Chapter 5

The functor K_{1}

In this chapter, we define the K_{1}-group of a C^{*}-algebra \mathcal{C} as the set of homotopy equivalent classes of unitary elements in the matrix algebras over $\widetilde{\mathcal{C}}$. It will also be shown that the functor K_{1} is half exact and homotopy invariant. Since we shall prove in the sequel that $K_{1}(\mathcal{C})$ is naturally isomorphic to $K_{0}(S(\mathcal{C}))$, some of the properties of K_{1} will directly be inferred from equivalent properties of K_{0}. For that reason, their proofs will be provided only once this isomorphism has been exhibited.

5.1 Definition of the K_{1}-group

Let us first recall that the set of unitary elements of a unital C^{*}-algebra \mathcal{C} is denoted by $\mathcal{U}(\mathcal{C})$. For any $n \in \mathbb{N}^{*}$ one sets

$$
\mathcal{U}_{n}(\mathcal{C}):=\mathcal{U}\left(M_{n}(\mathcal{C})\right) \quad \text { and } \quad \mathcal{U}_{\infty}(\mathcal{C}):=\bigcup_{n \in \mathbb{N}^{*}} \mathcal{U}_{n}(\mathcal{C})
$$

We define a binary operation \oplus on $\mathcal{U}_{\infty}(\mathcal{C})$: for $u \in \mathcal{U}_{n}(\mathcal{C})$ and $v \in \mathcal{U}_{m}(\mathcal{C})$ one sets

$$
u \oplus v:=\left(\begin{array}{ll}
u & 0 \\
0 & v
\end{array}\right) \in \mathcal{U}_{n+m}(\mathcal{C}) .
$$

In addition, a relation \sim_{1} on $\mathcal{U}_{\infty}(\mathcal{C})$ is defined as follows: for $u \in \mathcal{U}_{n}(\mathcal{C})$ and $v \in \mathcal{U}_{m}(\mathcal{C})$ one writes $u \sim_{1} v$ if there exists a natural number $k \geq \max \{m, n\}$ such that $u \oplus \mathbf{1}_{k-n} \sim_{h}$ $v \oplus \mathbf{1}_{k-m}$ in $\mathcal{U}_{k}(\mathcal{C})$. With these definitions at hand one can show:

Lemma 5.1.1. Let \mathcal{C} be a unital C^{*}-algebra. Then:
(i) \sim_{1} is an equivalence relation on $\mathcal{U}_{\infty}(\mathcal{C})$,
(ii) $u \sim_{1} u \oplus \mathbf{1}_{n}$ for any $u \in \mathcal{U}_{\infty}(\mathcal{C})$ and $n \in \mathbb{N}$,
(iii) $u \oplus v \sim_{1} v \oplus u$ for any $u, v \in \mathcal{U}_{\infty}(\mathcal{C})$,
(iv) If $u, v, u^{\prime}, v^{\prime} \in \mathcal{U}_{\infty}(\mathcal{C}), u \sim_{1} u^{\prime}$ and $v \sim_{1} v^{\prime}$ then $u \oplus v \sim_{1} u^{\prime} \oplus v^{\prime}$,
(v) If $u, v \in \mathcal{U}_{n}(\mathcal{C})$, then $u v \sim_{1} v u \sim_{1} u \oplus v$,
(vi) $(u \oplus v) \oplus w=u \oplus(v \oplus w)$ for any $u, v, w \in \mathcal{U}_{\infty}(\mathcal{C})$.

Proof. The proofs of $(i),(i i)$ and $(v i)$ are trivial, and (v) follows from Lemma 2.1.4. For the proof of $(i i i)$, let us consider $u \in \mathcal{U}_{n}(\mathcal{C})$ and $v \in \mathcal{U}_{m}(\mathcal{C})$, and set

$$
z=\left(\begin{array}{cc}
0 & \mathbf{1}_{m} \\
\mathbf{1}_{n} & 0
\end{array}\right) \in \mathcal{U}_{n+m}(\mathcal{C})
$$

