
Chapter 5

The functor K1

In this chapter, we define the K1-group of a C∗-algebra C as the set of homotopy
equivalent classes of unitary elements in the matrix algebras over C̃. It will also be
shown that the functor K1 is half exact and homotopy invariant. Since we shall prove
in the sequel that K1(C) is naturally isomorphic to K0

(
S(C)

)
, some of the properties

of K1 will directly be inferred from equivalent properties of K0. For that reason, their
proofs will be provided only once this isomorphism has been exhibited.

5.1 Definition of the K1-group

Let us first recall that the set of unitary elements of a unital C∗-algebra C is denoted
by U(C). For any n ∈ N∗ one sets

Un(C) := U
(
Mn(C)

)
and U∞(C) :=

∪
n∈N∗

Un(C).

We define a binary operation ⊕ on U∞(C): for u ∈ Un(C) and v ∈ Um(C) one sets

u⊕ v :=

(
u 0
0 v

)
∈ Un+m(C).

In addition, a relation ∼1 on U∞(C) is defined as follows: for u ∈ Un(C) and v ∈ Um(C)
one writes u ∼1 v if there exists a natural number k ≥ max{m,n} such that u⊕1k−n ∼h
v ⊕ 1k−m in Uk(C). With these definitions at hand one can show:

Lemma 5.1.1. Let C be a unital C∗-algebra. Then:

(i) ∼1 is an equivalence relation on U∞(C),

(ii) u ∼1 u⊕ 1n for any u ∈ U∞(C) and n ∈ N,

(iii) u⊕ v ∼1 v ⊕ u for any u, v ∈ U∞(C),

(iv) If u, v, u′, v′ ∈ U∞(C), u ∼1 u
′ and v ∼1 v

′ then u⊕ v ∼1 u
′ ⊕ v′,
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(v) If u, v ∈ Un(C), then uv ∼1 vu ∼1 u⊕ v,

(vi) (u⊕ v)⊕ w = u⊕ (v ⊕ w) for any u, v, w ∈ U∞(C).

Proof. The proofs of (i), (ii) and (vi) are trivial, and (v) follows from Lemma 2.1.4. For
the proof of (iii), let us consider u ∈ Un(C) and v ∈ Um(C), and set

z =

(
0 1m
1n 0

)
∈ Un+m(C).

Then by taking (v) into account, one gets

v ⊕ u = z(u⊕ v)z∗ ∼1 z
∗z(u⊕ v) = u⊕ v.

For the proof of (iv) it is sufficient to show that

(I) (u⊕ 1k)⊕ (v ⊕ 1ℓ) ∼1 u⊕ v for any u, v ∈ U∞(C) and any k, ℓ ∈ N,

(II) u ∼h u′ and v ∼h v′ imply that u ⊕ v ∼h u′ ⊕ v′ for all u, u′ ∈ Un(C) and
v, v′ ∈ Um(C).

Now, statement (I) follows from (ii), (iii) and (vi). To see that (II) holds, let t 7→ u(t)
and t 7→ v(t) be continuous paths of unitary elements with u = u(0), u′ = u(1), v = v(0)
and v′ = v(1). Then t 7→ u(t)⊕v(t) is a continuous path of unitary elements from u⊕v
to u′ ⊕ v′.

Definition 5.1.2. For any C∗-algebra C one defines

K1(C) := U∞(C̃)/ ∼1 .

The equivalent class in K1(C) containing u ∈ U∞(C̃) is denoted by [u]1. A binary oper-

ation on K1(C) is defined by [u]1 + [v]1 := [u⊕ v]1 for any u, v ∈ U∞(C̃).

It follows from Lemma 5.1.1 that + is well-defined, commutative, associative, has
zero element [1]1 ≡ [1n]1 for any n ∈ N∗, and that

0 = [1]1 = [uu∗]1 = [u]1 + [u∗]1

for any u ∈ U∞(C̃). All this shows that
(
K1(C),+

)
is an Abelian group, and that

−[u]1 = [u∗]1 for any u ∈ U∞(C̃).
We now collect these information and provide the standard picture of K1. The

statements follow either directly from the definitions or from Lemma 5.1.1.

