

Lesson 6 Applications of Derivatives to Equations and Inequality

6A

Graphs and Equations

Graphs and Equations (Case with No Parameter)

Equation

$$f(x) = g(x)$$

The roots of this equation are given by the coordinates of the cross points of the following graphs.

$$y = f(x)$$
 and $y = g(x)$

Technique

- When the equation f(x) = g(x) does not include a parameter, we investigate the cross points of the graph y = f(x) g(x) and the \mathcal{X} -axis.
- In other words, we solve for the zeros of f(x) g(x).

Intermediate Value Theorem

Intermediate Value Theorem

Let the curve represented by y = f(x) be continuous on the interval [a, b] and m be a number between f(a) and f(b). Then, there must be at least one value $\mathcal C$ within [a, b] such that f(c) = m.

[Note]

In case that the function increases or decreases monotonically in [a, b], then the number c is unique.

[Examples 6-1] Find the number of the real roots of the following equation.

$$x^3 = 3x - 1$$

Ans.

We put
$$y = x^3 - 3x + 1$$

Then $y' = 3x^2 - 3 = 3(x+1)(x-1)$
 $y' = 0$ at $x = -1, +1$

X		-1		+1	
<i>y</i> '	+	0	-	0	+
\overline{y}	1	3		-1	*

This graph crosses x-axis at three points. Therefore, this equation has three real roots

Graphs and Equations (Case with a Parameter)

Equation

$$f(x) = g(x,k)$$

Technique

Suppose that the equation has the form

$$f(x) = k \cdot g(x) \qquad \Longrightarrow \qquad -\frac{f(x)}{g(x)} = k \quad (g(x) \neq 0)$$

Illustrate graphs

$$y = -\frac{f(x)}{g(x)}$$

$$y = k$$

Find cross-points

[Examples 6-2] Find the range of parameter α when the following a cubic equation has three real roots. $x^3 + 3x^2 - \alpha = 0$

Ans. After rearrangement

$$x^3 + 3x^2 = a$$

About the function

$$y = x^{3} + 3x^{2}$$
$$y' = 3x^{2} + 6x = 3x(x+2)$$

x	••••	-2	••••	0	••••
<i>y'</i>	+	0	1	0	+
у		L.Max	1	L.Min.	7

From the graph, we have

0 < a < 4

[Examples 6-3] Investigate the number of the roots of the following equation.

$$e^x = x + a$$

Ans.

$$y = e^x - x$$

$$\therefore y' = e^x - 1$$

$$y' = 0$$
 at $x = 0$

X		0	
y'	_	0	+
\overline{y}		+1	7

Number of roots

Zero when a < 0

One when a = 1

Two when a > 1

Exercises

[Ex.6-1] Let m be a real constant. Investigate the relationship between and the number of the cross points of $y = x^3 - x - 1$ and y = 2x + m

Ans.

Pause the video and solve the problem by yourself.

Exercises

[Ex.6-1] Let m be a real constant. Investigate the relationship between and the number of the cross points of $y = x^3 - x - 1$ and y = 2x + m

Ans. Put
$$x^3 - x - 1 = 2x + m$$

 $\therefore x^3 - 3x - 1 = m$

We consider two functions.

$$y = x^3 - 3x - 1 \quad \text{and} \quad y = m$$

From the former

$$y' = 3x^2 - 3 = 3(x - 1)(x + 1)$$

\boldsymbol{x}		- 1		+1	
y'	+	0	1	0	+
\overline{y}		+1		-3	

Number of roots

One when m < -3, 1 < mTwo when m = -3, 1Three when -3 < m < 1

Lesson 6 Applications of Derivatives to Equations and Inequality

6B

Graphs and Inequalities

Graphs and Inequality (Case with No Parameter)

Inequality

$$f(x) > g(x)$$

The solutions of this inequality are given by the domain in the x-axis where the graphs of y = f(x) is larger than that of y = g(x).

Technique

Illustrate the graph of y = f(x) - g(x) and find the domain where y > 0 holds.

[Examples 6-5] Prove the following inequality.

$$x - 1 < \frac{1}{3}x^3 \qquad \text{where} \quad x > 0$$

Ans.

Put
$$y = \frac{1}{3}x^3 - x + 1$$

$$y' = x^2 - 1 = (x - 1)(x + 1)$$

X	0		+1	
y'	_	_	0	+
\overline{y}	1		$\frac{1}{3}$	

This function $y = \frac{1}{3}x^3 - x + 1$ has the minimum value $\frac{1}{3}$ at x = 1.

Since y > 0 in the domain x > 0, we find

$$x-1 < \frac{1}{3}x^3$$
 in $x > 0$

[Examples 6-6] Prove the following inequality.

$$e^x > 1 + x$$
 where $x > 0$

Ans.

Put
$$y = e^x - (1 + x)$$

$$y' = e^x - 1 > 0$$
 for $x > 0$

increases monotonically.

$$y = 0$$
 at $x = 0$

X	0	
<i>y</i> '	0	+
<i>y</i>	0	

From this table $e^x > 1 + x$ in x > 0

Graphs and Equations (Case with a Parameter)

Problem and Equation

$$f(x) > g(x,k)$$

PROBLEM: Find value of k which satisfy this equation.

Technique

In case of
$$f(x) > kg(x)$$
 Rearrange $\frac{f(x)}{g(x)} > k$ $(g(x) > 0)$

$$\frac{f(x)}{g(x)} > k \quad (g(x) > 0)$$

Illustrate graphs of

$$y = \frac{f(x)}{g(x)}$$

$$v = k$$

Determine k which satisfy $\frac{f(x)}{g(x)} > k$

$$\frac{f(x)}{g(x)} > k$$

[Examples 6-7] Find the range of the parameter α which satisfy the following inequality. $\alpha x \ge \ln x$ (x > 0)

Ans. Rearrangement.
$$a \ge \frac{\ln x}{x}$$

Plot
$$y = \frac{\ln x}{x}$$

$$\therefore y' = \frac{\frac{1}{x}x - \ln x \cdot 1}{x^2} = \frac{1 - \ln x}{x^2}$$

$$y' = 0$$
 at $x = e$

X	0 < x < e	e	<i>e</i> < <i>x</i>
y'	+	0	
y		1/ <i>e</i>	/

Answer

$$a \ge \frac{1}{e}$$

Exercises

[Ex.6-2] Prove the following inequality

$$x^3 - 9x + 27 \ge 3x^2 \quad \text{where} \quad x \ge 0$$

Ans.

Pause the video and solve the problem by yourself.

Answer to the Exercises

[Ex.6-2] Prove the following inequality

$$x^3 - 9x + 27 \ge 3x^2 \quad \text{where} \quad x \ge 0$$

Ans.

We put
$$y = x^3 - 3x^2 - 9x + 27$$

Then
$$y' = 3x^2 - 6x - 9 = 3(x+1)(x-3)$$

$$y' = 0$$
 at $x = -1, 3$

X	0		3	
y'	<u> </u>	_	0	+
\overline{y}	27		0	

From this table $x^3 - 3x^2 - 9x + 27 \ge 0$, that is, $x^3 - 9x + 27 \ge 3x^2$ in the domain $x \ge 0$