Then by taking (v) into account, one gets

$$
v \oplus u=z(u \oplus v) z^{*} \sim_{1} z^{*} z(u \oplus v)=u \oplus v
$$

For the proof of $(i v)$ it is sufficient to show that
(I) $\left(u \oplus \mathbf{1}_{k}\right) \oplus\left(v \oplus \mathbf{1}_{\ell}\right) \sim_{1} u \oplus v$ for any $u, v \in \mathcal{U}_{\infty}(\mathcal{C})$ and any $k, \ell \in \mathbb{N}$,
(II) $u \sim_{h} u^{\prime}$ and $v \sim_{h} v^{\prime}$ imply that $u \oplus v \sim_{h} u^{\prime} \oplus v^{\prime}$ for all $u, u^{\prime} \in \mathcal{U}_{n}(\mathcal{C})$ and $v, v^{\prime} \in \mathcal{U}_{m}(\mathcal{C})$.

Now, statement (I) follows from (ii), (iii) and (vi). To see that (II) holds, let $t \mapsto u(t)$ and $t \mapsto v(t)$ be continuous paths of unitary elements with $u=u(0), u^{\prime}=u(1), v=v(0)$ and $v^{\prime}=v(1)$. Then $t \mapsto u(t) \oplus v(t)$ is a continuous path of unitary elements from $u \oplus v$ to $u^{\prime} \oplus v^{\prime}$.

Definition 5.1.2. For any C^{*}-algebra \mathbb{C} one defines

$$
K_{1}(\mathcal{C}):=\mathcal{U}_{\infty}(\widetilde{\mathcal{C}}) / \sim_{1}
$$

The equivalent class in $K_{1}(\mathcal{C})$ containing $u \in \mathcal{U}_{\infty}(\widetilde{\mathcal{C}})$ is denoted by $[u]_{1}$. A binary operation on $K_{1}(\mathcal{C})$ is defined by $[u]_{1}+[v]_{1}:=[u \oplus v]_{1}$ for any $u, v \in \mathcal{U}_{\infty}(\widetilde{\mathcal{C}})$.

It follows from Lemma 5.1.1 that + is well-defined, commutative, associative, has zero element $[\mathbf{1}]_{1} \equiv\left[\mathbf{1}_{n}\right]_{1}$ for any $n \in \mathbb{N}^{*}$, and that

$$
0=[\mathbf{1}]_{1}=\left[u u^{*}\right]_{1}=[u]_{1}+\left[u^{*}\right]_{1}
$$

for any $u \in \mathcal{U}_{\infty}(\widetilde{\mathcal{C}})$. All this shows that $\left(K_{1}(\mathcal{C}),+\right)$ is an Abelian group, and that $-[u]_{1}=\left[u^{*}\right]_{1}$ for any $u \in \mathcal{U}_{\infty}(\widetilde{\mathcal{C}})$.

We now collect these information and provide the standard picture of K_{1}. The statements follow either directly from the definitions or from Lemma 5.1.1.

Proposition 5.1.3. Let \mathcal{C} be a C^{*}-algebra. Then

$$
K_{1}(\mathcal{C})=\left\{[u]_{1} \mid u \in \mathcal{U}_{\infty}(\widetilde{\mathcal{C}})\right\}
$$

and the map $[\cdot]_{1}: \mathcal{U}_{\infty}(\widetilde{\mathcal{C}}) \rightarrow K_{1}(\mathcal{C})$ has the following properties:
(i) $[u \oplus v]_{1}=[u]_{1}+[v]_{1}$ for any $u, v \in \mathcal{U}_{\infty}(\widetilde{\mathcal{C}})$
(ii) $[\mathbf{1}]_{1}=0$,
(iii) If $u, v \in \mathcal{U}_{n}(\widetilde{\mathcal{C}})$ and $u \sim_{h} v$, then $[u]_{1}=[v]_{1}$,
(iv) If $u, v \in \mathcal{U}_{n}(\widetilde{\mathcal{C}})$, then $[u v]_{1}=[v u]_{1}=[u]_{1}+[v]_{1}$,
(v) For $u, v \in \mathcal{U}_{\infty}(\widetilde{\mathcal{C}}),[u]_{1}=[v]_{1}$ if and only if $u \sim_{1} v$.