Proposition 5.1.3. Let C be a C∗-algebra. Then

K1(C) = {[u]1 | u ∈ U∞(C̃)},

and the map [·]1 : U∞(C̃)→ K1(C) has the following properties:
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(i) [u⊕ v]1 = [u]1 + [v]1 for any u, v ∈ U∞(C̃)

(ii) [1]1 = 0,

(iii) If u, v ∈ Un(C̃) and u ∼h v, then [u]1 = [v]1,

(iv) If u, v ∈ Un(C̃), then [uv]1 = [vu]1 = [u]1 + [v]1,

(v) For u, v ∈ U∞(C̃), [u]1 = [v]1 if and only if u ∼1 v.

We provide some additional information on the K1-group. The first one corresponds
to the universal property of K1, which is the analogue of Proposition 3.2.5 for K0.

Proposition 5.1.4 (Universal property of K1). Let C be a C∗-algebra and let H be an

Abelian group. Suppose that there exists ν : U∞(C̃)→ H satisfying the three conditions:

(i) ν(u⊕ v) = ν(u) + ν(v) for any u, v ∈ U∞(C̃),

(ii) ν(1) = 0,

(iii) If u, v ∈ Un(C̃) for some n ∈ N∗ and if u ∼h v ∈ Un(C̃), then ν(u) = ν(v).

Then there exists a unique group homomorphism α : K1(C)→ H such that the diagram

U∞(C̃)

[·]1
��

ν

""D
DD

DD
DD

DD

K1(C) α
// H

(5.1)

is commutative.

Proof. We first show that if u ∈ Un(C̃) and v ∈ Um(C̃) satisfies u ∼1 v, then ν(u) = ν(v).
For that purpose, let k ∈ N with k ≥ max{m,n} such that u ⊕ 1k−n ∼h v ⊕ 1k−m in

Uk(C̃). By taking (i) and (ii) into accounts, one infers that ν(1r) = 0 for any r ∈ N∗.
As a consequence, (i) and (iii) imply that

ν(u) = ν(u⊕ 1k−n) = ν(v ⊕ 1k−m) = ν(v).

It follows from this equality that there exists a map α : K1(A)→ H making the diagram
(5.1) commutative. Then, the computation

α
(
[u]1 + [v]1

)
= α([u⊕ v]1) = ν(u⊕ v) = ν(u) + ν(v) = α([u]1) + α([v]1)

shows that α is a group morphism. The uniqueness of α follows from the surjectivity of
the map [·]1.
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If C is a unital algebra, it would be natural to define directly the K1-group of C
by U∞(C)/ ∼1 without using the algebra C̃. This is indeed possible, as shown in the
following statement. For that purpose, recall from the proof of Lemma 2.2.4 that if 1̃
denotes the unit of C̃ and if 1 denotes the unit of C, then 1 := 1̃− 1 is a projection in
C̃. In addition, C̃ = C + C1, with a1 = 1a = 0 for any a ∈ C. One also defines the ∗-
homomorphism µ : C̃ → C by µ(a+α1) := a and extends it to a unital ∗-homomorphism

Mn(C̃)→Mn(C) for any n ∈ N∗. In this way one obtains a map U∞(C̃)→ U∞(C).

Proposition 5.1.5. Let C be a unital C∗-algebra. Then there exists an isomorphism
ρ : K1(C)→ U∞(C)/ ∼1 making the following diagram commutative:

U∞(C̃) µ - U∞(C)

K1(C)

[·]1

?

ρ
- U∞(C)/ ∼1 .

?

