Chapter 9

Complex numbers

9.1 Basic introduction

The aim of this chapter is to provide a very short introduction to complex numbers.
One use of complex numbers is to find solutions of the equations 2> = —1, or more
generally to find solutions of the equation az? + bx + ¢ = 0 for arbitrary a,b, c € R.

The first step in the construction is based on an analogy with R2. Note that for
simplicity we shall denote the elements of R? by (x,y) instead of !(z,y). Let us consider
R? endowed with the usual addition: (x,y) + (2/,y') = (z + ',y + %) for any (z,y) and
(2/,y') in R?. We now define a complex multiplication * for these two elements:

(z,y) * (2", ¢) = (z2’ —yy', 2y’ +ya’) €R? (9.1.1)

Let us stress that up to now, we had not defined any product of elements of R?: the
scalar product is also taking two elements of R? but the result of the scalar product is
an element of R, not of R? !

Since (9.1.1) is rather complicated to remember, let us introduce a symbol i with
the only rule that

ii =i = —1. (9.1.2)

We also rewrite (z,y) as « + iy. Then, one can again multiply = + iy and 2’ + iy’ by
using the common rule of multiplication. One gets

(@ +iy) (@' +iy) = xa’ + (iy)2’ + x(iy') + (iy) (iy)
= z2’ +i2yy + izy + iyx
= (z2’ — yy') + i(zy' + ya'). (9.1.3)
Note that by comparing (9.1.1) with (9.1.3), one observes that the same result is ob-
tained, but (9.1.3) is certainly easier to remember since only usual multiplications are
involved. The key point in the construction is the equality mentioned in (9.1.2). Let us

mention that the notation 22 is also used for z z (the product of z by itself), and that
with this notation, the usual addition can be rewritten as

(x+iy)+ (@ +i))=(x+2) +ily +9). (9.1.4)
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We are now ready for introducing the set of complex numbers:

Definition 9.1.1. One defines
C={z=a+iy|z,ycR}

endowed with the addition recalled in (9.1.4) and with the multiplication introduced in
(9.1.3). This set is called the set of complex numbers.

Let us stress that we write indifferently x 4 iy or x + yi.

Example 9.1.2. 1+ 14, 7—2i, —3+1, 3, 2i are elements of C, where we have identified
3 with 3+ 0t, 2¢ with 0+ 20 and —3 + @ with —3 + 11.

By taking into account the identification of x with x + 0z, it is clear that R is
included in C. It corresponds to the elements on the horizontal axis in the mentioned
analogy of C with R

Let us still add some examples of multiplications or additions:

Examples 9.1.3. (i) (34 2i)+ (1 + 1i) =4+ 34,
(ii) (3+2i)+ (1 —3i) =4 — 14,

(iii) (24 20)(1+30) =2+ 2 +6i — 6= —4 + 8i,
(i) (14 20)(—3 —20) = —3—6i — 2 +4—=1—8i.

Let us now prove an important result about complex numbers. We recall that the
notion of a field has been introduced in Definition 3.1.1.

Theorem 9.1.4. C is a field.

Proof. The proof consists in checking the various properties mentioned in Definition
3.1.1. For that purpose, let us set z = x + 1y and z; = z; + 1y, for j € {1,2,3} and with
x,y,2;,y; € R. Then one has

(i) 21 + 22 € C and z; 29 € C, which means that these operations are internal,

(i) (z1+22)+23 = 21+ (22+23) and (21 22)23 = 21(22 23), as shown in Exercise 9.1. This
corresponds to the associativity of the addition and of the complex multiplication

iil) 21 + 20 = 29 + 21 and 21 25 = 25 21, as shown in Exercise 9.2. This means that the
d h in E ise 9.2. Thi that th
addition and the complex multiplication are commutative,

(iv) Let us set 0 = 0 + 0i and 1 = 1 + 04, which correspond to the usual 0 and 1
of R. Then it is easily observed that z 4+ 0 = z and that 1z = z. This property
corresponds to the existence of identity elements for the addition and for the
complex multiplication,
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(v) Observe that if z = x + iy € C, then —z — iy also belongs to C and one has
(x +1y) + (—x —iy) = 0. Thus —x — 4y is the inverse of x + iy for the addition.
For the inverse of = + iy with respect to the addition, let us assume that x + iy #
0, which means that (z,y) # (0,0), and let us consider the complex number
# — zxg—ﬂiQ C. This element is well defined since its denominator is different
from 0. Then one observes that

(x—l—iy)(

Thus one has (z +1iy) ™' = 55> — i

12+y2
complex multiplication is considered.

1

Ty ):x2+y2 Ty tay
x2_|_y2 x2+y2 x2+y2 I.2_|_y2

%ﬂﬂ, when the inverse with respect to the

(vi) The distributivity of complex multiplication with respect to the addition of com-
plex numbers is shown in Exercise 9.1.

