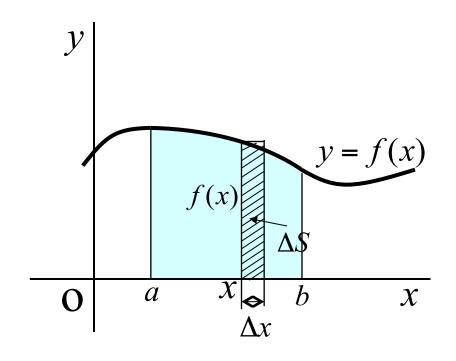


Lesson 12 Application of Integrals (1)

12A

Areas of plane regions

(Review) Area of a Plane Region



Area of the strp
$$\Delta S = f(x)dx$$
 where $f(x) > 0$

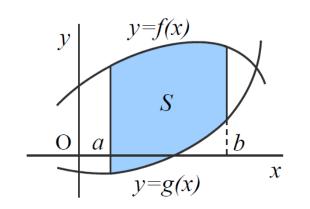
Total area over [a,b]

$$S \approx \sum f(x)\Delta x \rightarrow S = \int_a^b f(x)dx$$

Area Between Two Graphs

When $f(x) \ge g(x)$ in [a, b], area S is

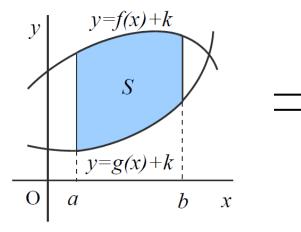
$$S = \int_{a}^{b} \{f(x) - g(x)\} dx$$

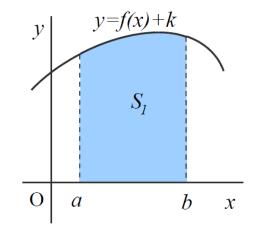


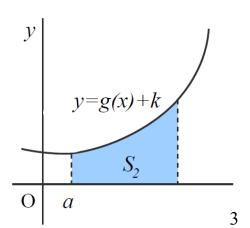
[Proof]

Consider
$$y = f(x) + k$$
 and $y = g(x) + k$

$$S = S_1 - S_2 = \int_a^b \{f(x) + k\} dx - \int_a^b \{g(x) + k\} dx = \int_a^b \{f(x) - g(x)\} dx$$



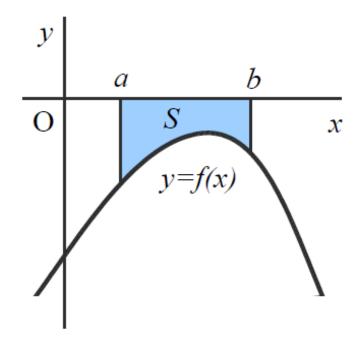




Case of a Negative Function

When f(x) < 0 in the domain [a, b]

$$S = \int_{a}^{b} \{0 - f(x)\} dx = -\int_{a}^{b} f(x) dx$$



Ahh! That's so easy!

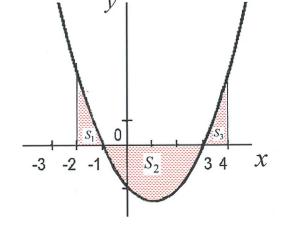
Example 12-1 Find the area between the graph of $y = x^2 - x - 2$ and the *x*-axis, from x = -2 to x = 3.

Ans.

$$y = x^2 - x - 2 = (x - 2)(x + 1) = 0$$

Let the areas be S_1 , S_2 and S_3

$$S_1 = \int_{-2}^{-1} (x^2 - x - 2) dx = \left[\frac{x^3}{3} - \frac{x^2}{2} - 2x \right]_{-2}^{-1} = 1.833$$



$$S_2 = -\int_{-1}^{2} (x^2 - x - 2) dx = 4.5$$

$$S_3 = -\int_2^3 (x^2 - x - 2) dx = 1.833$$

Therefore,
$$S = S_1 + S_2 + S_3 \approx 1.833 + 4.5 + 1.833 = 8.166$$

Example 12-2 Determine the area of the region enclosed by the functions

and

$$y = \sqrt{x}$$
 $y = x^2$

$$y = x^2$$

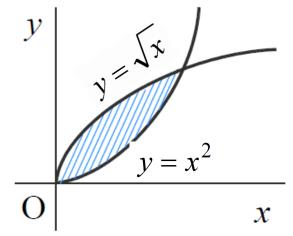
Ans.

