Course I

Lesson 5 Trigonometric Functions (II)

5A

- Radian Another Unit of Angle
- Graphs of Trigonometric Functions

Radian

Degree (°)

- •Angle of 1/360 of one circle
- •360 is a familiar number in astronomy. (One year = 365day ≈360)

Radian (non-dimention)

•Angle is described by the ratio of the arc to the radius.

$$360^{\circ} \Leftrightarrow 2\pi = \frac{2\pi r}{r} \leftarrow \text{Arc}$$

- •A pure number (no unit) but symbol "rad" is used.
- 1rad=57.29••• (Memorize 360°=2π rad.)

Merits of Radian

Example 1: Expression becomes simple.

Area of a sector with angle θ and radius r

$$\theta$$
[degree]: $\pi r^2 \frac{\theta}{360}$

$$\theta[\text{rad}] \qquad : \qquad r^2 \frac{\theta}{2} \qquad \left(= \pi r^2 \frac{\theta}{2\pi} \right)$$

Example 2: Values of trigonometric functions of a small angle can be obtained approximately.

When angle θ is small

$$\sin \theta = \frac{BH}{OB} \approx \frac{\text{arcAB}}{OB} = \theta$$

$$\sin\frac{\pi}{180} \approx \frac{\pi}{180} \approx \frac{3.1416}{180} = 0.01745$$

(From Table, $1 \text{deg} \approx 0.0175$)

Graphs of the Sine/Cosine Functions

Graph of the Tangent Function

Periodic Function

Periodic function

A function f(x) is said to be periodic with period p if we have

$$f(x+p) = f(x)$$

Namely, the values of a function repeat themselves regularly.

Examples 1 Find the period of the sine functions $y = \sin x$

$$\sin\left(x+2\pi\right)=\sin\,x$$

Period = 2π

Example

Example 2. Illustrate the following functions and show their periods

$$(1) \quad y = 2\sin x$$

$$(2) \quad y = \sin 2x$$

$$y = 2\sin x$$
 (2) $y = \sin 2x$ (3) $y = \sin\left(x - \frac{\pi}{3}\right)$

Ans. Expansion in the *y*-direction (period = 2π)

(2) Expansion in the x-direction

(3) Shift in the *x*-direction (period = 2π)

Exercise 1. Answer about the following function

$$y = 2\sin(2x - \frac{\pi}{3}) \qquad (0 \le x \le 2\pi)$$

(1) When dos this function becomes zero? (2) What are the values of this function at x=0, 2π (3) Illustrate this function.

Ans.

Pause the video and solve the problem.

Exercise 1. Answer about the following function

$$y = 2\sin(2x - \frac{\pi}{3}) \qquad (0 \le x \le 2\pi)$$

(1) When does this function become zero? (2) What are the values of this function at x=0, 2π (3) Illustrate this function.

Ans. (1)
$$0 \le x \le 2\pi$$
, $\therefore 0 \le 2x \le 4\pi$, $\therefore -\frac{\pi}{3} \le 2x - \frac{\pi}{3} \le 4\pi - \frac{\pi}{3}$

Therefore \mathcal{Y} becomes zero at $2x - \frac{\pi}{3} = 0$, π , 2π , 3π $\therefore x = \frac{\pi}{6}$, $\frac{2\pi}{3}$, $\frac{7\pi}{6}$, $\frac{5\pi}{3}$

(2) At
$$x = 0$$
: $y = 2\sin(-\frac{\pi}{3}) = -\sqrt{3}$

At
$$x = 2\pi$$
: $y = 2\sin(4\pi - \frac{\pi}{3}) = 2\sin(-\frac{\pi}{3}) = -\sqrt{3}$

Ahh! That's so easy!

Lesson 5 Trigonometric Functions (II)

5B

- Trigonometric Equation
- Trigonometric Inequality

Trigonometric Equation

A trigonometric equation is any equation that contains unknown trigonometric function.

Ex.
$$2\sin^2 x + 3\cos x - 3 = 0$$

- This kind of equation is true for certain angles.
 - [Note] A trigonometric equation that holds true for any angle is called a trigonometric identity, which we will study next lesson.
- Some trigonometric equation can be solved easily by using algebra ideas, while others may not be solved exactly but approximately.

Example 1
$$2\sin x - 1 = 0$$

This can be easily solved.
See next slide.

Example 2
$$2 \sin x - x = 0$$

Roots x_1 and x_2 can be found numerically (See the figure).

Example

Example 1. Solve the following trigonometric equation. $2 \sin x - 1 = 0$

Ans. Step 1 We first look atsin x as being the variable of the equation a solve as we did before. $\therefore \sin x = \frac{1}{2}$

Step 2 Recall the graph of $y = \sin x$ from 0 to 2π or a unit circle, and obthe value of x which satisfy this expression. $x = \frac{\pi}{6}, \frac{5\pi}{6}$

Step 3 Considering the periodicity, and $A_{\mathcal{T}}$

$$\therefore x = \frac{\pi}{6} + 2n\pi, \quad \frac{5\pi}{6} + 2n\pi$$

12

Trigonometric Inequality

A trigonometric inequality is any inequality that contains unknown trigonometric function. It can be solved based on a trigonometric e

Example 2. Solve the following trigonometric equation. $2 \sin x - 1 > 0$

Ans. Step 1 Convert the given inequality to a trigonometric equation by replacin sign to equality sign. $2 \sin x - 1 = 0$

Step 2 Solve the resulting equation in the interval $[0, 2\pi]\pi/6$, $5\pi/6$

Step 3 Among intervals divided by the obtained roots, find the intervals where satisfy the trigonometric inequality $\stackrel{\pi}{\leftarrow} \frac{5\pi}{6}$

Step 4 Extends the soltion to the whole domain $\frac{\pi}{6} + 2n\pi < x < \frac{5\pi}{6} + 2n\pi$

Exercise 1. Solve the following trigonometric equation.

$$2\sin^2 x + 3\cos x - 3 = 0$$

Ans.

Pause the video and solve the problem.

Exercise 1. Solve the following trigonometric equation.

$$2\sin^2 x + 3\cos x - 3 = 0$$

$$0 \le x \le 2\pi$$

Ans.

$$2\sin^2 x + 3\cos x - 3 = 0$$

Put $X = \cos x$

$$\sin^2 x + \cos^2 x = 1$$

$$\therefore 2(1-X^2)+3X-3=0$$

$$\therefore 2(1-X^2) + 3X - 3 = 0 \quad \therefore 2X^2 - 3X + 1 = 0 \quad \therefore (X-1)(2X-1) = 0$$

$$(X-1)(2X-1)=0$$

$$\therefore X = 1, X = \frac{1}{2}$$

 $\cos x = 1$ From

$$\therefore x = 0, 2\pi$$

From

$$\cos x = \frac{1}{2}$$

$$\therefore x = \frac{\pi}{3}, \quad \frac{5\pi}{3}$$

Exercise 2. Solve the following trigonometric inequality $\tan x \ge -\sqrt{3}$

Ans.

Pause the video and solve the problem.

Answer to the Exercise

Exercise 2. Solve the following trigonometric inequality $\tan x \ge -\sqrt{3}$

Ans.

The corresponding trigonometric equation is

$$\tan x = -\sqrt{3}$$

Tangent has the period π as shown in the figure. In the interval $[-\pi/2,$

 $\pi/2$], the root is $x = -\frac{\pi}{3}$

From the graph and considering the periodicity, the solution is $-\frac{\pi}{3} + n\pi \le x < \frac{\pi}{2} + n\pi$

