
1 1 

 
Lesson １４	

Differential Equations (1) 

１4A 
•  General introduction 
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Example : Free Falling Body  

Newton’s second law 

Differential equation relates the values  
of the function itself and its derivatives of various  
orders.    

Solve 

Example 14-1  Motion of a falling ball 

mg 
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Boundary condition  
  determines one solution. 
  (Special solution) 

Meaning of Differential Equation   
[Examples 14-2]  Investigate the D.E. 
  

dx
dy

x

y

dx
dy

x
y

gives a slope         at point (x, y) 

If the slopes are connected smoothly, 
the solution                          is obtained. 

Ans. 

222 Cyx =+
C(     :  Arbitrary constant) 

11, yyxx ==

( )11, yx

General solution 
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Some Terminologies on Differential Equations 

xyyy ++=+ʹ́ 21

xyy +=ʹD.E. which contains only first derivatives.  

D.E. which contains second derivatives (and possibly first 
derivatives also.)  

First order D.E. 

Second order D.E. 

(Ex.)  

(Ex.)  

Linear D.E. 
The general n-th order linear D.E. of the form 

)()()()( 12
)1()( xQyxPyxPyxPy n

n
n =+ʹ+++ − !

Nonlinear D.E. 
Differential equations which are not linear are called nonlinear D.E.  

(Ex.)  0sin5 =+ʹ́ θθ05 =+ʹ xyy
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How to Solve D.E. :  Simplest Case 

Simplest differential equations 
The solution is an antiderivative of           ,  
 

[Examples 14-3] Answer the following questions 
(1) Find the general solution of                     .  
(2) Find the particular solution satisfying the boundary condition                . 

(a) 

(b) The boundary condition is  

∴ ∴

)(xfy =ʹ
)(xf

dxxfy ∫= )(

3)0( =y

Cxdxxy +−=−= ∫ 2

2
7)7(

C+= 03

1 2 
x

y

: General solution 

3)0( =y
Ans. 

xy 7−=ʹ
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Exercise 

[Ex.14-1] Find the particular solution of the following D.E. 

                   (1)                                 ,  Boundary condition 

                   (2)                                 ,  Boundary condition  
  

Ans. 

xy 3cos=ʹ 0,0 == yx

Pause the video and solve the problem by yourself. 
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Answer to the Exercise 

[Ex.14-1] Find the particular solution of the following D.E. 

                   (1)                                 ,  Boundary condition 

                   (2)                                 ,  Boundary condition  
  

Ans. 

xy 3cos=ʹ 0,0 == yx

(1) Integrating both sides by x, we have ∴ Cxy += 5

Applying the boundary condition C+×= 052 ∴ 25 += xy

(2) xy 3cos=ʹ ∴ Cxy +=∴ 3sin
3
1

Applying the boundary condition 0,0 == yx

∴ xy 3sin
3
1

=

dxy ∫= 5

Cdxxy += ∫ 3cos
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Separable Differential Equations 
Separable D.E. 

)()( ygxf
dx
dy

=

Rewriting this, we have 

dxxfdy
yg

)(
)(

1
=

Integrating both sides, we have 

∫∫ = dxxfdy
yg

)(
)(

1

After integration, we have the solution (in the implicit expression) 
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Example 
[Examples 14-4]  Answer the following questions concerning     
                           
 (1) Find the general solution. 
 (2) Find the particular solution which passes                        . 

(1) Rewriting the given equation, we have 

∴

y
x

dx
dy

−=

1,0 == yx

Ans. xdxydy −=

∫∫ −= xdxydy ∴ 1
22

2
1

2
1 Cxy +−=

If we put                , we have the general solution  12CC = Cyx =+ 22

(2) Substituting                         , we have               . 1,0 == yx 2=C

Therefore,                                 . 122 =+ yx
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Exercise 
[Ex14-2]  Solve the following differential equation.  
                                             Boundary condition 
 

Ans. 

xy
dx
dy 26=

25
1,1 == yx

Pause the video and solve the problem by yourself. 
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Answer to the Exercise 
[Ex14-2]  Solve the following differential equation.  
                                             Boundary condition 
 

Rewriting the given equation, we have 

∴

Ans. 

xy
dx
dy 26=

25
1,1 == yx

xdxdy
y

61
2 =

By integrating this, we have  dxxdy
y ∫∫ = 61
2

Cx
y

+=− 231

Substituting the boundary condition, we have   28−=C
The particular solution is   

2831 2 −=− x
y 2328

1
x

y
−

=∴
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Homogeneous Differential Equations 
Homogeneous D.E.   

I am getting confused. 

⎟
⎠

⎞
⎜
⎝

⎛
=

x
yf

dx
dy

u
x
y
=

uxy =
dx
duxu

dx
dy

+=

( )uf
dx
duxu =+

( ) x
dx

uuf
du

=
−

 If we put  

then  

 A separable form  

By substitution, we have  

 Therefore,  

. 
∴

∴

 [ Note ] The following ordinary D.E. which has no term containing     alone  is 
   also called a homogeneous equation.  Their meanings are entirely different. 

0)()()( 12
)1()( =+ʹ+++ − yxPyxPyxPy n

n
n !

x
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Example 
[Examples 14-5]  Find the general solution of 
 

∴

Ans. 
xy
yxy

2

22 +
=ʹ

u
x
y
= xuy =

u
uuxu
2
1 2+

=ʹ+ dx
x

du
u
u

∫∫ −=
−

1
1

2
2

CeC =± 1 Cux =− )1( 2

Cxxy =− 22

Put                   then 

.After substitution, we have  

.  Put                    , we have  
xxy =− 22

( )
)/(2

/1 2

xy
xyy +

=ʹ.We can rewrite the equation to   

C
x
yx =

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−⎟
⎠

⎞
⎜
⎝

⎛ 1
2

∴ ∴

∴

When  1=C

1
2 ln1ln Cxu +−=−
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Exercise 
[Ex.14-3]  Find the general solution of 
 

Ans. 

x
yxy +

=ʹ

Pause the video and solve the problem by yourself. 
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Exercise 
[Ex.14-3]  Find the general solution of 
 

∴

Ans. 

u
x
y
= xuy =Put                   then 

.After substitution, we have  

.  By integrating this, we have 

∴

x
yxy +

=ʹ

uuxu +=ʹ+ 1 1=
dx
dux ∴ dx

x
du ∫∫ =

1

Cxu += ln Cx
x
y

+= ln


