

Lesson 14 Differential Equations (1)

14A

General introduction

Example: Free Falling Body

Example 14-1 Motion of a falling ball

Differential equation relates the values of the function itself and its derivatives of various orders.

Meaning of Differential Equation

[Examples 14-2] Investigate the D.E. $y' = -\frac{x}{y}$

Ans.

$$y' = -\frac{x}{y}$$
 gives a slope $\frac{dy}{dx}$ at point (x, y)

If the slopes are connected smoothly, the solution $x^2 + y^2 = C^2$ is obtained.

(C: Arbitrary constant)

General solution

Boundary condition $x = x_1, y = y_1$ determines one solution.

(Special solution)

Some Terminologies on Differential Equations

First order D.E.

D.E. which contains only first derivatives. (Ex.) y' = y + x

Second order D.E.

D.E. which contains second derivatives (and possibly first derivatives also.) (Ex.) $y'' + y = 1 + y^2 + x$

Linear D.E.

The general n-th order linear D.E. of the form

$$y^{(n)} + P_n(x)y^{(n-1)} + \dots + P_2(x)y' + P_1(x)y = Q(x)$$

Nonlinear D.E.

Differential equations which are not linear are called nonlinear D.E.

(Ex.)
$$yy' + 5x = 0$$

$$\theta'' + 5\sin\theta = 0$$

How to Solve D.E.: Simplest Case

Simplest differential equations y' = f(x)

 \implies The solution is an antiderivative of f(x),

$$y = \int f(x) dx$$
 : General solution

[Examples 14-3] Answer the following questions

- (1) Find the general solution of y' = -7x
- (2) Find the particular solution satisfying the boundary condition y(0) = 3.

Ans.

(a)
$$y = \int (-7x) dx = -\frac{7}{2}x^2 + C$$

(b) The boundary condition is x = 0, y = 3.

$$3 = 0 + C$$
 $y = -\frac{7}{2}x^2 + 3$

[Ex.14-1] Find the particular solution of the following D.E.

- (1) y'=5 , Boundary condition x=0, y=2
- (2) $y' = \cos 3x$, Boundary condition x = 0, y = 0

Ans.

Pause the video and solve the problem by yourself.

Answer to the Exercise

[Ex.14-1] Find the particular solution of the following D.E.

- (1) y'=5 , Boundary condition x=0, y=2
- (2) $y' = \cos 3x$, Boundary condition x = 0, y = 0

Ans.

(1) Integrating both sides by x, we have
$$y = \int 5dx$$
 : $y = 5x + C$

Applying the boundary condition $2 = 5 \times 0 + C$

$$2 = 5 \times 0 + C$$

$$\therefore y = 5x + 2$$

(2)
$$y' = \cos 3x$$
 \therefore $y = \int \cos 3x dx + C$

$$= \int \cos 3x dx + C \qquad \therefore y = \frac{1}{3} \sin 3x + C$$

Applying the boundary condition x = 0, y = 0

$$x = 0, y = 0$$

$$\therefore y = \frac{1}{3}\sin 3x$$

Lesson 14 Differential Equations

14B

Some Types of the First Order D.E.

Separable Differential Equations

Separable D.E.

$$\frac{dy}{dx} = f(x)g(y)$$

Rewriting this, we have

$$\frac{1}{g(y)}dy = f(x)dx$$

Integrating both sides, we have

$$\int \frac{1}{g(y)} dy = \int f(x) dx$$

After integration, we have the solution (in the implicit expression)

Example

[Examples 14-4] Answer the following questions concerning $\frac{dy}{dx} = -\frac{x}{2}$

$$\frac{dy}{dx} = -\frac{x}{y}$$

- (1) Find the general solution.
- (2) Find the particular solution which passes x = 0, y = 1.

Ans.

(1) Rewriting the given equation, we have ydy = -xdx

$$\therefore \int y dy = -\int x dx \qquad \therefore \qquad \frac{1}{2}y^2 = -\frac{1}{2}x^2 + C_1$$

If we put $C = 2C_1$, we have the general solution $x^2 + v^2 = C$

(2) Substituting x = 0, y = 1, we have C = 2.

Therefore, $x^2 + y^2 = 1$

[Ex14-2] Solve the following differential equation.

$$\frac{dy}{dx} = 6y^2x$$
 Boundary condition

$$x = 1, y = \frac{1}{25}$$

Ans.

Pause the video and solve the problem by yourself.

Answer to the Exercise

[Ex14-2] Solve the following differential equation.

$$\frac{dy}{dx} = 6y^2x$$

$$\frac{dy}{dx} = 6y^2x$$
 Boundary condition $x = 1, y = \frac{1}{25}$

Ans.

Rewriting the given equation, we have $\frac{1}{v^2}dy = 6xdx$

By integrating this, we have
$$\int \frac{1}{y^2} dy = \int 6x dx$$

$$\frac{1}{y} = 3x^2 + C$$

Substituting the boundary condition, we have C = -28

The particular solution is

$$-\frac{1}{y} = 3x^2 - 28 \qquad \therefore \qquad y = \frac{1}{28 - 3x^2}$$

Homogeneous Differential Equations

Homogeneous D.E.

$$\frac{dy}{dx} = f\left(\frac{y}{x}\right)$$

If we put $\frac{y}{x} = u$

then
$$y = ux$$
 \therefore $\frac{dy}{dx} = u + x \frac{du}{dx}$

I am getting confused.

By substitution, we have
$$u + x \frac{du}{dx} = f(u)$$

Therefore,
$$\frac{du}{f(u)-u} = \frac{dx}{x}$$
 \leftarrow A separable form

[Note] The following ordinary D.E. which has no term containing x alone is also called a homogeneous equation. Their meanings are entirely different.

$$y^{(n)} + P_n(x)y^{(n-1)} + \dots + P_2(x)y' + P_1(x)y = 0$$

13

Example

[Examples 14-5] Find the general solution of

$$y' = \frac{x^2 + y^2}{2xy}$$

Ans. We can rewrite the equation to $y' = \frac{1 + (y/x)^2}{2(y/x)}$

Put
$$\frac{y}{x} = u$$
 then $y = xu$

After substitution, we have

$$u + xu' = \frac{1 + u^2}{2u} \quad \therefore \quad \int \frac{2u}{u^2 - 1} du = -\int \frac{1}{x} dx$$

$$\therefore \quad \ln|u^2 - 1| = -\ln|x| + C_1$$

Put $\pm e^{C_1} = C$, we have $x(u^2 - 1) = C$

$$\therefore x \left\{ \left(\frac{y}{x} \right)^2 - 1 \right\} = C \qquad \therefore y^2 - x^2 = Cx$$

[Ex.14-3] Find the general solution of $y' = \frac{x + y}{y}$

$$y' = \frac{x + y}{x}$$

Ans.

Pause the video and solve the problem by yourself.

[Ex.14-3] Find the general solution of $v' = \frac{x + y}{y}$

$$y' = \frac{x + y}{x}$$

Ans.

Put
$$\frac{y}{x} = u$$
 then $y = xu$

After substitution, we have

$$u + xu' = 1 + u \qquad \therefore \quad x \frac{du}{dx} = 1 \qquad \therefore \qquad \int du = \int \frac{1}{x} dx$$

. By integrating this, we have

$$u = \ln|x| + C$$
 $\frac{y}{x} = \ln|x| + C$