

Lesson 10 Definite Integrals

10A

Area and Antiderivatives

Derivative of Area

Let the area of ABQP be S(x)

When x increases by h, the area increases by

$$dS = S(x+h) - S(x) \approx hf(x)$$

Derivative of S(x)

$$\frac{dS}{dx} = \lim_{h \to 0} \frac{S(x+h) - S(x)}{h} \approx f(x)$$

$$S'(x) = f(x)$$

Area function S(x) is one of antiderivatives of f(x).

Area and Indefinite integral

Let F(x) be an arbitrary antiderivative.

$$S(x) = F(x) + C$$

From the definition S(a) = 0 at x = a

$$\therefore 0 = F(a) + C \qquad \therefore C = -F(a)$$

Therefore S(x) = F(x) - F(a)

When x = b, the area is given by S = F(b) - F(a)

Definite Integral

F(b)-F(a) is called the definite integral of f(x) over [a,b] and written by $\int_a^b f(x) dx$ or $\Big[F(x)\Big]_a^b$

Definite integral

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Since
$$\left[F(x) + C \right]_a^b = \{ F(b) + C \} - \{ F(a) + C \}$$

$$= F(b) - F(a)$$

$$= \left[F(x) \right]_a^b$$

F(x) is an arbitrary antiderivative.

Properties of Definite Integrals

Linearity of the definite integrals

(1)
$$\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx$$

Reversing the integration

(3)
$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

Additivity for adjacent integrals

(4)
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Examples 13-1 Find the following definite integral

$$\int_{-2}^{4} (x^2 - 3x + 1) dx$$

Ans.

$$\int_{-2}^{4} (x^{2} - 3x + 1) dx = \int_{-2}^{4} x^{2} dx - 3 \int_{-2}^{4} x dx + \int_{-2}^{4} dx$$

$$= \left[\frac{x^{3}}{3} \right]_{-2}^{4} - 3 \left[\frac{x^{2}}{2} \right]_{-2}^{4} + \left[x \right]_{-2}^{4}$$

$$= \frac{4^{3} - (-2)^{3}}{3} - \frac{3\{4^{2} - (-2)^{2}\}}{2} + \{4 - (-2)\}$$

$$= 12$$

Examples 13-2 Find the following definite integrals.

(1)
$$\int_{-1}^{3} x \, dx - \int_{-1}^{1} x \, dx$$
 (2)
$$\int_{0}^{\frac{\pi}{2}} \sin 2\theta d\theta$$

Ans.

(1)
$$\int_{-1}^{3} x \, dx - \int_{-1}^{1} x \, dx = \int_{-1}^{3} x \, dx + \int_{1}^{-1} x \, dx$$
$$= \int_{1}^{3} x \, dx = \left[\frac{x^{2}}{2}\right]_{1}^{3} = 4$$

(2)
$$\int_0^{\frac{\pi}{2}} \sin 2\theta d\theta = \left[\frac{-\cos 2\theta}{2} \right]_0^{\frac{\pi}{2}} = \frac{-(-1)}{2} - \frac{(-1)}{2} = 1$$

Ex.10-1 Find the following definite integral.

$$\int_0^1 (x^2 - x) dx + \int_1^3 (x^2 - x) dx$$

Ans.

Pause the video and solve by yourself.

Answer to the Exercises

Ex.10-1 Find the following definite integrals

$$\int_0^1 (x^2 - x) dx + \int_1^3 (x^2 - x) dx$$

Ans.

$$\int_{0}^{1} (x^{2} - x) dx + \int_{1}^{3} (x^{2} - x) dx = \int_{0}^{3} (x^{2} - x) dx$$
$$= \left[\frac{x^{3}}{3} - \frac{x^{2}}{2} \right]_{0}^{3} = \frac{9}{2}$$

Lesson 10 Definite Integrals (1)

10B

- Integration by substitution
- Integration by parts

Integration by Substitution

Integration by Substitution (1)

For the function
$$x = g(t)$$

If
$$a = g(\alpha)$$
 and $b = g(\beta)$

then
$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(g(t))g'(t)dt$$

Integration by Substitution (2)

If
$$\alpha = u(a)$$
 and $\beta = u(b)$

then
$$\int_{a}^{b} f(u(x))u'(x)dx = \int_{\alpha}^{\beta} f(u)du$$

[Examples 13-4] Find the following definite integral by putting 2x+1=t $\int_0^1 (2x+1)^3 dx$

Ans.

