Course II

1

Lesson 2 Derivative and Graphs

2A

Tangent Lines to a Graph of a Function

Equation for a Tangent Line

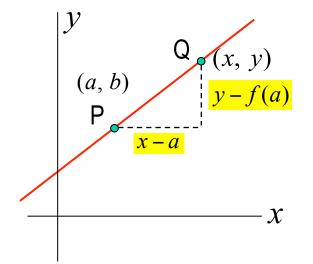
The straight line

The straight line through P(a, b) with slope m

$$m = \frac{y - b}{x - a}$$

Therefore

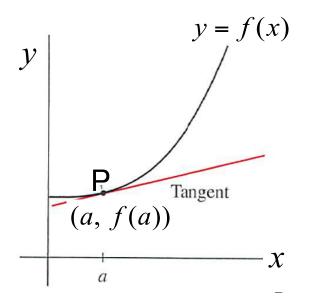
$$y - b = m(x - a)$$



The tangent line

The tangent line to the graph of y = f(x)at point (a, f(a)) is

$$y - f(a) = f'(a)(x - a)$$



Examples

[Examples 2-1] Find an equation of the tangent line to the graph $y = f(x) = x^2 + 1$ at x = 1.

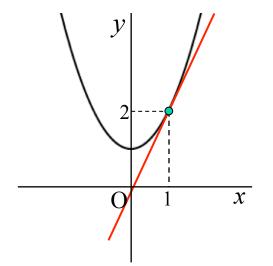
Ans. The \mathcal{Y} -coordinate at x = 1 is f(1) = 2

Since
$$f'(x) = 2x$$
 we have $f'(1) = 2$

Therefore,

$$y - 2 = 2(x - 1)$$

$$\therefore \quad y = 2x$$



Examples

[Examples 2-2] Find the equations and contact points of the tangent lines which contact with $y = x^2 + 4$ and pass (1, 1).

Ans.

Let the contact point be (a, a^2+4) The derivative function f'(x) = 2x

The tangent line is

$$y - (a^2 + 4) = 2a(x - a)$$

Since this line pass (1,1)

$$1 - (a^{2} + 4) = 2a(1 - a)$$

∴ $a^{2} - 2a - 3 = 0$, ∴ $a = -1$, 3

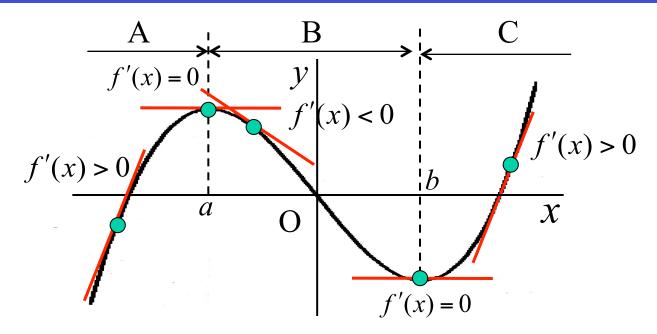
 $(a, a^{2}+4)$ 4 (1, 1) 0 x

4

When a = -1

contact point (-1, 5), tangent line y = -2x + 3When a = 3contact point (3, 13), tangent line y = -6x + 5

Behavior of graphs based on its derivatives



In open domains A and C :

 $f'(x) < 0 \rightarrow f(x)$ is increasing. In open domain B :

 $f'(x) > 0 \rightarrow f(x)$ is decreasing.

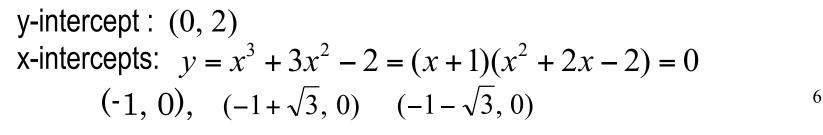
Example

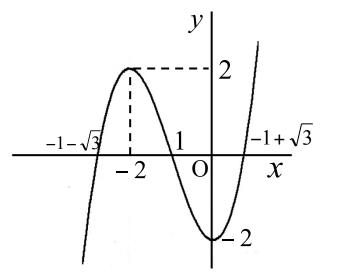
[Examples 2-3] Investigate the change of the function $y = x^3 + 3x^2 - 2$. and illustrate the graph.