We provide some additional information on the K_{1}-group. The first one corresponds to the universal property of K_{1}, which is the analogue of Proposition 3.2.5 for K_{0}.

Proposition 5.1.4 (Universal property of K_{1}). Let \mathcal{C} be a C^{*}-algebra and let H be an Abelian group. Suppose that there exists $\nu: \mathcal{U}_{\infty}(\widetilde{\mathcal{C}}) \rightarrow H$ satisfying the three conditions:
(i) $\nu(u \oplus v)=\nu(u)+\nu(v)$ for any $u, v \in \mathcal{U}_{\infty}(\widetilde{\mathcal{C}})$,
(ii) $\nu(\mathbf{1})=0$,
(iii) If $u, v \in \mathcal{U}_{n}(\widetilde{\mathcal{C}})$ for some $n \in \mathbb{N}^{*}$ and if $u \sim_{h} v \in \mathcal{U}_{n}(\widetilde{\mathcal{C}})$, then $\nu(u)=\nu(v)$.

Then there exists a unique group homomorphism $\alpha: K_{1}(\mathcal{C}) \rightarrow H$ such that the diagram

is commutative.
Proof. We first show that if $u \in \mathcal{U}_{n}(\widetilde{\mathcal{C}})$ and $v \in \mathcal{U}_{m}(\widetilde{\mathcal{C}})$ satisfies $u \sim_{1} v$, then $\nu(u)=\nu(v)$. For that purpose, let $k \in \mathbb{N}$ with $k \geq \max \{m, n\}$ such that $u \oplus \mathbf{1}_{k-n} \sim_{h} v \oplus \mathbf{1}_{k-m}$ in $\mathcal{U}_{k}(\widetilde{\mathcal{C}})$. By taking (i) and (ii) into accounts, one infers that $\nu\left(\mathbf{1}_{r}\right)=0$ for any $r \in \mathbb{N}^{*}$. As a consequence, (i) and (iii) imply that

$$
\nu(u)=\nu\left(u \oplus \mathbf{1}_{k-n}\right)=\nu\left(v \oplus \mathbf{1}_{k-m}\right)=\nu(v) .
$$

It follows from this equality that there exists a map $\alpha: K_{1}(A) \rightarrow H$ making the diagram (5.1) commutative. Then, the computation

$$
\alpha\left([u]_{1}+[v]_{1}\right)=\alpha\left([u \oplus v]_{1}\right)=\nu(u \oplus v)=\nu(u)+\nu(v)=\alpha\left([u]_{1}\right)+\alpha\left([v]_{1}\right)
$$

shows that α is a group morphism. The uniqueness of α follows from the surjectivity of the map $[\cdot]_{1}$.

If \mathcal{C} is a unital algebra, it would be natural to define directly the K_{1}-group of \mathcal{C} by $\mathcal{U}_{\infty}(\mathcal{C}) / \sim_{1}$ without using the algebra $\widetilde{\mathcal{C}}$. This is indeed possible, as shown in the following statement. For that purpose, recall from the proof of Lemma 2.2.4 that if $\tilde{\mathbf{1}}$ denotes the unit of $\widetilde{\mathcal{C}}$ and if $\mathbf{1}$ denotes the unit of \mathcal{C}, then $1:=\tilde{\mathbf{1}}-\mathbf{1}$ is a projection in $\widetilde{\mathcal{C}}$. In addition, $\widetilde{\mathcal{C}}=\mathcal{C}+\mathbb{C} 1$, with $a 1=1 a=0$ for any $a \in \mathcal{C}$. One also defines the $*-$ homomorphism $\mu: \widetilde{\mathcal{C}} \rightarrow \mathcal{C}$ by $\mu(a+\alpha 1):=a$ and extends it to a unital $*$-homomorphism $M_{n}(\widetilde{\mathcal{C}}) \rightarrow M_{n}(\mathcal{C})$ for any $n \in \mathbb{N}^{*}$. In this way one obtains a map $\mathcal{U}_{\infty}(\widetilde{\mathcal{C}}) \rightarrow \mathcal{U}_{\infty}(\mathcal{C})$.
Proposition 5.1.5. Let \mathcal{C} be a unital C^{*}-algebra. Then there exists an isomorphism $\rho: K_{1}(\mathcal{C}) \rightarrow \mathcal{U}_{\infty}(\mathcal{C}) / \sim_{1}$ making the following diagram commutative:

