

Lesson 3 Linear and Quadratic Inequalities

3A

- Inequalities of numbers
- Linear inequalities

Intervals and Their Graphs

Inequality signs

a < b		\boldsymbol{a}	is less than b
$a \leq b$	means	a	is less than or equal to b
a > b	mound	a	is greater than b
$a \ge b$		а	is greater than or equal to b

Intervals

A (real) interval is a set of real number that lies between two numbers.

Closed interval	[a,b]	$\{x \in R : a \le x \le b\}$	a b
Open interval	(a,b)	$\{x \in R : a < x < b\}$	a b
Half-open interval	[a,b)	$\{x \in R : a \le x < b\}$	<i>a b</i>
Half-open interval	(a,b]	$\{x \in R : a < x \le b\}$	a b
•			number line

Some Properties of Inequalities

- 1. Transitivity If a > b and b > c, then a > c.
- 2. Addition If a > b, then a + c > b + c.
- 3. Subtraction If a > b, then a c > b c.
- 4. Multiplication and Division

If
$$a > b$$
 and $c > 0$, then $ac > bc$ and $\frac{a}{c} > \frac{b}{c}$.

If
$$a > b$$
 and $c < 0$, then $ac < bc$ and $\frac{a}{c} < \frac{b}{c}$.

From the third property, we can derive the following by putting b = c. If a > c, then a - c > 0.

Arithmetic Mean and Geometric Mean

Example 1. Prove the following inequality

$$\frac{a+b}{2} \ge \sqrt{ab} \quad (a \ge 0, b \ge 0)$$

Ans.

$$\frac{a+b}{2} - \sqrt{ab} = \frac{a+b-2\sqrt{ab}}{2} = \frac{\sqrt{a^2 + \sqrt{b^2} - 2\sqrt{ab}}}{2}$$
$$= \frac{\left(\sqrt{a} - \sqrt{b}\right)^2}{2} \ge 0$$

Therefore

$$\frac{a+b}{2} \ge \sqrt{ab}$$

Equality holds when a = b.

[Note]

$$\frac{a+b}{2}$$
: Arithmetic mean

$$\sqrt{ab}$$
 : Geometric mean

Example

$$\frac{12+3}{2} = 7.5 \qquad \sqrt{12\times3} = 6$$

$$\frac{8+7}{2} = 7.5 \qquad \sqrt{8\times7} = 7.48$$

$$\frac{7.5+7.5}{2} = 7.5 \qquad \sqrt{7.5\times7.5} = 7.5$$

Linear Inequality

Linear Inequality

One balance weight has 100g. Let the weight of the apple be $\boldsymbol{\mathcal{X}}$. Then we have

$$x + 100 > 3 \times 100$$
 : $x > 200$

Linear inequality

$$ax + b > cx + d$$

$$\rightarrow ax - cx > d - b$$

 \rightarrow Divide by (a-c) but be careful of its sign.

Example 1. Solve the following inequality 4x - 2 > 10

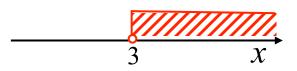
Ans.
$$4x - 2 > 10$$

$$\therefore 4x > 12$$

← add 2 to both sides

$$\therefore x > 3$$

← divide by 4



Graph and Linear Inequality

The inequality in Example 1

$$4x - 12 > 0$$

Corresponding to this, we consider

$$y = 4x - 12$$

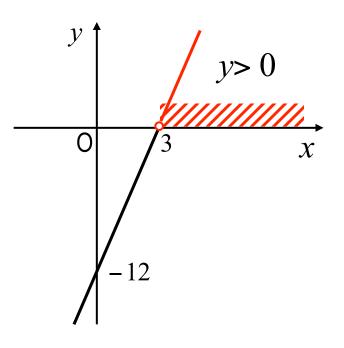
and illustrate this in the x - y plane.

The x-intercept is x = 3.

The domain corresponding to y > 0 is x > 3

Therefore,

the solution. x > 3



Simple!

