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Course II : Calculus 
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What is Calculus ?　	

Calculus is a branch of mathematics. 
   • functions, • limits, • derivatives, • integrals, • power series 
 
Calculus is the study of change. 
   cf. • Geometry is the study of shape. 
        • Algebra is the study of operation. 
 
Calculus is a gateway to advanced mathematics. 
        • We must study and understand completely. 
 
Calculus has wide applications in 
        • science,  • engineering,  •economics, •biology 
 
Calculus has two branches 
       • differential calculus,  • integral calculus,  
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Lesson 1 

Limit of Functions and Derivatives 
 

            １A 
• Limit of a function 

Course II 
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Definition of a Limit 

If a function 　 　　can be made to be as close 
to 　　as desired by making  　 sufficiently  
close to    , we say that 
 “the limit of 　　　, as     approaches     , is      “ 
and we write as follows  
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Limit of a Function 

The limit of                   as     approaches 2 is 4	2)( xxf = x

2)( xxf =[Example] 
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○ For the limit of a function to exists, the left-hand and right-hand limits 
      must be equal, that is  
                                   and  

Several Comments about the Limit 
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Example 	

Example 1.1  Find the limit value of the following function.                                                   
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Ans. 

ax =
○ Even if the function has not a value at  
                ,  the limit may exist . 

Indeterminate Form  

     The forms                                                        , etc.  are called indeterminate                                                              
 
forms because they do not give enough information to determine values.                                  
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Example 	

Example 1.2  Find the limit value of the following function.                                                   
 
 

Ans. 

Means to find a limit of an Indeterminate Form 0/0  

(1)  Case of Polinomial → Factor them 
(2)  Case of Irrational Function → Multiply the conjugate 
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Example 	

ba
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Example 1.3  Determine the values of       and       so that the following 
expression holds.                                               
 
 

Ans. 

When               ,  then                                and      1→x 022 →−+ xx babaxx ++→++ 12

In order for limit to exist,                     must be zero. 
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Exercise 

[ Exercise 1.1 ]　Determine the values of       and        so that the  
following relationship holds. 
 
 

a b
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Ans. 

Pause the video and try to solve by yourself 
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Answer to the Exercise 

[ Exercise 1.1 ]　Determine the values of       and        so that the  
following relationship holds. 
 
 

a b
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Ans. 

When               ,  then                        and      1→x

In order to exist a limit value 1,                           
Substituting this, we have 
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Lesson 1 

Limit of Functions and Derivatives 
 

            １B 
•  Derivatives of Functions 
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Average Rate of Change 	

The slope x
y
Δ
Δ
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Definition of a Derivative 

The slope at point A (the tangent line T ) can be  
obtained by making point  B approach point A . 
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That makes sense! 
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How to Find the Derivative  
[Example 1-4 ] About the function  
(1)  Find the average rate of change between               and             .              
(2)  Find the instantaneous rate of change at             .  
(3)  Find the point where the instantaneous rate of change is equal to the  
       average rate of change between                and              . 

2=x1=x

(1) 

(2) 

1=x 2=x
Ans. 

(3)  Using the results of (1) and (2), we put  
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Derivative as a Function 

Let the number 　　varies and replace  it  by     .  a x

h
xfhxfxf

h
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)(xf ʹ is called the derivative of  

or the derivative function of 
( because it has been “derived” from           . )   )(xf

Alternative notation x

)(xf

[note] 
The definition         is read as :   “the derivative with respect to    ”,     “       
by      ”,    “      over       ”  or  simply “             “.                
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How to Find a Derivative Function 
[Example 1-4 ] Find the derivative function of   
                   (1)                      (2)                          (3)                  .   3)( xxf =

Formula 
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Higher Derivatives 

Since            is a function, it also has its own derivative which is denoted by )(xf ʹ

: The second derivative function )()( )2(
2
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We can continue 
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=ʹʹ́= : The third derivative function 

The process of finding a derivative function is called differentiation. 
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Example 

[Example 1-5 ]   If                       , find and interpret  xxxf −= 3)( )(xf ʹ́

Using the formula                            , we get 

xxf
xxf
6)(
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•            is the slope of the curve 

•            is the rate of change of 

)(xf ʹ́ )(xfy ʹ=
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These derivatives are illustrated in the 
Right-hand side. 
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Exercise 

[ Exercise 1.2 ]　Function  
Satisfy the conditions                ,                  and  
                    .   Find the constants            and       .  
 
 
 

Ans. 

Pause the video and try to solve by yourself 
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Answer to the Exercise 

[ Exercise 1.2 ]　Function  
Satisfy the conditions                ,                  and  
                    .   Find the constants            and       .  

Ans. 
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