]

In addition to R we have thus a second field at our disposal, the field C of complex
numbers. The corresponding complex vector spaces and linear maps on complex vector
spaces are briefly studied in Section 7.4. Let us still emphasize one formula which has
been derived in the previous proof: for any z = x + iy € C with z # 0 one has

x oy
—9q )
x? 492 x? 492

(x+iy)~' = (9.1.5)

Let us now introduce some notations. For any z = = + iy € C, one sets R(z) := x
and (z) := y for the real part and the imaginary part of z. We also introduce the
complex conjugate Z of z by

zZ=x 41y =x—1y.

Note that in the mentioned analogy of C with R?, it corresponds to taking the image of z
by a symmetry along the horizontal axis. Then, with this concept of complex conjugate,
it is easily observed that

R(z) = and I(z) =

For any complex number z = x + iy we also define |z| := /22 + y? and set
z =r(cos(f) + isin(0))

with r = |z|, x = rcos(f) and y = rsin(f). This is called the polar coordinate represen-
tation of the complex number z. The number r = |z| is called the norm or the modulus
of z, and 6 its argument, i.e. § = arg(z). We also introduce the notation

e* =" .= e”(cos(y) + isin(y)).

These notations will be used in the Exercises, and they are very useful tools for complex
numbers.
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Remark 9.1.5. Let us emphasize that C has no ordering. Indeed, even if R has a
ordering (one says for example that —2 < 4), it is impossible to compare two complex
numbers as for example 3 — 21 and 4 + 1.

Let us now provide one of the basic result for complex numbers, which is part of
the motivation for introducing them.

Proposition 9.1.6. For any a + ib € C, there exists z1, zo € C with z; # z3 (except if
a+ib = 0) such that 2} = 23 = a + ib. In other words, every complex number has two
distinct square roots.

Proof. Let us first observe that for any a,b € R, one has

a+vaz+b2>0 and —a+Va2+02>0.

at/a?1b?

5 with the usual square root of positive numbers,

Thus, one can define x :=

and also y 1= |/ =&t aTtb" V2‘12+b2 with the usual square root. We then set

21 =T+ iy and 29 = —T — LY

with p=11if b >0 and p = —1 if b < 0. It only remains to check with the definition of
the complex multiplication that 2? = a + ib and that 22 = a + ib as well. ]

By using the well-known formula for the solutions of a second degree equation, one
infers that:

Corollary 9.1.7. The equation az* + bz + ¢ = 0 has always two solutions in C.

Let us finally mention that this corollary is at the root of the fundamental theorem
of algebra asserting that any polynomial of degree n has n solutions in C.
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9.2 Exercises
Exercise 9.1. Let 2z, 2o, 23 be three complex numbers. Show that
(21 +22) + 23 = 21 + (22 + 23)

and that
(2129)23 = 21(2023).

These properties correspond to the associativity of the addition and of the complex
multiplication. In addition, check that z1(zo+23) = 2129+2123. This property corresponds
to the distributivity of the complex multiplication with respect to the addition of complex
numbers.

Exercise 9.2. For z1,29 € C, show that z; + z0 = 29 + z1 and that z1 20 = 29 2.
These properties correspond to the commutativity of the addition and of the complex
multiplication.

Exercise 9.3. Compute the real part and the imaginary part of the number % Same
question with the number % + 1%1 and the number /1 + 1.

Exercise 9.4. Find all solutions of the equation z* = —1.

Exercise 9.5. For any z1, 22 € C, show that |z122| = |21||22| and that

arg(2122) = arg(21) + arg(zz).

Exercise 9.6. Deduce from the previous exercise de Moivre’s formula: for any n € N
and for z = r(cos(f) + isin(6)) one has

2" = 71" (cos(nb) + isin(nd)).

Exercise 9.7. Deduce that for any complex number z = r(cos(d) + isin(0)), the n-th
roots of z are given by

Zj = {L/F[Cos <9+n27rj> + 7 sin <9+27rj>]

n

forj€{0,1,...,n—1}.
Exercise 9.8. Show the following properties:

1. 21+ 2 =71+ Z2,

- R1R%2 = 21 22,

2
3. 2z =|z|%
4. 27V =7Z/|z|? whenever z # 0,
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5 R(z) =(2+72)/2 and S(2) = (z — 2)/(2i), where R(z) and (2) are the real and
the tmaginary part of z.

Exercise 9.9. Show also that |Z| = |z| and that arg(z) = — arg(z).
Exercise 9.10. Show the following properties:

1. e1t%2 = e*1e* for any z1,29 € C,

2. €* 1is never equal to 0,

3. |emtiy| = 7,

4. €™ = —1 (Euler’s identity, and “one of the most beautiful formula in mathemat-
1cs”).