The area is given by the blue region in the figure.

Cross points:

$$\sqrt{x} = x^2$$

$$x = x^4$$
, $\therefore x(x-1)(x^2 + x + 1) = 0$
(0,0), (1,1)

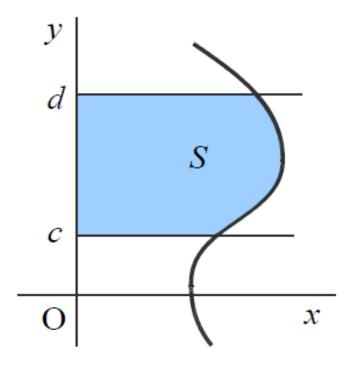


$$S = \int_0^1 (\sqrt{x} - x^2) dx = \left[\frac{2}{3} x^{\frac{3}{2}} - \frac{1}{3} x^3 \right]_0^1 = \frac{1}{3}$$

Area Between the graph and the y-Axis

The area between the graph x = g(y) and the *Y*-axis

$$S = \int_{c}^{d} g(y) dy$$



Ex.12-1 Find the area of the region enclosed by $y = \sin 2x$ and $y = \cos x$ in the domain $0 \le x \le \frac{\pi}{2}$.

Ans.

Pause the video and solve by yourself.

Answer to the Exercise

Ex.12-1 Find the area of the region enclosed by $y = \sin 2x$ and $y = \cos x$ in the domain $0 \le x \le \frac{\pi}{2}$.

Ans. We put $\sin 2x = \cos x$

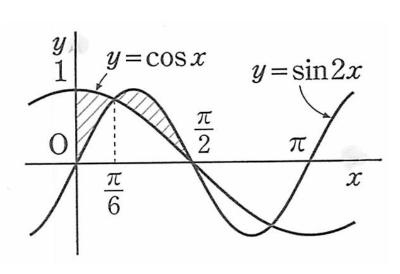
$$\therefore \cos x(2\sin x - 1) = 0,$$

$$\therefore \cos x = 0 \quad \text{or} \quad \sin x = \frac{1}{2}$$

$$\therefore x = \frac{\pi}{2}, \frac{\pi}{6}$$

$$S = \int_0^{\frac{\pi}{6}} (\cos x - \sin 2x) dx + \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (\sin 2x - \cos x) dx$$

$$= \left[\sin x - \frac{1}{2}\cos 2x\right]_0^{\frac{\pi}{6}} + \left[-\frac{1}{2}\cos 2x - \sin x\right]_{\frac{\pi}{6}}^{\frac{\pi}{2}} = \frac{1}{2}$$



Course II

Lesson 12 Application of Integrals (1)

12B

Volumes of Solids

Volumes of Solids



Volume of the slab

$$\Delta V \approx S(x) \Delta x$$

Total volume of the solid between x=a and x=b

$$V \approx \sum S(x)\Delta x \rightarrow V = \int_a^b S(x) dx$$

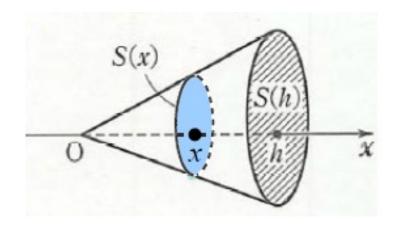
[Example 12-2]

Find the volume of a cone with bottom radius r and height h.

Ans.

Set the x-axis as shown in the figure.

Area of the bottom $S(h) = \pi r^2$



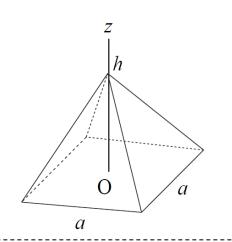
From
$$S(x): S(h) = x^2: h^2$$
, we have

$$S(x) = \frac{\pi r^2}{h^2} x^2$$

Therefore

$$V = \int_0^h \left(\frac{\pi r^2}{h^2} x^2 \right) dx = \frac{\pi r^2}{h^2} \left[\frac{x^3}{3} \right]_0^h = \frac{\pi}{3} r^2 h$$

Ex.12-2 Find the volume of the pyramid having a horizontal square cross section. The bottom side length is a and the height is h.