Put
$$2x+1=t$$

Then

$$x = \frac{t-1}{2}, dx = \frac{1}{2}dt$$

x	0 1
t	$1 \longrightarrow 3$

Therefore

$$\int_0^1 (2x+1)^3 dx = \int_1^3 t^3 \cdot \frac{1}{2} dt = \frac{1}{2} \int_1^3 t^3 dt = \frac{1}{2} \left[\frac{t^4}{4} \right]_1^3 = 10$$

Examples 10-5 Evaluate the following integral

$$\int_0^2 x^2 \sqrt{x^3 + 1} dx$$

Ans.

We put $u = x^3 + 1$, then $du = 3x^2 dx$

Therefore,

$$\int_0^2 x^2 \sqrt{x^3 + 1} dx = \int_1^9 \sqrt{u} \left(\frac{1}{3} du\right) = \frac{1}{3} \int_1^9 u^{\frac{1}{2}} du = \frac{1}{3} \left[\frac{2}{3} u^{\frac{3}{2}}\right]_1^9 = \frac{52}{9}$$

Integration by Parts

We learned

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

In the case of definite integral

$$\int_a^b f(x)g'(x)dx = \left[f(x)g(x)\right]_a^b - \int_a^b f'(x)g(x)dx$$

Example

$$\int_{0}^{\frac{\pi}{2}} x \cos x dx = \int_{0}^{\frac{\pi}{2}} x (\sin x)' dx = \left[x \sin x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} (x)' \frac{\sin x dx}{\sin x dx}$$

$$g'(x) = \frac{\pi}{2} - \int_{0}^{\frac{\pi}{2}} \sin x dx = \frac{\pi}{2} - \left[-\cos x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 1$$

Ex.13-2 Find the following definite integrals

$$\int_{-3}^{-1} \frac{dx}{(2x+1)^3}$$

Ans.

Pause the video and solve by yourself.

Ex.13-2 Find the following definite integrals

$$\int_{-3}^{-1} \frac{dx}{(2x+1)^3}$$

Ans. We can solve this as follows. Put 2x + 1 = t

then
$$x = \frac{t-1}{2}$$
, $dx = \frac{1}{2}dt$

The new limits of integration are

$$t(-3) = -5$$
 and $t(-1) = -1$

. Therefore,

$$\int_{-3}^{-1} \frac{dx}{(2x+1)^3} = \int_{-5}^{-1} t^{-3} \cdot \frac{1}{2} dt = \frac{1}{2} \int_{-5}^{-1} t^{-3} dt = \frac{1}{2} \left[\frac{t^{-2}}{-2} \right]_{-5}^{-1} = -\frac{6}{25}$$

Ex.13-3 Find the following definite integrals

$$\int_0^2 x^2 e^x dx$$

Ans.

Pause the video and solve by yourself

Ex.13-3 Find the following definite integrals

$$\int_0^2 x^2 e^x dx$$

Ans.

In this exercise, we apply the formula twice as follows.

$$\int_0^2 x^2 e^x dx = \left[x^2 e^x \right]_0^2 - \int_0^2 2x e^x dx = 4e^2 - 2\left(\left[x e^x \right]_0^2 - \int_0^2 e^x dx \right)$$
$$= 4e^2 - 2\left(2e^2 - \left[e^x \right]_0^2 \right) = 4e^2 - 4e^2 + 2\left(e^2 - 1 \right) = 2\left(e^2 - 1 \right)$$