Proof. Observe first that the map µ : U∞(C̃)→ U∞(C) is surjective. Then, it is sufficient
to show that

(I) µ(u) ∼1 µ(v) if and only if u ∼1 v for any u, v ∈ U∞(C̃),

(II) µ(u⊕ v) = µ(u)⊕ µ(v) for any u, v ∈ U∞(C̃).

Clearly, (II) is a direct consequence of the definition of the map µ. For (I) it is sufficient
to show that

(I’) µ(u) ∼h µ(v) in Un(C) if and only if u ∼h v in Un(C̃), for any u, v ∈ Un(C̃) and
any n ∈ N∗.

For that purpose, observe that if u, v ∈ Un(C̃) are such that u ∼h v, then µ(u) ∼h µ(v).
For the converse implication, assume that u, v ∈ Un(C̃) and that µ(u) ∼h µ(v) in Un(C).
By the definition of µ one can find u0 and v0 in Un(C1) such that u = µ(u) + u0 and
v = µ(v) + v0. By Corollary 2.1.3 one infers that u0 ∼h v0 in Mn(C1), which easily

proves that u ∼h v in Mn(C̃). Indeed, one can consider the continuous path t 7→ a(t)
and t 7→ b(t) of unitary elements in Mn(C) and Mn(C1), respectively, with µ(u) = a(0),
µ(v) = a(1), u0 = b(0) and u1 = b(1). Then t 7→ a(t) + b(t) is a continuous path in

Un(C̃) with u = a(0) + b(0) and v = a(1) + b(1).

When C is unital, we shall often identify K1(C) with U∞(C)/ ∼1 through the iso-
morphism ρ of the previous proposition. If u is a unitary element of U∞(C), then [u]1
will denote the element of K1(C) it represents under this identification. As a immediate
consequence of the previous proposition, one also obtains that for any C∗-algebra:

K1(C) ∼= K1(C̃). (5.2)

Let us finally conclude this section with the explicit computation of a K1-group.



5.2. FUNCTORIALITY OF K1 47

Lemma 5.1.6. One has K1(C) = K1

(
Mn(C)

)
= {0} for any n ∈ N∗. More generally

one has K1

(
B(H)

)
= {0} for any separable Hilbert space H.

Proof. It has been proved in Corollary 2.1.3 that the unitary group of Mk

(
Mn(C)

)
=

Mkn(C) is connected for every n and k in N∗. This implies that U∞
(
Mn(C)

)
/ ∼1 is the

trivial group with only one element. From the description of K1 for a unital C∗-algebra
provided by Proposition 5.1.5 one infers that K1

(
Mn(C)

)
= {0}.

Let us now consider any separable Hilbert space H and first show that u ∼h 1n for
any unitary element u ∈Mn

(
B(H)

)
. Indeed, let us define φ : T→ [0, 2π) by

φ(eiθ) = θ, 0 ≤ θ < 2π.

Then φ is a bounded Borel measurable map, and z = eiφ(z) for any z ∈ T. As a
consequence, for any u ∈ Un

(
B(H)

)
= U

(
B(Hn)

)
, one infers that φ(u) = φ(u)∗ in

B(Hn), and that u = eiφ(u). By Lemma 2.1.2.(i) it follows that u ∼h 1n. Consequently,
one deduces that u ∼1 1, and then that U∞

(
B(H)

)
/ ∼1= {0}. In other words, one

concludes that K1

(
B(H)

)
= {0} as above.