Proof. Observe first that the map $\mu: \mathcal{U}_{\infty}(\widetilde{\mathcal{C}}) \rightarrow \mathcal{U}_{\infty}(\mathcal{C})$ is surjective. Then, it is sufficient to show that
(I) $\mu(u) \sim_{1} \mu(v)$ if and only if $u \sim_{1} v$ for any $u, v \in \mathcal{U}_{\infty}(\widetilde{\mathcal{C}})$,
(II) $\mu(u \oplus v)=\mu(u) \oplus \mu(v)$ for any $u, v \in \mathcal{U}_{\infty}(\widetilde{\mathcal{C}})$.

Clearly, (II) is a direct consequence of the definition of the map μ. For (I) it is sufficient to show that
(I') $\mu(u) \sim_{h} \mu(v)$ in $\mathcal{U}_{n}(\mathcal{C})$ if and only if $u \sim_{h} v$ in $\mathcal{U}_{n}(\widetilde{\mathcal{C}})$, for any $u, v \in \mathcal{U}_{n}(\widetilde{\mathcal{C}})$ and any $n \in \mathbb{N}^{*}$.
For that purpose, observe that if $u, v \in \mathcal{U}_{n}(\widetilde{\mathcal{C}})$ are such that $u \sim_{h} v$, then $\mu(u) \sim_{h} \mu(v)$. For the converse implication, assume that $u, v \in \mathcal{U}_{n}(\widetilde{\mathcal{C}})$ and that $\mu(u) \sim_{h} \mu(v)$ in $\mathcal{U}_{n}(\mathcal{C})$. By the definition of μ one can find u_{0} and v_{0} in $\mathcal{U}_{n}(\mathbb{C} 1)$ such that $u=\mu(u)+u_{0}$ and $v=\mu(v)+v_{0}$. By Corollary 2.1.3 one infers that $u_{0} \sim_{h} v_{0}$ in $M_{n}(\mathbb{C} 1)$, which easily proves that $u \sim_{h} v$ in $M_{n}(\widetilde{\mathcal{C}})$. Indeed, one can consider the continuous path $t \mapsto a(t)$ and $t \mapsto b(t)$ of unitary elements in $M_{n}(\mathcal{C})$ and $M_{n}(\mathbb{C} 1)$, respectively, with $\mu(u)=a(0)$, $\mu(v)=a(1), u_{0}=b(0)$ and $u_{1}=b(1)$. Then $t \mapsto a(t)+b(t)$ is a continuous path in $\mathcal{U}_{n}(\widetilde{\mathcal{C}})$ with $u=a(0)+b(0)$ and $v=a(1)+b(1)$.

When \mathcal{C} is unital, we shall often identify $K_{1}(\mathcal{C})$ with $\mathcal{U}_{\infty}(\mathcal{C}) / \sim_{1}$ through the isomorphism ρ of the previous proposition. If u is a unitary element of $\mathcal{U}_{\infty}(\mathcal{C})$, then $[u]_{1}$ will denote the element of $K_{1}(\mathcal{C})$ it represents under this identification. As a immediate consequence of the previous proposition, one also obtains that for any C^{*}-algebra:

$$
\begin{equation*}
K_{1}(\mathcal{C}) \cong K_{1}(\widetilde{\mathcal{C}}) \tag{5.2}
\end{equation*}
$$

Let us finally conclude this section with the explicit computation of a K_{1}-group.

Lemma 5.1.6. One has $K_{1}(\mathbb{C})=K_{1}\left(M_{n}(\mathbb{C})\right)=\{0\}$ for any $n \in \mathbb{N}^{*}$. More generally one has $K_{1}(\mathcal{B}(\mathcal{H}))=\{0\}$ for any separable Hilbert space \mathcal{H}.