Derivative function $y' = 3x^2 + 6x$ Horizontal tangent line

$$y' = 3x(x+2) = 0$$
 $x = -2, 0$
 $y' > 0$ in $x < -2, x > 0$
 $y' < 0$ in $-2 < x < 0$

x		-2		0	
<i>y</i> ′	+	0	_	0	+
y	7	2	1	-2	/





Exercise

[Exercise 2-1] About the graph y = x³ - 2x² - 3x, answer the following questions.
(1) Find the equation of the tangent line at (-1, 0).
(2) Find the cross-point of the graph and this tangent line. (Hint : The cross-point of y = f(x) and y = ax + b is given by the roots of f(x) = ax + b)

Ans.

Pause the video and solve the problem by yourself.

Answer to the Exercise

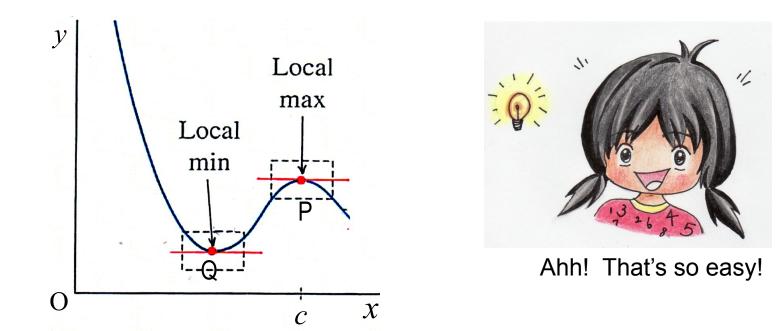
[Exercise 2-1] About the graph $y = x^3 - 2x^2 - 3x$, answer the following questions. (1) Find the equation of the tangent line at (-1, 0). (2) Find the cross-point of the graph and this tangent line. Ans. The derivative function $y' = 3x^2 - 4x - 3$ \therefore f'(-1) = 4(1) Tangent line y - 0 = 4(x + 1) $\therefore y = 4x + 4$ (2) Cross point of the tangent line and the curve $x^{3} - 2x^{2} - 3x = 4x + 4$ By factoring $(x+1)^2(x-4) = 0$ 4 X Therefore, x = 4The cross-point is (4, 20). 8

Course II

Lesson 2 Derivative and Graphs

- **2B**
- Local Extrema
- Global Extrema
- Second derivative test

Local Exrema



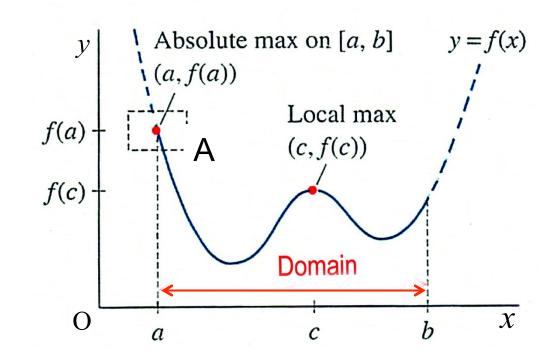
Local Extrema

• The function has a local maximum (local minimum) at x = c

if f(c) is the maximum (minimum) value in a neighborhood around c.

•If f(c) is a local extrema then f'(c) = 0

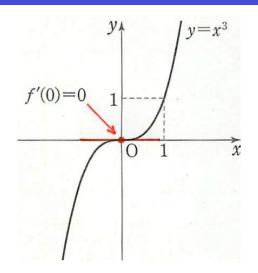
Global Extrema



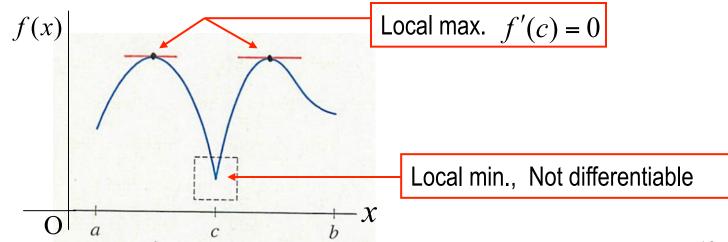
- Absolute maximum (or global maximum) is the maximum value in the whole domain [a, b].
- Absolute minimum (or global minimum) is the minimum value in the whole domain [a, b]. 11

Comments

(1) That the slope is zero f'(c) = 0 does not necessarily mean that the point is a local max./min. point.