5.2 Functoriality of K1

This section is partially analogue to Section 3.3. Let us first consider two C∗-algebras
C and Q, and let φ : C → Q be a ∗-homomorphism. Then φ induces a unital ∗-
homomorphism φ̃ : C̃ → Q̃ which itself extends to a unital ∗-homomorphism φ̃ :
Mn(C̃) → Mn(Q̃) for any n ∈ N∗. This gives rise to a map φ̃ : U∞(C̃) → U∞(Q̃),
and one can set ν : U∞(C̃) → K1(Q) by ν(u) := [φ̃(u)]1 for any u ∈ U∞(C̃). It is
straightforward to check that ν satisfies the three conditions of Proposition 5.1.4, and
hence there exists precisely one group homomorphism K1(φ) : K1(C) → K1(Q) with
the property

K1(φ)([u]1) = [φ̃(u)]1 (5.3)

for any u ∈ U∞(C̃).
Note that if C and Q are unital C∗-algebras, and if φ : C → Q is a unital ∗-

homomorphism, then K1(φ)([u]1) = [φ(u)]1 for any u ∈ U∞(C).
The following proposition shows that K1 is a homotopy invariant functor which

preserves the zero objects.

Proposition 5.2.1 (Functoriality and homotopy invariance of K1). Let J , C and Q
be C∗-algebras. Then

(i) K1(idC) = idK1(C),

(ii) If φ : J → C and ψ : C → Q are ∗-homomorphisms, then

K1(ψ ◦ φ) = K1(ψ) ◦K1(φ),
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(iii) K1({0}) = {0},

(iv) K1(0C→Q) = 0K1(C)→K1(Q),

(v) If φ, ψ : C → Q are homotopic ∗-homomorphisms, then K1(φ) = K1(ψ),

(vi) If C and Q are homotopy equivalent, then K1(C) is isomorphic to K1(Q). More
specifically, if (3.4) is a homotopy between C and Q, then K1(φ) : K1(C)→ K1(Q)
and K1(ψ) : K1(Q)→ K1(C) are isomorphisms, with K1(φ)

−1 = K1(ψ).

Proof. The proof of (i) and (ii) can directly be inferred from (5.3) together with the

equalities ĩdC = idC̃ and ˜(ψ ◦ φ) = ψ̃ ◦ φ̃.
As already mentioned in (5.2), the equalityK1(C) = K1(C̃) holds for any C∗-algebra.

In particular, K1({0}) is isomorphic to K1(C), which is equal to {0} by Lemma 5.1.6.
This implies (iii).

The zero homomorphism 0C→Q can be seen as the composition of the maps C → {0}
and {0} → Q. Hence, (iv) follows from (iii) and (ii).

(v) Let us now consider a path t 7→ φ(t) of ∗-homomorphisms from C to Q, with
φ(0) = φ and φ(1) = ψ, and such that the map [0, 1] ∋ t 7→ φ(t)(a) ∈ Q is continuous,

for any a ∈ C. The induced ∗-homomorphism φ̃ : Mn(C̃) → Mn(Q̃) is unital, for any

n ∈ N∗, and the map [0, 1] ∋ t 7→ φ(t)(a) ∈ Mn(Q̃) is continuous, for any a ∈ Mn(C̃).
Hence for any u ∈ Un(C̃) one has in Un(Q̃):

φ̃(u) = φ̃(0)(u) ∼h φ̃(1)(u) = ψ̃(u).

As a consequence, one infers that

K1(φ)([u]1) = [φ̃(u)]1 = [ψ̃(u)]1 = K1(ψ)([u]1),

which proves (v).
Finally, statement (vi) is a consequence of (i), (ii) and (v).

Let us also prove a short lemma which will be useful in the next proposition.

Lemma 5.2.2. Let C and Q be C∗-algebras, let φ : C → Q be a ∗-homomorphism, and
let g ∈ Ker

(
K1(φ)

)
. Then

(i) There exists an element u ∈ U∞(C̃) such that g = [u]1 and φ̃(u) ∼h 1,

(ii) If φ is surjective, then there exists u ∈ U∞(C̃) such that g = [u]1 and φ̃(u) = 1.

Proof. (i) Choose v ∈ Um(C̃) such that g = [v]1. Then [φ̃(v)]1 = 0 = [1m]1, and hence
there exists an integer n ≥ m such that

φ̃(v)⊕ 1n−m ∼h 1m ⊕ 1n−m = 1n.