Proof. It has been proved in Corollary 2.1.3 that the unitary group of $M_{k}\left(M_{n}(\mathbb{C})\right)=$ $M_{k n}(\mathbb{C})$ is connected for every n and k in \mathbb{N}^{*}. This implies that $\mathcal{U}_{\infty}\left(M_{n}(\mathbb{C})\right) / \sim_{1}$ is the trivial group with only one element. From the description of K_{1} for a unital C^{*}-algebra provided by Proposition 5.1.5 one infers that $K_{1}\left(M_{n}(\mathbb{C})\right)=\{0\}$.

Let us now consider any separable Hilbert space \mathcal{H} and first show that $u \sim_{h} \mathbf{1}_{n}$ for any unitary element $u \in M_{n}(\mathcal{B}(\mathcal{H}))$. Indeed, let us define $\varphi: \mathbb{T} \rightarrow[0,2 \pi)$ by

$$
\varphi\left(e^{i \theta}\right)=\theta, \quad 0 \leq \theta<2 \pi
$$

Then φ is a bounded Borel measurable map, and $z=e^{i \varphi(z)}$ for any $z \in \mathbb{T}$. As a consequence, for any $u \in \mathcal{U}_{n}(\mathcal{B}(\mathcal{H}))=\mathcal{U}\left(\mathcal{B}\left(\mathcal{H}^{n}\right)\right)$, one infers that $\varphi(u)=\varphi(u)^{*}$ in $\mathcal{B}\left(\mathcal{H}^{n}\right)$, and that $u=e^{i \varphi(u)}$. By Lemma 2.1.2.(i) it follows that $u \sim_{h} \mathbf{1}_{n}$. Consequently, one deduces that $u \sim_{1} \mathbf{1}$, and then that $\mathcal{U}_{\infty}(\mathcal{B}(\mathcal{H})) / \sim_{1}=\{0\}$. In other words, one concludes that $K_{1}(\mathcal{B}(\mathcal{H}))=\{0\}$ as above.

5.2 Functoriality of K_{1}

This section is partially analogue to Section 3.3. Let us first consider two C^{*}-algebras \mathcal{C} and \mathcal{Q}, and let $\varphi: \mathcal{C} \rightarrow \mathcal{Q}$ be a $*$-homomorphism. Then φ induces a unital ${ }_{*}-$ homomorphism $\tilde{\varphi}: \widetilde{\mathcal{C}} \rightarrow \widetilde{\mathcal{Q}}$ which itself extends to a unital $*$-homomorphism $\tilde{\varphi}$: $M_{n}(\widetilde{\mathcal{C}}) \rightarrow M_{n}(\widetilde{\mathcal{Q}})$ for any $n \in \mathbb{N}^{*}$. This gives rise to a map $\tilde{\varphi}: \mathcal{U}_{\infty}(\widetilde{\mathcal{C}}) \rightarrow \mathcal{U}_{\infty}(\widetilde{\mathcal{Q}})$, and one can set $\nu: \mathcal{U}_{\infty}(\widetilde{\mathcal{C}}) \rightarrow K_{1}(\mathcal{Q})$ by $\nu(u):=[\tilde{\varphi}(u)]_{1}$ for any $u \in \mathcal{U}_{\infty}(\widetilde{\mathcal{C}})$. It is straightforward to check that ν satisfies the three conditions of Proposition 5.1.4, and hence there exists precisely one group homomorphism $K_{1}(\varphi): K_{1}(\mathcal{C}) \rightarrow K_{1}(\mathcal{Q})$ with the property

$$
\begin{equation*}
K_{1}(\varphi)\left([u]_{1}\right)=[\tilde{\varphi}(u)]_{1} \tag{5.3}
\end{equation*}
$$

for any $u \in \mathcal{U}_{\infty}(\widetilde{\mathcal{C}})$.
Note that if \mathcal{C} and \mathcal{Q} are unital C^{*}-algebras, and if $\varphi: \mathcal{C} \rightarrow \mathcal{Q}$ is a unital $*-$ homomorphism, then $K_{1}(\varphi)\left([u]_{1}\right)=[\varphi(u)]_{1}$ for any $u \in \mathcal{U}_{\infty}(\mathcal{C})$.