Exercise

Exercise 1 Solve the following double inequality

$$\begin{cases} 7x - 1 \ge 4x - 7 \\ x + 5 > 3(1+x) \end{cases}$$

Ans.

Pause the video and solve the problem.

Answer to the Exercise

Exercise 1 Solve the following double inequality $7x-1 \ge 4x-7$

$$7x - 1 \ge 4x - 7$$

x + 5 > 3(1 + x)

Ans. The first inequality

$$7x - 1 \ge 4x - 7$$

$$\therefore 3x \ge -6$$

$$7x-1 \ge 4x-7$$
 $\therefore 3x \ge -6$ $\therefore x \ge -2$ $\cdot \cdot \cdot (1)$

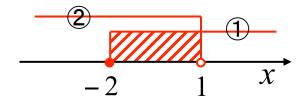
The second equation

$$x + 5 > 3(1 + x)$$
 $\therefore -2x > -2$ $\therefore x < 1$ (2)

$$\therefore -2x > -2$$

$$\therefore x < 1$$

$$\cdot\cdot(2)$$



The intersection of the two solutions

$$-2 \le x < 1$$

Lesson 3 Linear and Quadratic Inequalities

3B

- Quadratic Functions and Roots
- Quadratic Inequalities

Equations and Graphs of Functions

Quadratic Inequality

After rearrangement, quadratic inequality has the following standard form

$$ax^{2} + bx + c > 0$$

$$\geq, <, \leq$$

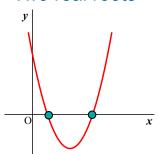
[Review] Quadratic Functions and Roots

$$D = b^2 - 4ac > 0$$

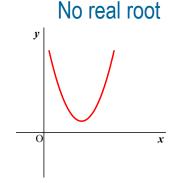
$$D = b^2 - 4ac = 0$$

$$D = b^2 - 4ac = 0$$
 $D = b^2 - 4ac < 0$

Two real roots

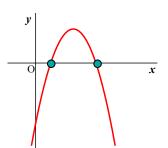


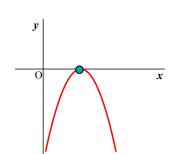
Double root

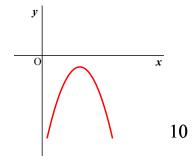


Case of a > 0

Case of a < 0







Steps to Solve Quadratic Inequalities

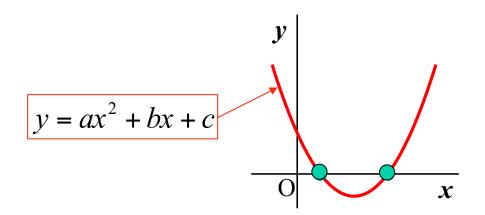
Step 1. Rearrange the inequality to the standard form

$$ax^2 + bx + c > 0$$

Step 2. Illustrate the corresponding quadratic function

$$y = ax^{2} + bx + c = a(x - p)^{2} + q$$

- **Step 3.** Solve the quadratic equation $ax^2 + bx + c = 0$ and find its roots α and β .
- **Step 4.** Find the sign of \mathcal{Y} in each interval divided by α and β , and select the intervals which satisfy the inequality $ax^2 + bx + c > 0$.



a > 0 and $D = b^2 - 4ac > 0$ Case of

Example 2 Solve the inequality
$$x^2 - 4x + 3 > 0$$

$$x^2 - 4x + 3 > 0$$

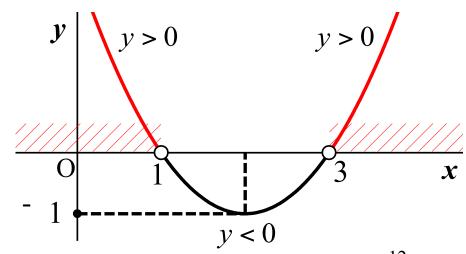
Ans.

The standard form
$$y = (x-2)^2 - 1$$

By factoring, we have
$$y = (x-1)(x-3)$$
 therefore, the roots are $x = 1$, $x = 3$

The inequality is satisfied in the shaded domain.