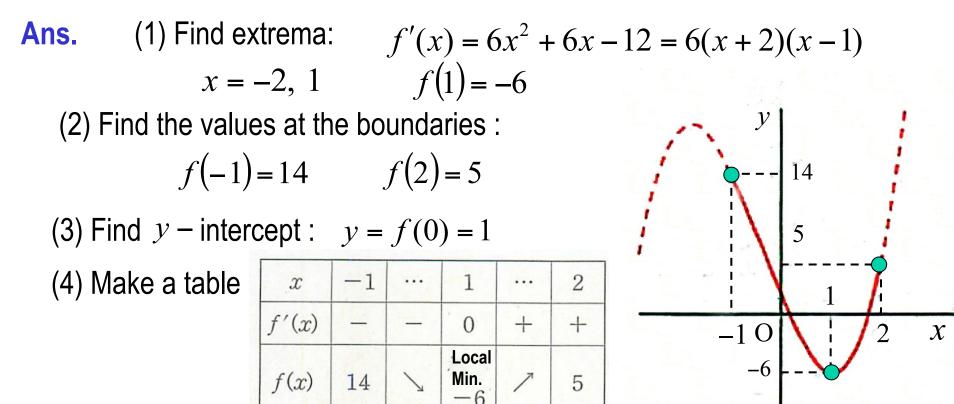


(2) A number *c* in the domain of f(x) is called a critical point if either f'(c) = 0 or f'(c) does not exist.



Example

[Examples 2-4] Find the maximum and minimum values of $f(x) = 2x^3 + 3x^2 - 12x + 1$ in the domain $-1 \le x \le 2$.



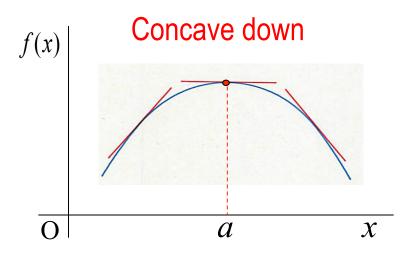
(5) Illustrate the graph

(6) Find the max. and min. values : Max. value 14 (at x=-1), Min. value -6 (at x=1)

Shape of a graph and Second Derivative

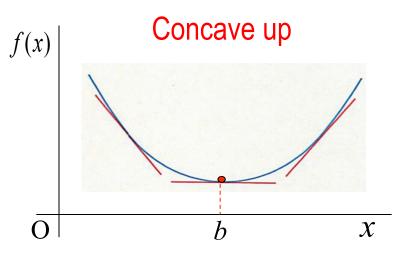
Shape of a graph

Local maximum



$$f'(x) > 0 \rightarrow f'(a) = 0 \rightarrow f'(x) < 0$$

At x = a, slope decreases f''(a) < 0



Local minimum

$$f'(x) < 0 \rightarrow f'(b) = 0 \rightarrow f'(x) > 0$$

At x = a, slope increases f''(b) > 0

Second Derivative Test

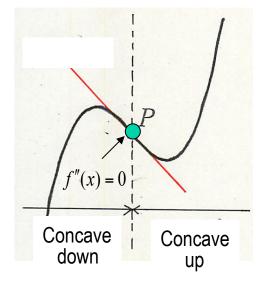
Second derivative test

Suppose that f'(c) = 0 at x = c.

- If f''(c) > 0 then f(x) is a local minimum at x = c.
- If f''(c) < 0 then f(x) is a local maximum at x = c.
- If f''(x) = 0 then the situation is inconclusive.

Inflection Point

The point where the concavity of the graph changes from up to down or vice versa is called an inflection point.

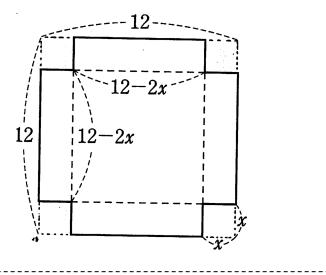


$$y = x^4$$
 L.Min.
 $y = -x^4$ L.Max.
 $y = x^3$ Inflec.

f''(0) = 0

Exercise

[Exercise 3.2] A square cup was made by cutting the four corners of a thick square paper as shown in the Figure. When dos the volume of this cup becomes maximum ?



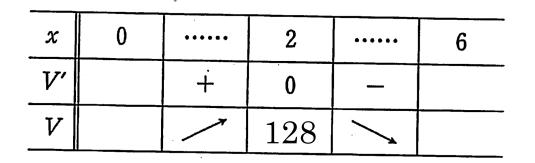
Ans.

Pause the video and solve the problem by yourself.

Answer to the Exercise

[Exercise 3.2] A square cup was made by cutting the four corners of a thick square paper as shown in the Figure. When dos the volume of this cup becomes maximum ?

- Ans. The side length of the squares cut off from the corner : X Then,
 - the volume
 - Condition 0 < x < 6
 - The derivative V' = 12(x-2)(x-6)



$$V = (12 - 2x)^2 x = 4(x^3 - 12x^2 + 36x)$$

