

Lesson 5 Derivatives of Logarithmic Functions and Exponential Functions

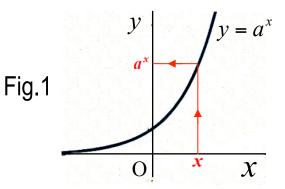
5A

Derivative of logarithmic functions

Review of the Logarithmic Function

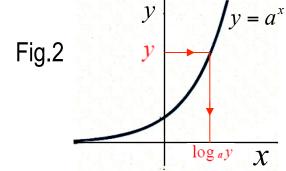
Exponential function

$$y = a^x \quad (a > 0, \ a \neq 1)$$



Logarithmic function

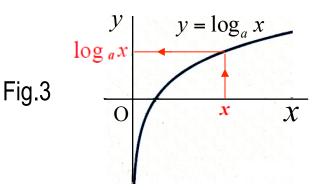
$$y = a^x$$



We replace the notation

$$x = a^y \iff y = \log_a x$$

$$y = \log_a x$$



Derivative of the Logarithmic Function

From the definition

$$(\log_a x)' = \lim_{h \to 0} \frac{\log_a (x+h) - \log_a x}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \log_a \left(1 + \frac{h}{x}\right) = \lim_{h \to 0} \left\{\frac{1}{x} \cdot \frac{x}{h} \log_a \left(1 + \frac{h}{x}\right)\right\}$$
We put $\frac{h}{x} = k$. When $h \to 0$, $k \to 0$.
$$(\log_a x)' = \lim_{k \to 0} \left\{\frac{1}{x} \cdot \frac{1}{k} \log_a (1+k)\right\}$$
?

$$= \frac{1}{x} \lim_{k \to 0} \left\{ x \mid k \right\}^{\frac{1}{k}} = \frac{1}{x} \log_a \left[\lim_{k \to 0} (1 + k)^{\frac{1}{k}} \right]$$

Napier's Constant

Trial

k	$(1+k)^{\frac{1}{k}}$	k	$(1+k)^{\frac{1}{k}}$
0.1	2.59374	-0.1	2.86797 · · · · ·
0.01	2.70481	-0.01	2.73199
0.001	2.71692	-0.001	2.71964 · · · · ·
0.0001	2.71814	-0.0001	2.71841
0.00001	2.71826	-0.00001	2.71829 · · · · ·

We expect that $(1+k)^{\frac{1}{k}}$ approaches one value as $k \longrightarrow 0$

Napier's Constant

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = 2.718281828459045 \cdots$$

Important Mathematical Constants

"π=3.1415..." was known 4000 years ago "e=2.7182..." was found in 17th century

Natural Logarithm

Then

$$(\log_a x)' = \frac{1}{x} \log_a e = \frac{1}{x \log_e a}$$

If the base is e, we have

$$(\log_e x)' = \frac{1}{x} \log_e e = \frac{1}{x}$$

Natural logarithm is the logarithm to the base e.

Notation:
$$\log_e x \rightarrow \ln x$$

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}, \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$$

Examples

[Example 5.1] Find the derivative of the following functions.

(1)
$$y = \ln 2x$$
, (2) $y = \log_2(3x + 2)$, (3) $y = x \ln 3x$

Ans.

(1)
$$y' = \frac{1}{2x} \cdot (2x)' = \frac{2}{2x} = \frac{1}{x}$$

(2)
$$y' = \frac{1}{(3x+2)\ln 2} (3x+2)' = \frac{3}{(3x+2)\ln 2}$$

(3)
$$y' = x' \ln 3x + x(\ln 3x)' = \ln 3x + x \cdot \frac{3}{3x} = \ln 3x + 1$$

Examples

[Example 5.2] Calculate the money which you can receive one year later using various compound systems. The principal is 10000 yen. (1) Annual interest is 100%. (2) Half a year interest is 50%, (3) Monthly interest is 100/12%, (4) Daily interest is 100/360%.

Ans.

(1)
$$10000 \times (1+1)^1 = 20,000$$
 yen

(2)
$$10000 \times (1+1/2)^2 = 22,500$$
 yen

(3)
$$10000 \times (1+1/12)^{12} = 26{,}130$$
 yen

(4)
$$10000 \times (1 + 1/365)^{365} = 27,148$$
 yen

[Note] Napier's Constant

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e = 2.7182$$

Exercise

[Ex.5.1] Find the derivatives of the following functions.

