

Course II: Calculus

What is Calculus?

Calculus is a branch of mathematics.

• functions, • limits, • derivatives, • integrals, • power series

Calculus is the study of change.

- cf. Geometry is the study of shape.
 - Algebra is the study of operation.

Calculus is a gateway to advanced mathematics.

We must study and understand completely.

Calculus has wide applications in

science, • engineering, •economics, •biology

Calculus has two branches

differential calculus,
 integral calculus,

Contents

Lesson 01 Limit of Functions and Derivatives **Lesson 02** Derivative and Graphs **Lesson 03** Differentiation Formulas **Lesson 04** Derivatives of Trigonometric Functions **Lesson 05** Derivatives of Logarithmic Functions and Exponential **Functions Lesson 06** Applications of Derivatives to Equations and Inequality **Lesson 07** Application to Physics **Lesson 08** Approximation of a Function **Lesson 09** Antiderivatives **Lesson 10** Definite Integrals **Lesson 11** Estimating Area by Rectangles **Lesson 12** Application of Integrals (1) **Lesson 13.** Application of Integrals (2) **Lesson 14.** Differential Equations (1) **Lesson 15.** Differential Equations (2)

Lesson 1 Limit of Functions and Derivatives

1A

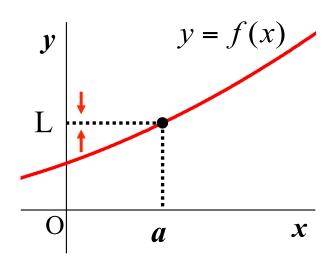
Limit of a function

Definition of a Limit

Definition of a Limit

If a function f(x) can be made to be as close to L as desired by making x sufficiently close to a, we say that "the limit of f(x), as x approaches a, is L "and we write as follows

$$\lim_{x \to a} f(x) = L$$

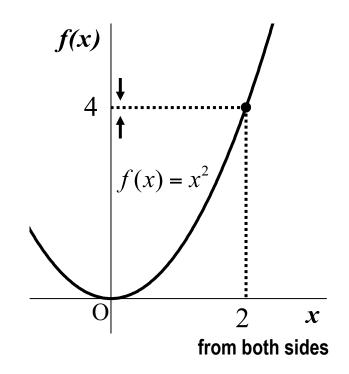


We can also write $f(x) \to L$ as $x \to a$ and read "f(x) approaches L as x approaches a.

Limit of a Function

[Example]
$$f(x) = x^2$$

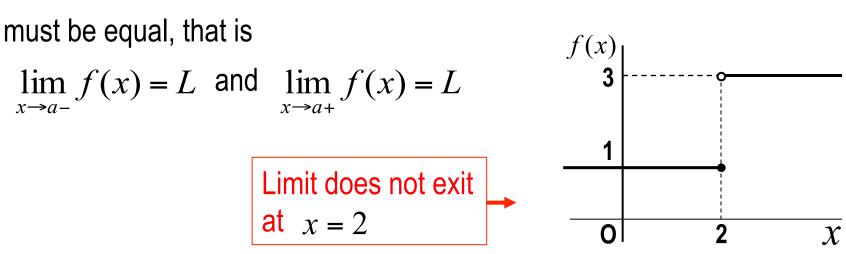
\mathcal{X}	f(x)	\mathcal{X}	f(x)
1.0	1.000000	3.0	9.000000
1.5	2.250000	2.5	6.250000
1.8	3.240000	2.2	4.840000
1.9	3.610000	2.1	4.410000
1.99	3.960100	2.01	4.040100
1.999	3.996001	2.001	4.004001



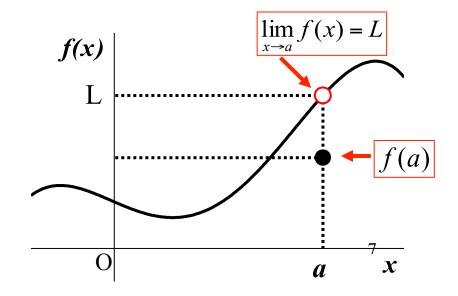
The limit of $f(x) = x^2$ as x approaches 2 is 4

Several Comments about the Limit

For the limit of a function to exists, the left-hand and right-hand limits



o $\lim_{x\to a} f(x) = L$ is not always equal to f(a)



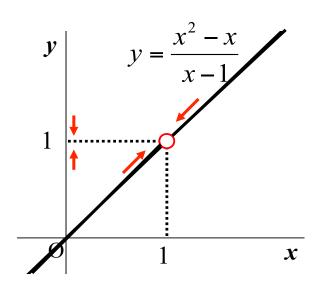
Example 1.1 Find the limit value of the following function.

$$\lim_{x \to 1} \frac{x^2 - x}{x - 1}$$

Ans.

$$\lim_{x \to 1} \frac{x^2 - x}{x - 1} = \lim_{x \to 1} \frac{x(x - 1)}{x - 1} = \lim_{x \to 1} x = 1$$

• Even if the function has not a value at x = a, the limit may exist.