Set u = v ⊕ 1n−m, and then [u]1 = [v]1 = g and φ̃(u) = φ̃(v)⊕ 1n−m ∼h 1n.
(ii) Use (i) to find v ∈ Un(C̃) with g = [v]1 and φ̃(v) ∼h 1. By Lemma 2.1.7.(iii)

and (i), there exists w ∈ Un(C̃) such that φ̃(w) = φ̃(v) and w ∼h 1. Then u := w∗v has
the desired properties.
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Proposition 5.2.3 (Half exactness of K1). Every short exact sequence of C∗-algebras

0 −→ J φ−→ C ψ−→ Q −→ 0,

induces an exact sequence of Abelian groups

K1(J )
K1(φ)

−−−−−→ K1(C)
K1(ψ)

−−−−−→ K1(Q),

that is Ran
(
K1(φ)

)
= Ker

(
K1(ψ)

)
.

Proof. By functoriality of K1 one already knows that

K1(ψ) ◦K1(φ) = K1(ψ ◦ φ) = K1(0J→Q) = 0K1(J )→K1(Q),

which implies that Ran
(
K1(φ)

)
⊂ Ker

(
K1(ψ)

)
.

Conversely, assume that g ∈ Ker
(
K1(ψ)

)
. According to Lemma 5.2.2.(ii) there

exist n ∈ N∗ and u ∈ Un(C̃) such that g = [u]1 and ψ̃(u) = 1. Then, by Lemma

4.3.1.(ii) there exists v ∈ Mn(J̃ ) such that φ̃(v) = u. Finally, [v]1 belongs to K1(J ),
and K1(φ)([v]) = [φ̃(v)]1 = [u]1 = g.

Let us now mention that the functor K1 is split exact and preserves direct sums
of C∗-algebras. These statements can be proved in the same way as for the functor
K0 in Propositions 4.3.3 and 4.3.4. These statements also follow from the isomorphism
K1(C) ∼= K0

(
S(C)

)
which will be established later on. For this reason, we state these

results without providing a proof.

Proposition 5.2.4 (Split exactness of K1). Every split exact sequence of C∗-algebras

0 −→ J φ−→ C
ψ

−−−−−→←−−−−−
λ

Q −→ 0

induces a split exact sequence of Abelian groups

0 −→ K1(J )
K1(φ)−→ K1(C)

K1(ψ)

−−−−−→←−−−−−
K1(λ)

K1(Q) −→ 0.

Proposition 5.2.5. For any C∗-algebras C1 and C2 the K0-groups K1(C1 ⊕ C2) and
K1(C1)⊕K1(C2) are isomorphic. More precisely, if ιi : Ci → C1⊕C2 denotes the canonical
inclusion ∗-homomorphism, then the group morphism is provided by the map

K1(C1)⊕K1(C2) ∋ (g, h) 7→ K1(ι1)(g) +K1(ι2)(h) ∈ K1(C1 ⊕ C2).

We close this section with an important result for the computation of K1-groups,
which is the analogue for K1 of the content of Proposition 4.3.7 on the stability of K0.
Note that the proof of the following statement can be proved from its analogue for K0

by taking the isomorphism K1(C) ∼= K0

(
S(C)

)
into account.
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Proposition 5.2.6 (Stability of K1). Let C be a C∗-algebra and let n ∈ N∗. Then
K1(C) is isomorphic to K1

(
Mn(C)

)
. In addition, for any separable Hilbert space H the

following equality holds
K1

(
C ⊗ K(H)

) ∼= K1(C). (5.4)

Corollary 5.2.7. For any separable Hilbert space H one has K1

(
K(H)

)
= {0}.

Proof. From equation (5.4) one infers that K1

(
K(H)

) ∼= K1(C), but K1(C) = {0} by
Lemma 5.1.6.

Extension 5.2.8. Work on the relations between K1-group and determinant for unital
Abelian C∗-algebras, as presented in [RLL00, Sec. 8.3].


