{-\gamma t}$

$$v = u(t)e^{-\gamma t}$$

Substituting this, we have

$$(u'e^{-\gamma t} - u\gamma e^{-\gamma t}) + \gamma u e^{-\gamma t} = g \quad \therefore \quad u' = g e^{\gamma t} \qquad \therefore \quad u = g \int e^{\gamma t} dt$$

General solution

$$v = \left(g \int e^{\gamma t} dt\right) e^{-\gamma t} = \left(\frac{g}{\gamma} e^{\gamma t} + C\right) e^{-\gamma t} = \frac{g}{\gamma} + Ce^{-\gamma t}$$

Apply boundary condition v = 0 at t = 0

$$0 = \frac{g}{\gamma} + Ce^0 \quad \therefore C = -\frac{g}{b_1}$$

The solution is
$$v = \frac{g}{\gamma} - \frac{g}{\gamma} e^{-b_1 t} = \frac{gm}{c} (1 - e^{-\frac{c}{m}t})$$

Lesson 15 Second Order Differential Equations

15B

Second Order D.E. with Constant Coefficients

Second Order Linear D.E.

Second order D.E.

$$\frac{d^2y}{dx^2} + a\frac{dy}{dx} + by = f(x)$$

The general solution

$$y = y_h + y_p$$

General solution of the adjoint homogeneous D.E.

Particular solution of the original D.E.

Finding Solutions of the Homogeneous D.E.

The corresponding homogeneous D.E.

$$\frac{d^2y}{dx^2} + a\frac{dy}{dx} + by = 0$$

Assumed solution $y = Ce^{\lambda t}$

$$y = Ce^{\lambda t}$$

Substituting this, we have

$$C(\lambda^2 + a\lambda + b)e^{\lambda t} = 0$$

$$\therefore \quad \lambda^2 + a\lambda + b = 0 \quad \therefore \quad \lambda = \frac{a \pm \sqrt{b^2 - 4ac}}{2} \ (\equiv \lambda_1, \lambda_2)$$

General solution of a homogeneous equation

$$y = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$$

General Solutions of the Nonhomogeneous D.E.

The solution of nonhomogeneous D.E.

$$\frac{d^2y}{dx^2} + a\frac{dy}{dx} + by = f(x)$$

is given by

$$y = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t} + y_p$$

$$(y = y_p \text{ is a particular solution})$$

[Note] In order to understand the phenomena governed by the D.E., we must discuss the results corresponding to the following three cases.

- (1) λ_1 and λ_2 are two different real toots
- (2) λ_1 and λ_2 are two complex roots
- (3) λ_1 and λ_2 are a double root

Example

[Examples 15-2] Find the general solution of

$$\frac{d^2y}{dx^2} - 4y = \sin 3x$$

(1) Homogeneous equation is $\frac{d^2y}{dx^2} - 4y = 0$ Assume the solution as $y = Ce^{\lambda x}$

After substitution $C(\lambda^2 - 1)e^{\lambda x} = 0$ $\therefore \lambda = 2, -2$

$$\lambda = 2, -2$$

Solution
$$y = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$$

- (2) Assume the solution as $y_p = A \sin 3x$ After substitution $(-9-4)A\sin 3x = \sin 3x$ The particular solution $y_p = -\frac{1}{13}\sin 3x$
- (3) General solution

$$y = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t} - \frac{1}{13} \sin 3x$$