Ans.

Pause the video and solve by yourself.

Ex.12-2 Find the volume of the pyramid having a horizontal square cross section. The bottom side length is a and the height is .

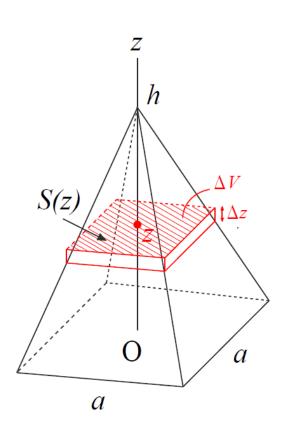
Ans. We consider the z-axis vertically.

The horizontal cross section at z:

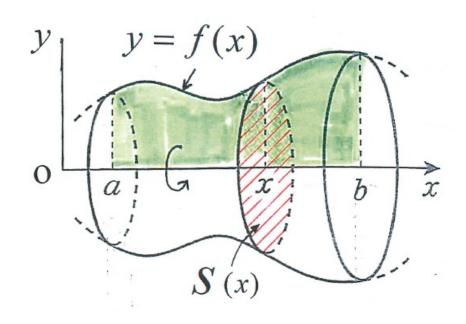
$$S(z): a^2 = (h-z)^2 : h^2$$

$$\therefore S(z) = \frac{a^2(h-z)^2}{h^2}$$

$$V = \int_0^h \frac{a^2 (h - z)^2}{h^2} dz = \frac{a^2}{h^2} \int_0^h (h^2 - 2hz + z^2) dz$$
$$= \frac{a^2}{h^2} \left[h^2 z - hz^2 + \frac{1}{3} z^3 \right]_0^h = \frac{1}{3} a^2 h$$



Volumes of Solids of Revolution



When the solid is generated by revolving a region about the x-axis

$$V = \int_{a}^{b} S(x)dx = \int_{a}^{b} \pi r^{2} dx = \int_{a}^{b} \pi f(x)^{2} dx$$

[Examples 12-3]

Find the volume of a sphere with radius r.

Ans.

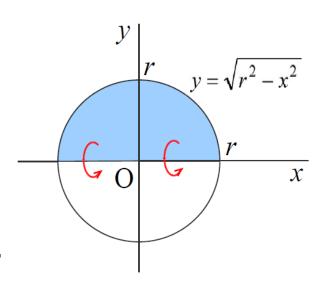
The upper half of the circle.

$$y = \sqrt{r^2 - x^2}$$

By rotating this blue area, we have a circle.

Volume of a circle

$$V = \int_{-r}^{r} \pi y^{2} dx = \int_{-r}^{r} \pi (r^{2} - x^{2}) dx$$
$$= \pi \left[r^{2} x - \frac{x^{3}}{3} \right]_{-r}^{r} = \frac{4}{3} \pi r^{3}$$



That makes sense!

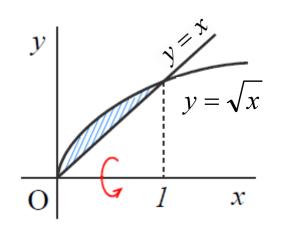
16

Ex.12-3 Find the volume of the solid made by rotating the region surrounded by $f(x) = \sqrt{x}$ and y=x.

Ans.

Pause the video and solve by yourself.

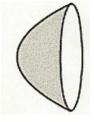
Ex.12-3 Find the volume of the solid made by rotating the region surrounded by $y = \sqrt{x}$ and y=x.



Ans.

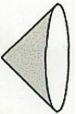
This volume can be obtained by subtracting B from A, where .

A



$$V_A = \pi \int_0^1 (\sqrt{x})^2 dx = \pi \left[\frac{1}{2} x^2 \right]_0^1 = \frac{1}{2} \pi$$

В



$$V_B = \pi \int_0^1 (x)^2 dx = \pi \left[\frac{1}{3} x^3 \right]_0^1 = \frac{1}{3} \pi$$

$$V = V_B - V_A = \frac{1}{3}\pi - \frac{1}{2}\pi = \frac{1}{6}\pi$$