The following proposition shows that K_{1} is a homotopy invariant functor which preserves the zero objects.

Proposition 5.2.1 (Functoriality and homotopy invariance of K_{1}). Let \mathcal{J}, \mathcal{C} and \mathcal{Q} be C^{*}-algebras. Then
(i) $K_{1}\left(\mathrm{id}_{\mathcal{C}}\right)=\operatorname{id}_{K_{1}(\mathcal{C})}$,
(ii) If $\varphi: \mathcal{J} \rightarrow \mathcal{C}$ and $\psi: \mathcal{C} \rightarrow \mathcal{Q}$ are $*$-homomorphisms, then

$$
K_{1}(\psi \circ \varphi)=K_{1}(\psi) \circ K_{1}(\varphi),
$$

(iii) $K_{1}(\{0\})=\{0\}$,
(iv) $K_{1}\left(0_{\mathcal{C} \rightarrow \mathcal{Q}}\right)=0_{K_{1}(\mathcal{C}) \rightarrow K_{1}(\mathcal{Q})}$,
(v) If $\varphi, \psi: \mathcal{C} \rightarrow \mathcal{Q}$ are homotopic $*$-homomorphisms, then $K_{1}(\varphi)=K_{1}(\psi)$,
(vi) If \mathcal{C} and \mathcal{Q} are homotopy equivalent, then $K_{1}(\mathcal{C})$ is isomorphic to $K_{1}(\mathcal{Q})$. More specifically, if (3.4) is a homotopy between \mathcal{C} and \mathcal{Q}, then $K_{1}(\varphi): K_{1}(\mathcal{C}) \rightarrow K_{1}(\mathcal{Q})$ and $K_{1}(\psi): K_{1}(\mathcal{Q}) \rightarrow K_{1}(\mathcal{C})$ are isomorphisms, with $K_{1}(\varphi)^{-1}=K_{1}(\psi)$.
Proof. The proof of (i) and (ii) can directly be inferred from (5.3) together with the equalities $\widetilde{\mathrm{id}_{\mathcal{C}}}=\operatorname{id}_{\tilde{\mathcal{C}}}$ and $\widetilde{(\psi \circ \varphi)}=\tilde{\psi} \circ \tilde{\varphi}$.

As already mentioned in (5.2), the equality $K_{1}(\mathcal{C})=K_{1}(\widetilde{\mathcal{C}})$ holds for any C^{*}-algebra. In particular, $K_{1}(\{0\})$ is isomorphic to $K_{1}(\mathbb{C})$, which is equal to $\{0\}$ by Lemma 5.1.6. This implies (iii).

The zero homomorphism $0_{\mathcal{C} \rightarrow \mathcal{Q}}$ can be seen as the composition of the maps $\mathcal{C} \rightarrow\{0\}$ and $\{0\} \rightarrow \mathcal{Q}$. Hence, (iv) follows from (iii) and (ii).
(v) Let us now consider a path $t \mapsto \varphi(t)$ of $*$-homomorphisms from \mathcal{C} to \mathcal{Q}, with $\varphi(0)=\varphi$ and $\varphi(1)=\psi$, and such that the map $[0,1] \ni t \mapsto \varphi(t)(a) \in \mathcal{Q}$ is continuous, for any $a \in \mathcal{C}$. The induced $*$-homomorphism $\tilde{\varphi}: M_{n}(\widetilde{\mathcal{C}}) \rightarrow M_{n}(\widetilde{\mathcal{Q}})$ is unital, for any $n \in \mathbb{N}^{*}$, and the map $[\widetilde{\mathcal{C}}, 1] \ni t \mapsto \varphi(t)(a) \in M_{n}(\widetilde{\mathcal{Q}})$ is continuous, for any $a \in M_{n}(\widetilde{\mathcal{C}})$. Hence for any $u \in \mathcal{U}_{n}(\widetilde{\mathcal{C}})$ one has in $\mathcal{U}_{n}(\widetilde{\mathcal{Q}})$:

$$
\tilde{\varphi}(u)=\tilde{\varphi}(0)(u) \sim_{h} \tilde{\varphi}(1)(u)=\tilde{\psi}(u) .
$$