(1)
$$y = (\ln x)^2$$
, (2) $y = x \ln x$, (3) $y = \log_{10} x$

Pause the video and solve the problem by yourself.

Answer to the Exercise

[Ex.5.1] Find the derivatives of (1)
$$y = (\ln x)^2$$
 and (2) $y = \ln(x^3 + 1)$

Ans.

(1)
$$\frac{d}{dx}(\ln x)^2 = 2\ln x \cdot \frac{d}{dx}\ln x = \frac{2\ln x}{x}$$

(2)
$$\frac{d}{dx}(x \ln x) = (x)' \cdot \ln x + x \cdot (\ln x)' = \ln x + x \cdot \frac{1}{x} = \ln x + 1$$

(3)
$$\log_{10} x = \frac{\ln x}{\ln 10}$$

$$\frac{d}{dx}\log_{10} x = \frac{d}{dx}\frac{\ln x}{\ln 10} = \frac{1}{\ln 10}\frac{d}{dx}\ln x = \frac{1}{(\ln 10)x}$$

Lesson 5 Derivatives of Logarithmic Functions and Exponential Functions

5B

Derivative of exponential functions

Derivative of Inverse Functions

Let f and g be inverse functions. Then

$$y = f(x) \longleftrightarrow x = g(y)$$

Differentiate both sides of (1) by \mathcal{Y} and from the chain rule, we have

$$1 = \frac{df(x)}{dy} = \frac{df(x)}{dx}\frac{dx}{dy} = \frac{df(x)}{dx}\frac{dg(y)}{dy}$$

$$1 = \frac{df(x)}{dx}\frac{dg(y)}{dy}$$

$$1 = \frac{df(x)}{dx}\frac{dg(y)}{dy}$$

Therefore

$$\frac{df(x)}{dx} = \frac{1}{\left(\frac{dg(y)}{dy}\right)} \quad \text{or} \quad \frac{\frac{dy}{dx} = \frac{1}{\left(\frac{dx}{dy}\right)}}$$

Derivative of the Exponential Function

Exponential function of base e

$$y = f(x) = e^x \longleftrightarrow x = g(y) = \ln y$$

Therefore, from the previous slide we have

$$\frac{dy}{dx} = \frac{df(x)}{dx} = \frac{1}{\left(\frac{dg(y)}{dy}\right)} = \frac{1}{\left(\frac{1}{y}\right)} = y$$

$$\frac{d}{dx}(e^x) = e^x$$

Case
$$y = a^x$$

If $a = e^x$, then $x = \ln a$. Therefore

$$y = a^x = \left(e^{\ln a}\right)^x = e^{x \ln a}$$

From the Chain Rule

$$\frac{d}{dt}(a^{x}) = \frac{d}{dt}(e^{x \ln a}) = e^{x \ln a} \frac{d}{dt}(x \ln a) = a^{x} \ln a$$

$$\frac{d}{dt}(a^x) = a^x \ln a$$

Examples

[Example 5.3] Find the derivative of the following functions.

(1)
$$y = e^{2x}$$
, (2) $y = a^{-2x}$

Ans.

(1) Chain rule

$$y' = e^{2x} \cdot (2x)' = 2e^{2x}$$

(2) Chain rule

$$y' = (a^{-2x} \log a) \cdot (-2x)' = -2a^{-2x} \log a$$

Exercise

[Ex.5.2] Find the derivatives of the following functions.

$$(1) \quad y = x a^x$$

$$(2) \quad y = 2^{\ln x}$$

(1)
$$y = x a^x$$
 (2) $y = 2^{\ln x}$ (3) $y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

Pause the video and solve the problem by yourself.

Answer to the Exercise

[Ex.5.2] Find the derivatives of the following functions.

(1)
$$y = x a^x$$
 (2) $y = 2^{\ln x}$ (3) $y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

(1) Product rule

$$y' = (x)'a^x + x(a^x)' = a^x + x \cdot a^x \log a = a^x (1 + x \log a)$$

(2) Chain rule

$$y' = 2^{\ln x} \ln 2 \cdot (\frac{1}{x}) = \frac{2^{\ln x} \ln 2}{x}$$

(3) Quotient rule

$$y' = \frac{(e^x + e^{-x})^2 - (e^x - e^{-x})^2}{(e^x + e^{-x})^2} = \frac{4}{(e^x + e^{-x})^2}$$