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Lesson ４	

Derivatives of Trigonometric Functions 　	
 

                  ４A 
•  Derivative of Sine Function 
•  Limit of 
 
•  Derivatives of Basic Trigonometric Function 
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Derivative of Sine Function 

xxf sin)( =

)(xf

Variation of slopes Cosine ? 

Derivative by definition 

h
xfhxfxf

h

)()(lim)(
0

−+
=ʹ

→ h
xhx

h

sin)sin(lim
0

−+
=

→

h
xhxhx

h

sinsincoscossinlim
0

−+
=

→

⎟
⎠

⎞
⎜
⎝

⎛ −
−=

→ h
hx

h
hx

h

cos1sinsincoslim
0



3 

                                      Limit of  xx /sin
Consider a sector with central angle   x

Compare the areas of △OAB, sector OAB, and △OAT  
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Derivative of Sine FunctionーCont. 
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Example  

[Example 4-1] Derive the derivative of              and                    .                                            xcos
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Ans. 

xtan

(1)  From the triangle in the right side 
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Summary of Derivatives of Tri. Functions 

(1)  The basic trigonometric derivatives (Memorize!) 

x
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(2) Other standard relationships  
      ( Derive from (1) if necessary) 
 
 
 
 
 
[ note ]  
These formula are valid only when the angle      is measured in radians.   
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Example 

[Example 4.2] Find the derivatives of the following functions: 

                              (1)                                  (2)                                                           xy 2cos= xxxy cossin +=

Ans. 
(1) Chain rule 
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Exercise 

[Ex.4.1] Find the derivatives of the following functions: 

       (1)                                 (2)                                   (3)  
 

2sin axy =
x

y
tan
1

= ⎟
⎠

⎞
⎜
⎝

⎛ +=
62

cos πxy

Pause the video and solve the problem by yourself. 
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Answer to Exercise 

[Ex.4.1] Find the derivatives of the following functions: 

       (1)                                 (2)                                   (3)  
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Lesson ４	

Derivatives of Trigonometric Functions 　	
 

                  ４B 
•  Derivatives and Motions 
•  Position, Velocity and Acceleration 
•  Simple Harmonic Motion 

Course II 
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Velocity and Acceleration 

Its position is given by      
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Point P is moving on the straight line : 
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Example 

[ Example 4-3 ]　The position  of the mass moving on the    -axis is  
                           given by  
                                                . 
(1)  Find the velocity and the acceleration at               . 
(2)  Investigate the motion during 
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Simple Harmonic Motion 

Vertical position : )sin( αω += tAy
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Exercise 

[Exercise.4.2] Point P is moving on the x-axis. Its position is given by  

                              . Find the time when the point has the maximum velocity 

and its maximum velocity.  

ttx cos2 +=

Pause the video and solve the problem by yourself. 



15 

Answer to the Exercise 

[Exercise.4.2] Point  P is moving on the x-axis. Its position is given by  

                              . Find the time when the point has the maximum velocity 

and its maximum velocity.  

ttx cos2 +=

Ans. 

Velocity t
dt
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Maximum velocity occurs at 
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Maximum velocity is 3. 