As a consequence, one infers that

$$
K_{1}(\varphi)\left([u]_{1}\right)=[\tilde{\varphi}(u)]_{1}=[\tilde{\psi}(u)]_{1}=K_{1}(\psi)\left([u]_{1}\right),
$$

which proves (v).
Finally, statement $(v i)$ is a consequence of $(i),(i i)$ and (v).
Let us also prove a short lemma which will be useful in the next proposition.
Lemma 5.2.2. Let \mathcal{C} and \mathcal{Q} be C^{*}-algebras, let $\varphi: \mathcal{C} \rightarrow \mathcal{Q}$ be $a *$-homomorphism, and let $g \in \operatorname{Ker}\left(K_{1}(\varphi)\right)$. Then
(i) There exists an element $u \in \mathcal{U}_{\infty}(\widetilde{\mathcal{C}})$ such that $g=[u]_{1}$ and $\tilde{\varphi}(u) \sim_{h} \mathbf{1}$,
(ii) If φ is surjective, then there exists $u \in \mathcal{U}_{\infty}(\widetilde{\mathcal{C}})$ such that $g=[u]_{1}$ and $\tilde{\varphi}(u)=\mathbf{1}$.

Proof. (i) Choose $v \in \mathcal{U}_{m}(\widetilde{\mathcal{C}})$ such that $g=[v]_{1}$. Then $[\tilde{\varphi}(v)]_{1}=0=\left[\mathbf{1}_{m}\right]_{1}$, and hence there exists an integer $n \geq m$ such that

$$
\tilde{\varphi}(v) \oplus \mathbf{1}_{n-m} \sim_{h} \mathbf{1}_{m} \oplus \mathbf{1}_{n-m}=\mathbf{1}_{n} .
$$

Set $u=v \oplus \mathbf{1}_{n-m}$, and then $[u]_{1}=[v]_{1}=g$ and $\tilde{\varphi}(u)=\tilde{\varphi}(v) \oplus \mathbf{1}_{n-m} \sim_{h} \mathbf{1}_{n}$.
(ii) Use (i) to find $v \in \mathcal{U}_{n}(\widetilde{\mathcal{C}})$ with $g=[v]_{1}$ and $\tilde{\varphi}(v) \sim_{h}$ 1. By Lemma 2.1.7.(iii) and (i), there exists $w \in \mathcal{U}_{n}(\widetilde{\mathcal{C}})$ such that $\tilde{\varphi}(w)=\tilde{\varphi}(v)$ and $w \sim_{h} \mathbf{1}$. Then $u:=w^{*} v$ has the desired properties.

Proposition 5.2.3 (Half exactness of K_{1}). Every short exact sequence of C^{*}-algebras

$$
0 \longrightarrow \mathcal{J} \xrightarrow{\varphi} \mathcal{C} \xrightarrow{\psi} \mathcal{Q} \longrightarrow 0,
$$

induces an exact sequence of Abelian groups

$$
K_{1}(\mathcal{J}) \xrightarrow{K_{1}(\varphi)} K_{1}(\mathcal{C}) \xrightarrow{K_{1}(\psi)} K_{1}(\mathcal{Q}),
$$

that is $\operatorname{Ran}\left(K_{1}(\varphi)\right)=\operatorname{Ker}\left(K_{1}(\psi)\right)$.
Proof. By functoriality of K_{1} one already knows that

$$
K_{1}(\psi) \circ K_{1}(\varphi)=K_{1}(\psi \circ \varphi)=K_{1}\left(0_{\mathcal{J} \rightarrow \mathcal{Q}}\right)=0_{K_{1}(\mathcal{J}) \rightarrow K_{1}(\mathcal{Q})}
$$

which implies that $\operatorname{Ran}\left(K_{1}(\varphi)\right) \subset \operatorname{Ker}\left(K_{1}(\psi)\right)$.
Conversely, assume that $g \in \operatorname{Ker}\left(K_{1}(\psi)\right)$. According to Lemma 5.2.2.(ii) there exist $n \in \mathbb{N}^{*}$ and $u \in \mathcal{U}_{n}(\widetilde{\mathcal{C}})$ such that $g=[u]_{1}$ and $\tilde{\psi}(u)=\mathbf{1}$. Then, by Lemma 4.3.1. (ii) there exists $v \in M_{n}(\widetilde{\mathcal{J}})$ such that $\tilde{\varphi}(v)=u$. Finally, $[v]_{1}$ belongs to $K_{1}(\mathcal{J})$, and $K_{1}(\varphi)([v])=[\tilde{\varphi}(v)]_{1}=[u]_{1}=g$.

