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•  Distance Between Two Points 
•  Division of a Line Segment 
•  Straight Lines 

Course I 



2 

Distance Formula 

　　　　　　　　　  Distance Formula 
     When two points                   and                    are given, the distance  
between these points is given by 
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Division of a Line Segment 

Internal Division Point 　	
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Example 
[ Example 14.1]  Find the point C which is located on the   -axis and has 
equal distances from points A(-1, 3) and B(2, 4). 

Ans. 
Let the coordinates of point C be            .    
Then 
 
 
Square both sides 
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Straight Line 

Various Forms 

General form of a straight line 
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(1) Point-slope form 
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Straight Line   - Cont. 

(3) Line through two points                and ),( 11 yx ),( 22 yx
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Example (Intercept-Intercept Form) 
[ Example 14.2]  Find the expression of the straight line which passes 
                           two points (4, 0) and (0, -3).          

Ans. From the expression mentioned above, we have 
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Then we have  

(4) Intercept-intercept form 
                When a straight line intersects the    -axis at     
            and the     -axis at    ,  it is expressed as    
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Exercise 

Ans. 

[ Exercise 14.1]  Three points A(-1, 1), B             and C                  are on the  
straight line    in this order.  Find the value of       and the equation of      in the 

following steps. 
(1)  Assume the line as                       and find the conditions that points A, B 

and C are on the line. 
(2)  Find  which satisfy these conditions.  

(3)  Select appropriate values.            
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Pause the video and solve the problem by yourself. 
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Exercise 

Ans. l
nm +−=1 nma += 3 nam ++= )3(7

 (1) Because the line      passes points A, B, and C, we have  
                                        (i),                               (ii) ,                                         (iii)    
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(3) Considering the order, we have  

Therefore, the latter satisfies the request of the problem.  
Finally, we obtain               and 
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,  . (2) From (ii)-(i) and (iii)-(i), we have                          and                            . 

  Therefore, we obtain                                                 and                    .  
By eliminating        , we have   

[ Exercise 14.1]  Three points A(-1, 1), B             and C                      are on the  
straight line    in this order.  Find the value of       and the equation of      in the following 

steps. 
(1)  Assume the line as                       and find the conditions that points A, B and C are on 

the line. 
(2)  Find  which satisfy these conditions.  
(3)  Select appropriate values.            
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Parallel Straight Lines  

For two straight lines  
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Perpendicular Straight Lines  
For two straight lines  

11 nxmy += 22 nxmy +=

Perpendicular Lines Condition  
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Proof:  
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Reflected Image 

Put the image point be Q                .  

[ Example 14.3]  Find the reflected image of point P(2, 3) about the mirror 
                           line                     .  

Ans. ),( qq yx
Line PQ is perpendicular to the mirror line:  
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Distance To the Straight Line 
[ Example 14.4]  Find the shortest distance between the origin and the 
                            straight line 
Ans. 
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Exercise 
[ Exercise 14.2] Find the area of the triangle in the following steps. 
(1)  Shift the triangle by 1 leftward and find the coordinates of the new 

position of points A, B, and C.  
(2)  Find the length  AH using the result of 
      Example 14.4.  
(3) Find the length AH. 
(4) Find the area of triangle ABC. 
 

Ans. 
Pause the video and solve the problem by yourself. 
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Exercise 
[ Exercise 14.2] Find the area of the triangle in the following steps. 
(1)  Shift the triangle by 1 leftward and find the coordinates of 
        the new position of points A, B, and C.  
(1)  Find the length  AH using the result of 
      Example 14.4.  
(3) Find the length AH. 
(4) Find the area of triangle ABC. 

Ans. (1)  The new positions are A(0, 0), B(5, 1) and C(1, 4). 
(2)  The equation for the straight line CB is  

(3) From Ex.14.4, length OH is 
 
 
(4) BC= 
    Therefore, the area is    

01943)1(
15
414 =−+∴−
−
−

=− yxxy

5
19

43

19
22
=

+

−
=d

5)41()15( 22 =−+−

2
195

5
19

2
1

=××

x

y

O )0,1(A

)1,6(B

)4,2(C
H

x

y

O

H

)1,5(B

)4,1(C