Indeterminate Form

The forms 0^0 , $\frac{0}{0}$, 1^{∞} , $\infty - \infty$, $\frac{\infty}{\infty}$, $0 \times \infty$, ∞^0 , etc. are called indeterminate

forms because they do not give enough information to determine values. 8

Example 1.2 Find the limit value of the following function.

$$\lim_{x \to 1} \frac{\sqrt{x-1} - 1}{x}$$

Ans.

$$\lim_{x \to 1} \frac{\sqrt{x+1} - 1}{x} = \lim_{x \to 1} \frac{\left(\sqrt{x+1} - 1\right)\left(\sqrt{x+1} + 1\right)}{x\left(\sqrt{x+1} + 1\right)} = \lim_{x \to 1} \frac{\left(x+1\right) - 1}{x\left(\sqrt{x+1} + 1\right)}$$
$$= \lim_{x \to 1} \frac{1}{\left(\sqrt{x+1} + 1\right)} = \frac{1}{2}$$

Means to find a limit of an Indeterminate Form 0/0

- (1) Case of Polinomial → Factor them
- (2) Case of Irrational Function → Multiply the conjugate

Example 1.3 Determine the values of a and b so that the following expression holds. $x^2 + x - 2$

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 + ax + b} = 1$$

Ans.

When $x \to 1$, then $x^2 + x - 2 \to 0$ and $x^2 + ax + b \to 1 + a + b$ In order for limit to exist, 1 + a + b must be zero. $\therefore b = -a - 1$ Substituting this, we have

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 + ax + b} = \lim_{x \to 1} \frac{(x - 1)(x + 2)}{(x - 1)(x + a + 1)} = \lim_{x \to 1} \frac{(x + 2)}{(x + a + 1)} = \frac{3}{a + 2}$$

Therefore,

$$\frac{3}{a+2} = 1 \quad \therefore \quad a = 1 \text{ and } \quad b = -2$$

Exercise

[Exercise 1.1] Determine the values of a and b so that the following relationship holds.

$$\lim_{x \to 1} \frac{ax^2 + bx + 1}{x - 1} = 3$$

Ans.

Pause the video and try to solve by yourself

Answer to the Exercise

[Exercise 1.1] Determine the values of a and b so that the following relationship holds.

$$\lim_{x \to 1} \frac{ax^2 + bx + 1}{x - 1} = 3$$

Ans.

When $x \to 1$, then $x - 1 \to 0$ and $ax^2 + bx + 1 \to a + b + 1$ In order to exist a limit value 1, a + b + 1 = 0 $\therefore b = -a - 1$ Substituting this, we have

$$\lim_{x \to 1} \frac{ax^2 + bx + 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(ax - 1)}{x - 1} = \lim_{x \to 1} (ax - 1) = a - 1$$

Therefore,

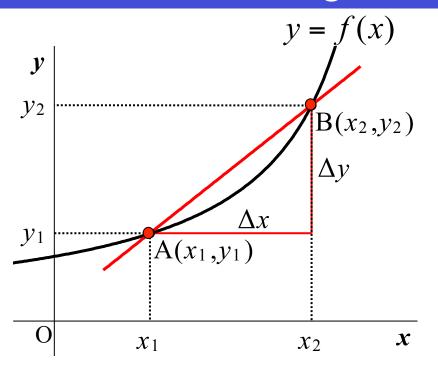
$$a-1=3$$
 . Namely, $a=4$ and $b=-5$

Lesson 1 Limit of Functions and Derivatives

1B

Derivatives of Functions

Average Rate of Change



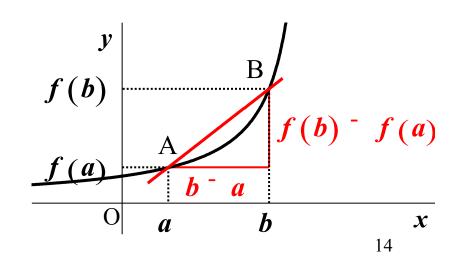
Increments

$$\Delta x = x_2 - x_1$$
$$\Delta y = y_2 - y_1$$

The slope
$$\frac{\Delta y}{\Delta x}$$

Average Rate of Change

$$\frac{\Delta y}{\Delta x}$$
 or $\frac{f(b) - f(a)}{b - a}$



Definition of a Derivative

Derivative

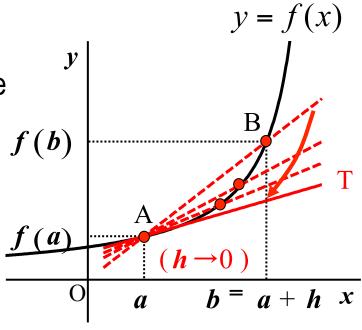
The slope at point A (the tangent line T) can be obtained by making point B approach point A.

$$\lim_{b \to a} \frac{f(b) - f(a)}{b - a} = f'(a)$$

This is called the derivative of f(x) at a

Putting b = a + h, we also have

$$\lim_{h\to 0} \frac{f(a+h) - f(a)}{h} = f'(a)$$



How to Find the Derivative

[Example 1-4] About the function $f(x) = x^2$

- (1) Find the average rate of change between x = 1 and x = 2.
- (2) Find the instantaneous rate of change at x = a
- (3) Find the point where the instantaneous rate of change is equal to the average rate of change between x = 1 and x = 2.