Let us now mention that the functor K_{1} is split exact and preserves direct sums of C^{*}-algebras. These statements can be proved in the same way as for the functor K_{0} in Propositions 4.3.3 and 4.3.4. These statements also follow from the isomorphism $K_{1}(\mathcal{C}) \cong K_{0}(S(\mathcal{C}))$ which will be established later on. For this reason, we state these results without providing a proof.

Proposition 5.2.4 (Split exactness of K_{1}). Every split exact sequence of C^{*}-algebras

$$
0 \longrightarrow \mathcal{J} \xrightarrow{\varphi} \mathcal{C} \underset{\lambda}{\stackrel{\psi}{\rightleftarrows}} \mathcal{Q} \longrightarrow 0
$$

induces a split exact sequence of Abelian groups

$$
0 \longrightarrow K_{1}(\mathcal{J}) \xrightarrow{K_{1}(\varphi)} K_{1}(\mathcal{C}) \stackrel{K_{1}(\psi)}{\stackrel{K_{1}(\lambda)}{\longrightarrow}} K_{1}(\mathcal{Q}) \longrightarrow 0
$$

Proposition 5.2.5. For any C^{*}-algebras \mathcal{C}_{1} and \mathcal{C}_{2} the K_{0}-groups $K_{1}\left(\mathcal{C}_{1} \oplus \mathcal{C}_{2}\right)$ and $K_{1}\left(\mathcal{C}_{1}\right) \oplus K_{1}\left(\mathcal{C}_{2}\right)$ are isomorphic. More precisely, if $\iota_{i}: \mathcal{C}_{i} \rightarrow \mathcal{C}_{1} \oplus \mathcal{C}_{2}$ denotes the canonical inclusion $*$-homomorphism, then the group morphism is provided by the map

$$
K_{1}\left(\mathcal{C}_{1}\right) \oplus K_{1}\left(\mathcal{C}_{2}\right) \ni(g, h) \mapsto K_{1}\left(\iota_{1}\right)(g)+K_{1}\left(\iota_{2}\right)(h) \in K_{1}\left(\mathcal{C}_{1} \oplus \mathcal{C}_{2}\right) .
$$

We close this section with an important result for the computation of K_{1}-groups, which is the analogue for K_{1} of the content of Proposition 4.3.7 on the stability of K_{0}. Note that the proof of the following statement can be proved from its analogue for K_{0} by taking the isomorphism $K_{1}(\mathcal{C}) \cong K_{0}(S(\mathcal{C}))$ into account.

Proposition 5.2.6 (Stability of K_{1}). Let \mathcal{C} be a C^{*}-algebra and let $n \in \mathbb{N}^{*}$. Then $K_{1}(\mathcal{C})$ is isomorphic to $K_{1}\left(M_{n}(\mathcal{C})\right)$. In addition, for any separable Hilbert space \mathcal{H} the following equality holds

$$
\begin{equation*}
K_{1}(\mathcal{C} \otimes \mathcal{K}(\mathcal{H})) \cong K_{1}(\mathcal{C}) \tag{5.4}
\end{equation*}
$$

Corollary 5.2.7. For any separable Hilbert space \mathcal{H} one has $K_{1}(\mathcal{K}(\mathcal{H}))=\{0\}$.
Proof. From equation (5.4) one infers that $K_{1}(\mathcal{K}(\mathcal{H})) \cong K_{1}(\mathbb{C})$, but $K_{1}(\mathbb{C})=\{0\}$ by Lemma 5.1.6.

Extension 5.2.8. Work on the relations between K_{1}-group and determinant for unital Abelian C^{*}-algebras, as presented in [RLLOO, Sec. 8.3].