The solution is x < 1, x > 3



Case of
$$a > 0$$
 and $D = b^2 - 4ac = 0$

$$D = b^2 - 4ac = 0$$

Example 3 Solve the inequality $x^2 - 4x + 4 > 0$

$$x^2 - 4x + 4 > 0$$

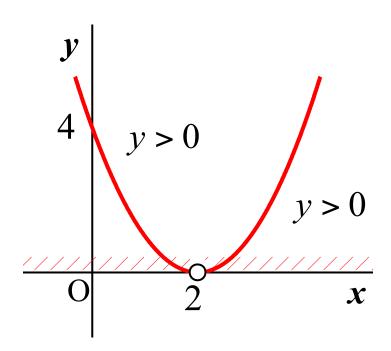
Ans.

The standard form

$$y = (x - 2)^2$$

The graph has one contact point at x = 2.

Therefore, the answer is all real number except x = 2



Case of
$$a > 0$$
 and $D = b^2 - 4ac < 0$

Example 4 Solve the inequality

$$x^2 - 4x + 5 > 0$$

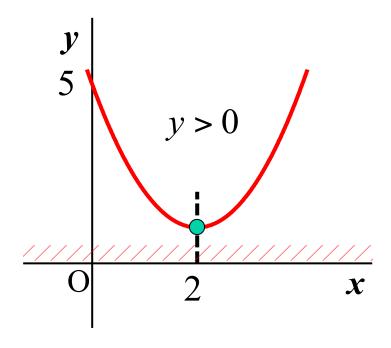
Ans.

The standard form

$$y = (x-2)^2 + 1$$

The graph has no contact point

The solution of this inequality is all real numbers.



Exercise

Exercise 2. Solve the following inequalities.

(1)
$$-x^2 - 2x + 2 < 0$$
 (2) $x^2 + x + 2 < 0$

$$(2) \quad x^2 + x + 2 < 0$$

Pause the video and solve the problem.

Answer to the Exercise

Exercise 2. Solve the following inequalities.

(1)
$$-x^2 - 2x + 2 < 0$$
 (2) $x^2 + x + 2 < 0$

$$(2) \quad x^2 + x + 2 < 0$$

Ans. (1) The corresponding quadratic equation :

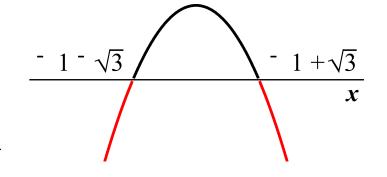
$$-x^2 - 2x + 2 = 0$$

The roots:

$$x = \frac{2 \pm \sqrt{(-2)^2 - 4(-1)(2)}}{2(-1)} = -1 \pm \sqrt{3}$$

From the figure

$$x < -1 - \sqrt{3}, \quad x > -1 + \sqrt{3}$$



(2)
$$D = 1^2 - 4 \times 1 \times 2 = -7 < 0$$

The graph $y = x^2 + x + 2$ does not cross with the x-axis.

A parabola opening upward.

Therefore, there is no solution.

Exercise

Exercise 3. Solve the following simultaneous inequalities.

$$x^2 + 4x + 3 > 0$$

$$2x^2 + x - 6 \le x^2 + 2x$$

Pause the video and solve the problem.

Answer to the Exercise

Exercise 3. Solve the following simultaneous inequalities.

$$x^2 + 4x + 3 > 0$$

$$2x^2 + x - 6 \le x^2 + 2x$$

Ans. The first equation is

$$x^{2} + 4x + 3 = (x+3)(x+1) > 0$$

The solutions are
$$x < -3$$
, $x > -1$

The second equation is

$$(2x^2 + x - 6) - (x^2 + 2x) = x^2 - x - 6 = (x + 2)(x - 3) \le 0$$

Whose solution lies in the interval

$$-2 \le x \le 3$$

From the figure, we have

$$-1 < x \le 3$$