Ans. (1)
$$\frac{f(2) - f(1)}{2 - 1} = 4 - 1 = 3$$

(2)
$$f'(a) = \lim_{h \to 0} \frac{(a+h)^2 - a^2}{h} = \lim_{h \to 0} (2a+h)$$
$$= 2a$$

(3) Using the results of (1) and (2), we put 2a = 3

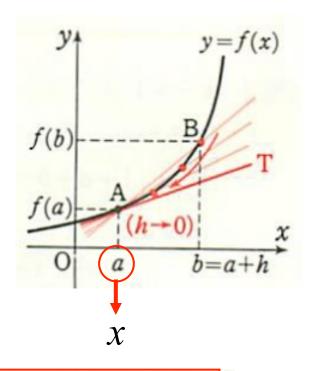
$$\therefore a = \frac{3}{2}$$

Derivative as a Function

Let the number a varies and replace it by x.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

f'(x) is called the derivative of f(x) or the derivative function of f(x) (because it has been "derived" from f(x).)



Alternative notation

$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = Df(x) = D_x f(x)$$

[note]

The definition $\frac{dy}{dx}$ is read as: "the derivative with respect to x", " by ", dx over " of x simply " dy" dx

How to Find a Derivative Function

[Example 1-4] Find the derivative function of

(1)
$$f(x) = x$$
 (2) $f(x) = x^2$ (3) $f(x) = x^3$

Ans. Definition
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

(1)
$$f'(x) = \lim_{h \to 0} \frac{(x+h) - x}{h} = \lim_{h \to 0} (1) = 1$$

(1)
$$f'(x) = \lim_{h \to 0} \frac{(x+h) - x}{h} = \lim_{h \to 0} (1) = 1$$

(2) $f'(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} (2x+h) = 2x$

(3)
$$f'(x) = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h} = \lim_{h \to 0} (3x^2 + 3xh + h^2) = 3x^2$$

Formula

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

Higher Derivatives

Since f'(x) is a function, it also has its own derivative which is denoted by

$$\frac{d^2y}{dx^2} = f''(x) = f^{(2)}(x)$$
: The second derivative function

We can continue

$$\frac{d^3y}{dx^3} = f'''(x) = f^{(3)}(x)$$
: The third derivative function

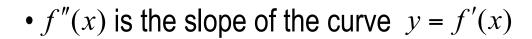
The process of finding a derivative function is called differentiation.

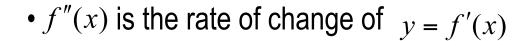
[Example 1-5] If $f(x) = x^3 - x$, find and interpret f''(x)

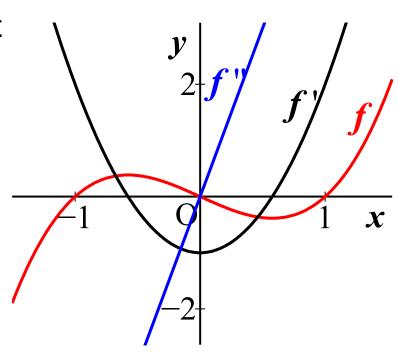
Using the formula $\frac{d}{dx}(x^n) = nx^{n-1}$, we get

$$f'(x) = 3x^2 - 1$$
$$f''(x) = 6x$$

These derivatives are illustrated in the Right-hand side.

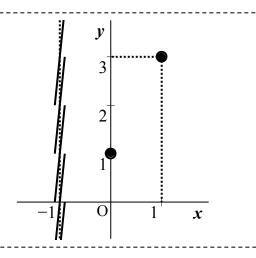






Exercise

[Exercise 1.2] Function $f(x) = x^3 + ax^2 + bx + c$ Satisfy the conditions f(1) = 3, f(0) = 1 and f'(-1) = 16. Find the constants a, b and c.



Ans.

Pause the video and try to solve by yourself

Answer to the Exercise

[Exercise 1.2] Function $f(x) = x^3 + ax^2 + bx + c$ Satisfy the conditions f(1) = 3, f(0) = 1 and f'(-1) = 16. Find the constants a, b and c.

Ans.

The derivative function is

$$f'(x) = 3x^2 + 2ax + b$$

Given condition

$$f(1) = 1 + a + b + c = 3$$
$$f(0) = c = 1$$
$$f'(-1) = 3 - 2a + b = 16$$

From these equations

$$a = -4$$
, $b = 5$, $c = 1$

